1
|
Hall KE, Tucker C, Dunn JA, Webb T, Watts SA, Kirkman E, Guillaumin J, Hoareau GL, Pidcoke HF. Breaking barriers in trauma research: A narrative review of opportunities to leverage veterinary trauma for accelerated translation to clinical solutions for pets and people. J Clin Transl Sci 2024; 8:e74. [PMID: 38715566 PMCID: PMC11075112 DOI: 10.1017/cts.2024.513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/20/2024] [Accepted: 03/25/2024] [Indexed: 08/10/2024] Open
Abstract
Trauma is a common cause of morbidity and mortality in humans and companion animals. Recent efforts in procedural development, training, quality systems, data collection, and research have positively impacted patient outcomes; however, significant unmet need still exists. Coordinated efforts by collaborative, translational, multidisciplinary teams to advance trauma care and improve outcomes have the potential to benefit both human and veterinary patient populations. Strategic use of veterinary clinical trials informed by expertise along the research spectrum (i.e., benchtop discovery, applied science and engineering, large laboratory animal models, clinical veterinary studies, and human randomized trials) can lead to increased therapeutic options for animals while accelerating and enhancing translation by providing early data to reduce the cost and the risk of failed human clinical trials. Active topics of collaboration across the translational continuum include advancements in resuscitation (including austere environments), acute traumatic coagulopathy, trauma-induced coagulopathy, traumatic brain injury, systems biology, and trauma immunology. Mechanisms to improve funding and support innovative team science approaches to current problems in trauma care can accelerate needed, sustainable, and impactful progress in the field. This review article summarizes our current understanding of veterinary and human trauma, thereby identifying knowledge gaps and opportunities for collaborative, translational research to improve multispecies outcomes. This translational trauma group of MDs, PhDs, and DVMs posit that a common understanding of injury patterns and resulting cellular dysregulation in humans and companion animals has the potential to accelerate translation of research findings into clinical solutions.
Collapse
Affiliation(s)
- Kelly E. Hall
- Department of Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
- Translational Trauma Research Alliance (TeTRA-Med), Fort Collins, CO, USA
| | - Claire Tucker
- Department of Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
- Translational Trauma Research Alliance (TeTRA-Med), Fort Collins, CO, USA
- One Health Institute, Office of the Vice President of Research and Department of Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Julie A. Dunn
- Translational Trauma Research Alliance (TeTRA-Med), Fort Collins, CO, USA
- Medical Center of the Rockies, University of Colorado Health North, Loveland, CO, USA
| | - Tracy Webb
- Department of Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
- Translational Trauma Research Alliance (TeTRA-Med), Fort Collins, CO, USA
| | - Sarah A. Watts
- Translational Trauma Research Alliance (TeTRA-Med), Fort Collins, CO, USA
- CBR Division, Medical and Trauma Sciences Porton Down, Salisbury, WI, UK
| | - Emrys Kirkman
- Translational Trauma Research Alliance (TeTRA-Med), Fort Collins, CO, USA
- CBR Division, Dstl Porton Down, Salisbury, WI, UK
| | - Julien Guillaumin
- Department of Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
- Translational Trauma Research Alliance (TeTRA-Med), Fort Collins, CO, USA
| | - Guillaume L. Hoareau
- Translational Trauma Research Alliance (TeTRA-Med), Fort Collins, CO, USA
- Emergency Medicine Department and Nora Eccles-Harrison Cardiovascular Research and Training Institute and Biomedical Engineering Department, University of Utah, Salt Lake City, UT, USA
| | - Heather F. Pidcoke
- Department of Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
- Translational Trauma Research Alliance (TeTRA-Med), Fort Collins, CO, USA
| |
Collapse
|
2
|
Moris D, Barfield R, Chan C, Chasse S, Stempora L, Xie J, Plichta JK, Thacker J, Harpole DH, Purves T, Lagoo-Deenadayalan S, Hwang ESS, Kirk AD. Immune Phenotype and Postoperative Complications After Elective Surgery. Ann Surg 2023; 278:873-882. [PMID: 37051915 DOI: 10.1097/sla.0000000000005864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
OBJECTIVES To characterize and quantify accumulating immunologic alterations, pre and postoperatively in patients undergoing elective surgical procedures. BACKGROUND Elective surgery is an anticipatable, controlled human injury. Although the human response to injury is generally stereotyped, individual variability exists. This makes surgical outcomes less predictable, even after standardized procedures, and may provoke complications in patients unable to compensate for their injury. One potential source of variation is found in immune cell maturation, with phenotypic changes dependent on an individual's unique, lifelong response to environmental antigens. METHODS We enrolled 248 patients in a prospective trial facilitating comprehensive biospecimen and clinical data collection in patients scheduled to undergo elective surgery. Peripheral blood was collected preoperatively, and immediately on return to the postanesthesia care unit. Postoperative complications that occurred within 30 days after surgery were captured. RESULTS As this was an elective surgical cohort, outcomes were generally favorable. With a median follow-up of 6 months, the overall survival at 30 days was 100%. However, 20.5% of the cohort experienced a postoperative complication (infection, readmission, or system dysfunction). We identified substantial heterogeneity of immune senescence and terminal differentiation phenotypes in surgical patients. More importantly, phenotypes indicating increased T-cell maturation and senescence were associated with postoperative complications and were evident preoperatively. CONCLUSIONS The baseline immune repertoire may define an immune signature of resilience to surgical injury and help predict risk for surgical complications.
Collapse
Affiliation(s)
| | - Richard Barfield
- Department of Biostatistics and Bioinformatics, Duke University; Durham, NC
- Duke Center for Genomic and Computational Biology, Duke University; Durham, NC
| | - Cliburn Chan
- Department of Biostatistics and Bioinformatics, Duke University; Durham, NC
- Duke Center for Genomic and Computational Biology, Duke University; Durham, NC
| | - Scott Chasse
- Department of Surgery, Duke University; Durham, NC
| | | | - Jichun Xie
- Department of Biostatistics and Bioinformatics, Duke University; Durham, NC
- Duke Center for Genomic and Computational Biology, Duke University; Durham, NC
| | | | | | | | - Todd Purves
- Department of Surgery, Duke University; Durham, NC
| | | | | | - Allan D Kirk
- Department of Surgery, Duke University; Durham, NC
| |
Collapse
|
3
|
Magatti M, Pischiutta F, Ortolano F, Pasotti A, Caruso E, Cargnoni A, Papait A, Capuzzi F, Zoerle T, Carbonara M, Stocchetti N, Borsa S, Locatelli M, Erba E, Prati D, Silini AR, Zanier ER, Parolini O. Systemic immune response in young and elderly patients after traumatic brain injury. Immun Ageing 2023; 20:41. [PMID: 37573338 PMCID: PMC10422735 DOI: 10.1186/s12979-023-00369-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 08/07/2023] [Indexed: 08/14/2023]
Abstract
BACKGROUND Traumatic brain injury (TBI) is a leading cause of death and long-term disability worldwide. In addition to primary brain damage, systemic immune alterations occur, with evidence for dysregulated immune responses in aggravating TBI outcome and complications. However, immune dysfunction following TBI has been only partially understood, especially in the elderly who represent a substantial proportion of TBI patients and worst outcome. Therefore, we aimed to conduct an in-depth immunological characterization of TBI patients, by evaluating both adaptive (T and B lymphocytes) and innate (NK and monocytes) immune cells of peripheral blood mononuclear cells (PBMC) collected acutely (< 48 h) after TBI in young (18-45 yo) and elderly (> 65 yo) patients, compared to age-matched controls, and also the levels of inflammatory biomarkers. RESULTS Our data show that young respond differently than elderly to TBI, highlighting the immune unfavourable status of elderly compared to young patients. While in young only CD4 T lymphocytes are activated by TBI, in elderly both CD4 and CD8 T cells are affected, and are induced to differentiate into subtypes with low cytotoxic activity, such as central memory CD4 T cells and memory precursor effector CD8 T cells. Moreover, TBI enhances the frequency of subsets that have not been previously investigated in TBI, namely the double negative CD27- IgD- and CD38-CD24- B lymphocytes, and CD56dim CD16- NK cells, both in young and elderly patients. TBI reduces the production of pro-inflammatory cytokines TNF-α and IL-6, and the expression of HLA-DM, HLA-DR, CD86/B7-2 in monocytes, suggesting a compromised ability to drive a pro-inflammatory response and to efficiently act as antigen presenting cells. CONCLUSIONS We described the acute immunological response induced by TBI and its relation with injury severity, which could contribute to pathologic evolution and possibly outcome. The focus on age-related immunological differences could help design specific therapeutic interventions based on patients' characteristics.
Collapse
Affiliation(s)
- Marta Magatti
- Centro di Ricerca E. Menni, Fondazione Poliambulanza Istituto Ospedaliero, Brescia, Italy.
| | - Francesca Pischiutta
- Department of Acute Brain Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Fabrizio Ortolano
- Dipartimento di Anestesia-Rianimazione e Emergenza Urgenza, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Anna Pasotti
- Centro di Ricerca E. Menni, Fondazione Poliambulanza Istituto Ospedaliero, Brescia, Italy
| | - Enrico Caruso
- Department of Acute Brain Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
- Dipartimento di Anestesia-Rianimazione e Emergenza Urgenza, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Anna Cargnoni
- Centro di Ricerca E. Menni, Fondazione Poliambulanza Istituto Ospedaliero, Brescia, Italy
| | - Andrea Papait
- Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore Facoltà di Medicina e Chirurgia, Roma, Italy
| | - Franco Capuzzi
- Dipartimento Medicina di Laboratorio, Fondazione Poliambulanza Istituto Ospedaliero, Brescia, Italy
| | - Tommaso Zoerle
- Dipartimento di Anestesia-Rianimazione e Emergenza Urgenza, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milano, Italy
| | - Marco Carbonara
- Dipartimento di Anestesia-Rianimazione e Emergenza Urgenza, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Nino Stocchetti
- Dipartimento di Anestesia-Rianimazione e Emergenza Urgenza, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milano, Italy
| | - Stefano Borsa
- Unit of Neurosurgery, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Marco Locatelli
- Department of Pathophysiology and Transplantation, University of Milan, Milano, Italy
- Unit of Neurosurgery, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Elisa Erba
- Department of Transfusion Medicine and Hematology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Daniele Prati
- Department of Transfusion Medicine and Hematology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Antonietta R Silini
- Centro di Ricerca E. Menni, Fondazione Poliambulanza Istituto Ospedaliero, Brescia, Italy
| | - Elisa R Zanier
- Department of Acute Brain Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Ornella Parolini
- Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore Facoltà di Medicina e Chirurgia, Roma, Italy
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, Roma, Italy
| |
Collapse
|
4
|
Moris D, Henao R, Hensman H, Stempora L, Chasse S, Schobel S, Dente CJ, Kirk AD, Elster E. Multidimensional machine learning models predicting outcomes after trauma. Surgery 2022; 172:1851-1859. [PMID: 36116976 DOI: 10.1016/j.surg.2022.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/01/2022] [Accepted: 08/04/2022] [Indexed: 01/07/2023]
Abstract
BACKGROUND An emerging body of literature supports the role of individualized prognostic tools to guide the management of patients after trauma. The aim of this study was to develop advanced modeling tools from multidimensional data sources, including immunological analytes and clinical and administrative data, to predict outcomes in trauma patients. METHODS This was a prospective study of trauma patients at Level 1 centers from 2015 to 2019. Clinical, flow cytometry, and serum cytokine data were collected within 48 hours of admission. Sparse logistic regression models were developed, jointly selecting predictors and estimating the risk of ventilator-associated pneumonia, acute kidney injury, complicated disposition (death, rehabilitation, or nursing facility), and return to the operating room. Model parameters (regularization controlling model sparsity) and performance estimation were obtained via nested leave-one-out cross-validation. RESULTS A total of 179 patients were included. The incidences of ventilator-associated pneumonia, acute kidney injury, complicated disposition, and return to the operating room were 17.7%, 28.8%, 22.5%, and 12.3%, respectively. Regarding extensive resource use, 30.7% of patients had prolonged intensive care unit stay, 73.2% had prolonged length of stay, and 23.5% had need for prolonged ventilatory support. The models were developed and cross-validated for ventilator-associated pneumonia, acute kidney injury, complicated dispositions, and return to the operating room, yielding predictive areas under the curve from 0.70 to 0.91. Each model derived its optimal predictive value by combining clinical, administrative, and immunological analyte data. CONCLUSION Clinical, immunological, and administrative data can be combined to predict post-traumatic outcomes and resource use. Multidimensional machine learning modeling can identify trauma patients with complicated clinical trajectories and high resource needs.
Collapse
Affiliation(s)
| | | | - Hannah Hensman
- DecisionQ, Arlington, VA; Surgical Critical Care Initiative, Department of Surgery, Uniformed Services University of the Health Sciences; Bethesda, MD
| | - Linda Stempora
- Medical Center, Duke University Durham, NC; Surgical Critical Care Initiative, Department of Surgery, Uniformed Services University of the Health Sciences; Bethesda, MD
| | - Scott Chasse
- Medical Center, Duke University Durham, NC; Surgical Critical Care Initiative, Department of Surgery, Uniformed Services University of the Health Sciences; Bethesda, MD
| | - Seth Schobel
- Surgical Critical Care Initiative, Department of Surgery, Uniformed Services University of the Health Sciences; Bethesda, MD; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, MD
| | | | - Allan D Kirk
- Medical Center, Duke University Durham, NC; Surgical Critical Care Initiative, Department of Surgery, Uniformed Services University of the Health Sciences; Bethesda, MD
| | - Eric Elster
- Surgical Critical Care Initiative, Department of Surgery, Uniformed Services University of the Health Sciences; Bethesda, MD; Walter Reed National Military Medical Center, Bethesda, MD
| |
Collapse
|
5
|
van Zuijlen PPM, Korkmaz HI, Sheraton VM, Haanstra TM, Pijpe A, de Vries A, van der Vlies CH, Bosma E, de Jong E, Middelkoop E, Vermolen FJ, Sloot PMA. The future of burn care from a complexity science perspective. J Burn Care Res 2022; 43:1312-1321. [PMID: 35267022 DOI: 10.1093/jbcr/irac029] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Healthcare is undergoing a profound technological and digital transformation and has become increasingly complex. It is important for burns professionals and researchers to adapt to these developments which may require new ways of thinking and subsequent new strategies. As Einstein has put it: 'We must learn to see the world anew'. The relatively new scientific discipline "Complexity science" can give more direction to this and is the metaphorical open door that should not go unnoticed in view of the burn care of the future. Complexity sciences studies 'why the whole is more than the sum of the parts'. It studies how multiple separate components interact with each other and their environment and how these interactions lead to 'behavior of the system'. Biological systems are always part of smaller and larger systems and exhibit the behavior of adaptivity, hence the name complex adaptive systems. From the perspective of complexity science, a severe burn injury is an extreme disruption of the 'human body system'. But this disruption also applies to the systems at the organ and cellular level. All these systems follow principles of complex systems. Awareness of the scaling process at multilevel helps to understand and manage the complex situation when dealing with severe burn cases. The aim of this paper is to create awareness of the concept of complexity and to demonstrate the value and possibilities of complexity science methods and tools for the future of burn care through examples from preclinical, clinical, and organizational perspective in burn care.
Collapse
Affiliation(s)
- Paul P M van Zuijlen
- Burn Center, Red Cross Hospital, Beverwijk, The Netherlands.,Department of Plastic and Reconstructive Surgery, Red Cross Hospital, Beverwijk, The Netherlands.,Department of Plastic Reconstructive and Hand Surgery, Amsterdam Movement Sciences (AMS) Institute, Amsterdam UMC, Location VUmc, Amsterdam, The Netherlands.,Paediatric Surgical Centre, Emma Children's Hospital, Amsterdam UMC, location AMC, Amsterdam, The Netherlands
| | - H Ibrahim Korkmaz
- Burn Center, Red Cross Hospital, Beverwijk, The Netherlands.,Department of Plastic Reconstructive and Hand Surgery, Amsterdam Movement Sciences (AMS) Institute, Amsterdam UMC, Location VUmc, Amsterdam, The Netherlands.,Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Location VUmc, Amsterdam, The Netherlands.,Association of Dutch Burn Centres (ADBC), Beverwijk, The Netherlands
| | - Vivek M Sheraton
- Institute for Advanced Study, University of Amsterdam, Amsterdam, The Netherlands
| | | | - Anouk Pijpe
- Burn Center, Red Cross Hospital, Beverwijk, The Netherlands
| | - Annebeth de Vries
- Burn Center, Red Cross Hospital, Beverwijk, The Netherlands.,Paediatric Surgical Centre, Emma Children's Hospital, Amsterdam UMC, location AMC, Amsterdam, The Netherlands.,Department of Surgery, Red Cross Hospital, Beverwijk, The Netherlands
| | - Cornelis H van der Vlies
- Burn Centre, Maasstad Ziekenhuis, Rotterdam, The Netherlands.,Trauma Research Unit, Department of Surgery, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Eelke Bosma
- Burn Centre and Department of Surgery, Martini Ziekenhuis, Groningen, The Netherlands
| | - Evelien de Jong
- Burn Center, Red Cross Hospital, Beverwijk, The Netherlands.,Intensive Care Unit, Red Cross Hospital, Beverwijk, The Netherlands
| | - Esther Middelkoop
- Burn Center, Red Cross Hospital, Beverwijk, The Netherlands.,Department of Plastic Reconstructive and Hand Surgery, Amsterdam Movement Sciences (AMS) Institute, Amsterdam UMC, Location VUmc, Amsterdam, The Netherlands.,Association of Dutch Burn Centres (ADBC), Beverwijk, The Netherlands
| | - Fred J Vermolen
- Delft Institute of Applied Mathematics, Delft University of Technology, Delft, The Netherlands.,Computational Mathematics, Hasselt University, Diepenbeek, Belgium
| | - Peter M A Sloot
- Institute for Advanced Study, University of Amsterdam, Amsterdam, The Netherlands.,Complexity Institute, Nanyang Technological University, Singapore.,ITMO University, Saint Petersburg, Russian Federation
| |
Collapse
|
6
|
A Multidimensional Bioinformatic Platform for the Study of Human Response to Surgery. Ann Surg 2022; 275:1094-1102. [PMID: 35258509 DOI: 10.1097/sla.0000000000005429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To design and establish a prospective biospecimen repository that integrates multi-omics assays with clinical data to study mechanisms of controlled injury and healing. SUMMARY BACKGROUND DATA Elective surgery is an opportunity to understand both the systemic and focal responses accompanying controlled and well-characterized injury to the human body. The overarching goal of this ongoing project is to define stereotypical responses to surgical injury, with the translational purpose of identifying targetable pathways involved in healing and resilience, and variations indicative of aberrant peri-operative outcomes. METHODS Clinical data from the electronic medical record combined with large-scale biological data sets derived from blood, urine, fecal matter, and tissue samples are collected prospectively through the peri-operative period on patients undergoing fourteen surgeries chosen to represent a range of injury locations and intensities. Specimens are subjected to genomic, transcriptomic, proteomic, and metabolomic assays to describe their genetic, metabolic, immunologic, and microbiome profiles, providing a multidimensional landscape of the human response to injury. RESULTS The highly multiplexed data generated includes changes in over 28,000 mRNA transcripts, 100 plasma metabolites, 200 urine metabolites, and 400 proteins over the longitudinal course of surgery and recovery. In our initial pilot dataset, we demonstrate the feasibility of collecting high quality multi-omic data at pre- and post-operative time points and are already seeing evidence of physiologic perturbation between timepoints. CONCLUSIONS This repository allows for longitudinal, state-of-the-art genomic, transcriptomic, proteomic, metabolomic, immunologic, and clinical data collection and provides a rich and stable infrastructure on which to fuel further biomedical discovery.
Collapse
|
7
|
Huo J, Wang L, Tian Y, Sun W, Zhang G, Zhang Y, Liu Y, Zhang J, Yang X, Liu Y. Gene Co-Expression Analysis Identified Preserved and Survival-Related Modules in Severe Blunt Trauma, Burns, Sepsis, and Systemic Inflammatory Response Syndrome. Int J Gen Med 2021; 14:7065-7076. [PMID: 34707398 PMCID: PMC8544272 DOI: 10.2147/ijgm.s336785] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 10/06/2021] [Indexed: 12/30/2022] Open
Abstract
Background Severe trauma and burns accompanied by sepsis are associated with high morbidity and mortality. Little is known about the transcriptional similarity between trauma, burns, sepsis, and systemic inflammatory response syndrome (SIRS). Uncovering key genes and molecular networks is critical to understanding the biology of disease. Conventional analysis of gene changes (fold change) analysis is difficult for time-serial data such as post-injury blood transcriptome. Methods Weighted gene co-expression network analysis (WGCNA) was applied to the trauma dataset to identify modules and hub genes. Module stability was tested by half sampling. Module preservations of burns, sepsis, and SIRS were calculated using trauma as reference. Module functional enrichment was analyzed in gProfiler server. Candidate drugs were screened using Connectivity Map based on hub genes. The modules were visualized in Cytoscape. Results Seventeen modules were identified. The modules were robust to the exclusion of half the sample. They were involved in lymphocyte and platelet activation, erythrocyte differentiation, cell cycle, translation, and interferon signaling. In addition, highly connected hub genes were identified in each module, such as GUCY1B1, BCL11B, HMMR, and CEACAM6. High BCL11B (M13) or low CEACAM6 (M27) expression indicates better survival prognosis in sepsis patients regardless of endotype class and age. Network preservation in burns, sepsis, and SIRS showed a general similarity between trauma and burns. M4, M5, M13, M16, M20, and M27 were significantly associated with injury time in trauma and burns. High M13 (T cell activation), low M15 (cell cycle), and low M27 (neutrophil activation) indicate better survival of sepsis patients, regardless of endotype class and age. Moreover, the modules can efficiently separate patients with different diseases. Some modules and hub genes have good prognostic performance in sepsis. Based on the hub genes of each module, six candidate drugs were screened. Conclusion This study first compared the gene co-expression modules in trauma, burns, sepsis, and SIRS. The identified modules are useful for disease prognosis and drug discovery. BCL11B and CEACAM6 may be promising biomarkers for sepsis risk assessment.
Collapse
Affiliation(s)
- Jingrui Huo
- Science and Technology Experiment Center, Cangzhou Medical College, Cangzhou, 061001, People's Republic of China
| | - Lei Wang
- Microbiology and Immunology Department, Cangzhou Medical College, Cangzhou, 061001, People's Republic of China
| | - Yi Tian
- Microbiology and Immunology Department, Cangzhou Medical College, Cangzhou, 061001, People's Republic of China
| | - Wenjie Sun
- Science and Technology Experiment Center, Cangzhou Medical College, Cangzhou, 061001, People's Republic of China
| | - Guoan Zhang
- Science and Technology Experiment Center, Cangzhou Medical College, Cangzhou, 061001, People's Republic of China
| | - Yan Zhang
- Science and Technology Experiment Center, Cangzhou Medical College, Cangzhou, 061001, People's Republic of China
| | - Ying Liu
- Science and Technology Experiment Center, Cangzhou Medical College, Cangzhou, 061001, People's Republic of China
| | - Jingjing Zhang
- Science and Technology Experiment Center, Cangzhou Medical College, Cangzhou, 061001, People's Republic of China
| | - Xiaohui Yang
- Science and Technology Experiment Center, Cangzhou Medical College, Cangzhou, 061001, People's Republic of China
| | - Yingfu Liu
- Cangzhou Nanobody Technology Innovation Center, Cangzhou Medical College, Cangzhou, 061001, People's Republic of China
| |
Collapse
|
8
|
Cabral L, Fernandes M, Marques S, Meireles R, Caetano M, Afreixo V. PCT Kinetics in the First Week Postburn for Sepsis Diagnosis and Death Prognosis-An Accuracy Study. J Burn Care Res 2021; 42:545-554. [PMID: 33211101 DOI: 10.1093/jbcr/iraa199] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Despite continuous advances in burn care, sepsis is still the main cause of death in burn patients. Procalcitonin (PCT) has been reported as an accurate sepsis biomarker and also as a fair predictor of death. The aim of this study was to assess PCT kinetics in the first week postburn regarding sepsis diagnosis and death prognosis. Sample included 142 patients with ≥15% TBSA, admitted from January 2011 to December 2014 at Coimbra Burns Unit, Portugal. Sepsis diagnosis was done according to American Burn Association criteria. PCT range and median values in the first 7 days after burns were statistically analyzed for its potential for sepsis diagnosis and death prognosis. A subanalysis was done regarding TBSA, sex, age, and inhalation injury. First week PCT range and median were significant for sepsis diagnosis and death prognosis, but the median area under the curve was greater in the last case. TBSA influenced PCT accuracy, which was greater for TBSA less than 40% either for diagnosis or prognosis. Age was inversely related to the accuracy, being better in younger than 40 years in both cases. PCT diagnostic accuracy was not affected by sex, opposing to the prognostic one which is better in women. Inhalation injury had no effect on diagnostic accuracy, but it happens with prognostic accuracy. PCT levels' variation is related to sepsis evolution and outcome. Its median performs better than its range. Always coupled with clinical examination, monitoring PCT levels kinetics may help early sepsis detection, potentially reducing morbidity and mortality, being also useful for death prognosis.
Collapse
Affiliation(s)
- Luís Cabral
- Department of Plastic Surgery and Burns Unit, Coimbra University Hospital Centre (CHUC), Portugal
| | | | - Sérgio Marques
- Department of Mathematics, University of Aveiro, Portugal
| | - Rita Meireles
- Department of Plastic Surgery and Burns Unit, Coimbra University Hospital Centre (CHUC), Portugal
| | - Marisa Caetano
- Pharmacy Department, Coimbra University Hospital Centre (CHUC), Portugal
| | - Vera Afreixo
- Department of Mathematics, University of Aveiro, Portugal.,CIDMA-Center for Research and Development in Mathematics and Applications, University of Aveiro, Portugal
| |
Collapse
|
9
|
Liu L, Wen L, Gao C, Piao H, Zhao H, Yu D, Zhu L, Li S. Effects of Non-directional Mechanical Trauma on Gastrointestinal Tract Injury in Rats. Front Physiol 2021; 12:649554. [PMID: 33935802 PMCID: PMC8081863 DOI: 10.3389/fphys.2021.649554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/26/2021] [Indexed: 12/04/2022] Open
Abstract
Mechanical trauma can (MT) cause secondary injury, such as cardiomyocyte apoptosis and cardiac dysfunction has been reported. However, the effects of mechanical trauma on gastrointestinal tract is unclear. This study aims to observe the main location and time of gastrointestinal tract injury caused by non-directional trauma and explain the reason of the increase of LPS in blood caused by mechanical injury. Morphological changes in the stomach, ileum and cecum at different time points after MT were observed in this experiment. The results reveal that the injury to the cecal mucosa in the rats was more obvious than that in the ileum and the stomach. The cecal epithelial cell junction was significantly widened at 20 min after MT, and the plasma LPS and D-lactic acid concentrations increased significantly at the same time point. In addition, some bacterial structures in the widened intercellular space and near the capillary wall of the cecal mucosa were detected at 12 h after MT. This finding suggests that the main reason for the increase in LPS in plasma after MT is cecal mucosal injury. This study is important for the early intervention of the gastrointestinal tract to prevent secondary injury after MT.
Collapse
Affiliation(s)
- Lihong Liu
- Department of Physiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Lianpu Wen
- Department of Physiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Chuanzhou Gao
- Central Laboratory, Dalian Medical University, Dalian, China
| | - Hua Piao
- Department of Physiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Hui Zhao
- Department of Physiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Deqin Yu
- Department of Physiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Liang Zhu
- Department of Physiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Shuzhuang Li
- Department of Physiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| |
Collapse
|
10
|
Mert S, Bulutoglu B, Chu C, Dylewski M, Lin FM, Yu YM, Yarmush ML, Sheridan RL, Uygun K. Multiorgan Metabolomics and Lipidomics Provide New Insights Into Fat Infiltration in the Liver, Muscle Wasting, and Liver-Muscle Crosstalk Following Burn Injury. J Burn Care Res 2020; 42:269-287. [PMID: 32877506 DOI: 10.1093/jbcr/iraa145] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Burn injury mediated hypermetabolic syndrome leads to increased mortality among severe burn victims, due to liver failure and muscle wasting. Metabolic changes may persist up to 2 years following the injury. Thus, understanding the underlying mechanisms of the pathology is crucially important to develop appropriate therapeutic approaches. We present detailed metabolomic and lipidomic analyses of the liver and muscle tissues in a rat model with a 30% body surface area burn injury located at the dorsal skin. Three hundred and thirty-eight of 1587 detected metabolites and lipids in the liver and 119 of 1504 in the muscle tissue exhibited statistically significant alterations. We observed excessive accumulation of triacylglycerols, decreased levels of S-adenosylmethionine, increased levels of glutamine and xenobiotics in the liver tissue. Additionally, the levels of gluconeogenesis, glycolysis, and tricarboxylic acid cycle metabolites are generally decreased in the liver. On the other hand, burn injury muscle tissue exhibits increased levels of acyl-carnitines, alpha-hydroxyisovalerate, ophthalmate, alpha-hydroxybutyrate, and decreased levels of reduced glutathione. The results of this preliminary study provide compelling observations that liver and muscle tissues undergo distinctly different changes during hypermetabolism, possibly reflecting liver-muscle crosstalk. The liver and muscle tissues might be exacerbating each other's metabolic pathologies, via excessive utilization of certain metabolites produced by each other.
Collapse
Affiliation(s)
- Safak Mert
- Burns Department, Shriners Hospitals for Children, Boston, Massachusetts.,Department of Surgery, Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Beyza Bulutoglu
- Burns Department, Shriners Hospitals for Children, Boston, Massachusetts.,Department of Surgery, Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Christopher Chu
- Burns Department, Shriners Hospitals for Children, Boston, Massachusetts.,Department of Surgery, Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Maggie Dylewski
- Burns Department, Shriners Hospitals for Children, Boston, Massachusetts
| | - Florence M Lin
- Burns Department, Shriners Hospitals for Children, Boston, Massachusetts
| | - Yong-Ming Yu
- Burns Department, Shriners Hospitals for Children, Boston, Massachusetts.,Department of Surgery, Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Martin L Yarmush
- Burns Department, Shriners Hospitals for Children, Boston, Massachusetts.,Department of Surgery, Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston.,Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey
| | - Robert L Sheridan
- Burns Department, Shriners Hospitals for Children, Boston, Massachusetts
| | - Korkut Uygun
- Burns Department, Shriners Hospitals for Children, Boston, Massachusetts.,Department of Surgery, Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston
| |
Collapse
|
11
|
Reid A, Ha JF. Inhalational injury and the larynx: A review. Burns 2019; 45:1266-1274. [DOI: 10.1016/j.burns.2018.10.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 09/01/2018] [Accepted: 10/31/2018] [Indexed: 12/13/2022]
|
12
|
Wood P, Small C, Mahoney P. Perioperative and early rehabilitation outcomes following osseointegration in UK military amputees. BMJ Mil Health 2019; 166:294-301. [DOI: 10.1136/jramc-2019-001185] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 04/02/2019] [Accepted: 04/03/2019] [Indexed: 11/04/2022]
Abstract
IntroductionThis paper examines the pain management, from surgery to specialist rehabilitation, of the first seven military transfemoral amputee patients treated in the UK with femoral osseointegration. All the patients had sustained complex ballistic injuries on the battlefield. The patients were characterised by long-standing problems with functional rehabilitation due to limitations with conventional prostheses, including stump soft tissue issues and impaired biomechanics.MethodsA prospective service investigation was undertaken to evaluate the effectiveness of the pain management of patients undergoing osseointegration. Data were collected by daily direct patient contact, supplemented by a focused review of perioperative and rehabilitation case notes. Physiological and medication details were recorded with specific reference to systemic and regional analgesia and the impact of postoperative complications, including infection and accidental injury.ResultsSeven patients underwent femoral osseointegration and were followed up for a period of up to 3 years following surgery. The perioperative recovery was associated with significant escalation of analgesic requirements. Postoperative systemic inflammatory response syndrome was identified in six patients, with wound infection persisting in some cases into the rehabilitation phase. Three patients suffered femoral fractures following accidental injuries secondary to increased mobilisation following surgery.ConclusionsSuccessful surgical outcomes were achieved in a difficult patient cohort disadvantaged by previously restricted functional recovery from complex injuries. The importance of supporting the operative and recovery phases with a multidisciplinary pain service is emphasised. We offer this data and the lessons learnt to assist clinicians contemplating the establishment and service development of osseointegration services.
Collapse
|
13
|
Kartchner LB, Gode CJ, Dunn JLM, Glenn LI, Duncan DN, Wolfgang MC, Cairns BA, Maile R. One-hit wonder: Late after burn injury, granulocytes can clear one bacterial infection but cannot control a subsequent infection. Burns 2019; 45:627-640. [PMID: 30833100 DOI: 10.1016/j.burns.2018.08.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 07/04/2018] [Accepted: 08/07/2018] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Burn injury induces an acute hyperactive immune response followed by a chronic immune dysregulation that leaves those afflicted susceptible to multiple secondary infections. Many murine models are able to recapitulate the acute immune response to burn injury, yet few models are able to recapitulate long-term immune suppression and thus chronic susceptibility to bacterial infections seen in burn patients. This has hindered the field, making evaluation of the mechanisms responsible for these susceptibilities difficult to study. Herein we describe a novel mouse model of burn injury that promotes chronic immune suppression allowing for susceptibility to primary and secondary infections and thus allows for the evaluation of associated mechanisms. METHODS C57Bl/6 mice receiving a full-thickness contact burn were infected with Pseudomonas aeruginosa 14 days (primary infection) and/or 17 days (secondary infection) after burn or sham injury. The survival, pulmonary and systemic bacterial load as well as frequency and function of innate immune cells (neutrophils and macrophages) were evaluated. RESULTS Following secondary infection, burn mice were less effective in clearance of bacteria compared to sham injured or burn mice following a primary infection. Following secondary infection both neutrophils and macrophages recruited to the airways exhibited reduced production of anti-bacterial reactive oxygen and nitrogen species and the pro-inflammatory cytokineIL-12 while macrophages demonstrated increased expression of the anti-inflammatory cytokine interleukin-10 compared to those from sham burned mice and/or burn mice receiving a primary infection. In addition the BALF from these mice contained significantly higher level so of the anti-inflammatory cytokine IL-4 compared to those from sham burned mice and/or burn mice receiving a primary infection. CONCLUSIONS Burn-mediated protection from infection is transient, with a secondary infection inducing immune protection to collapse. Repeated infection leads to increased neutrophil and macrophage numbers in the lungs late after burn injury, with diminished innate immune cell function and an increased anti-inflammatory cytokine environment.
Collapse
Affiliation(s)
- Laurel B Kartchner
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Cindy J Gode
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; Marsico Lung Institute/Cystic Fibrosis Research Center, USA
| | - Julia L M Dunn
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Lindsey I Glenn
- Department of Surgery, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Danté N Duncan
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; Department of Surgery, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Matthew C Wolfgang
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; Marsico Lung Institute/Cystic Fibrosis Research Center, USA
| | - Bruce A Cairns
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; Department of Surgery, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; Jaycee Burn Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Robert Maile
- Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; Department of Surgery, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; Jaycee Burn Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.
| |
Collapse
|
14
|
Cabral L, Afreixo V, Meireles R, Vaz M, Frade JG, Chaves C, Caetano M, Almeida L, Paiva JA. Evaluation of Procalcitonin Accuracy for the Distinction Between Gram-Negative and Gram-Positive Bacterial Sepsis in Burn Patients. J Burn Care Res 2018; 40:112-119. [DOI: 10.1093/jbcr/iry058] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Luís Cabral
- Department of Plastic Surgery and Burns Unit, Coimbra University Hospital Centre (CHUC), Portugal
- Autonomous Section of Health Sciences (SACS), University of Aveiro, Portugal
| | - Vera Afreixo
- CIDMA—Center for Research and Development in Mathematics and Applications, iBiMED—Institute for Biomedicine, Department of Mathematics, University of Aveiro, Portugal
| | - Rita Meireles
- Department of Plastic Surgery and Burns Unit, Coimbra University Hospital Centre (CHUC), Portugal
| | - Miguel Vaz
- Department of Plastic Surgery and Burns Unit, Coimbra University Hospital Centre (CHUC), Portugal
| | - João-Gonçalo Frade
- Clinical Pathology Department, Coimbra University Hospital Centre (CHUC), Portugal
- Escola Superior de Saúde, Instituto Politécnico de Leiria, Portugal
| | - Catarina Chaves
- Clinical Pathology Department, Coimbra University Hospital Centre (CHUC), Portugal
| | - Marisa Caetano
- Pharmacy Department, Coimbra University Hospital Centre (CHUC), Portugal
| | - Luís Almeida
- MedinUP, Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Porto, Portugal
| | - José-Artur Paiva
- Department of Emergency and Intensive Care Medicine, Centro Hospitalar São João, Porto, Portugal
- Grupo de Infecção e Sépsis, Faculty of Medicine, University of Porto, Portugal
| |
Collapse
|
15
|
Cabral L, Afreixo V, Meireles R, Vaz M, Marques M, Tourais I, Chaves C, Almeida L, Paiva JA. Procalcitonin kinetics after burn injury and burn surgery in septic and non-septic patients - a retrospective observational study. BMC Anesthesiol 2018; 18:122. [PMID: 30185148 PMCID: PMC6123981 DOI: 10.1186/s12871-018-0585-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 08/24/2018] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Early sepsis diagnosis is crucial for the correct management of burn patients, and it clearly influences outcomes. The systemic inflammatory response triggered by burns mimics sepsis presentation and complicates early sepsis diagnosis. Biomarkers were advocated to aid the diagnosis of early sepsis. Serum procalcitonin (PCT) exhibits fair accuracy and good correlation with sepsis severity, being used in diverse clinical settings. However, few studies have evaluated perioperative changes in PCT levels in burn patients. The present study evaluated PCT kinetics during the first days after burn injury and subsequent surgical interventions to assess PCT utility in distinguishing septic from non-septic inflammatory responses. METHODS This study was a retrospective observational study of all burn patients admitted to the Coimbra Burns Unit (Portugal) between January 2011 and December 2014 who presented with a total burn surface area ≥ 15% and who underwent subsequent surgery. PCT kinetics were investigated a) during the first five days after burn injury and b) preoperatively during the five days after surgery in three subsets of patients, including those with no preoperative and no postoperative sepsis (NN), no preoperative but postoperative sepsis (NS), and preoperative and postoperative sepsis (SS). A total of 145 patients met the selection criteria and were included in the analysis. RESULTS PCT levels in the first five days after burn injury were significantly higher in patients who developed at least one sepsis episode (n = 85) compared with patients who did not develop sepsis (n = 60). PCT values > 1.00 ng/mL were clearly associated with sepsis. Study participants (n = 145) underwent a total of 283 surgical interventions. Their distribution by preoperative/postoperative sepsis status was 142 (50.2%) in NN; 62 (21.9%) in NS; and 79 (27.9%) in SS. PCT values exhibited a parallel course in the three groups that peaked on the second postoperative day and returned to preoperative levels on the third day or later. The lowest PCT values were found in NN, and the highest values were observed in SS; the NS values were intermediate. CONCLUSIONS PCT kinetics coupled with a clinical examination may be helpful for sepsis diagnosis during the first days after burn injury and burn surgery.
Collapse
Affiliation(s)
- Luís Cabral
- Department of Plastic Surgery and Burns Unit, Coimbra University Hospital Centre (CHUC), Av. Bissaya Barreto s/n, 3000-075 Coimbra, Portugal
- Autonomous Section of Health Sciences (SACS), University of Aveiro, Aveiro, Portugal
| | - Vera Afreixo
- CIDMA-Center for Research and Development in Mathematics and Applications; iBiMED-Institute for Biomedicine, University of Aveiro, Aveiro, Portugal
| | - Rita Meireles
- Department of Plastic Surgery and Burns Unit, Coimbra University Hospital Centre (CHUC), Av. Bissaya Barreto s/n, 3000-075 Coimbra, Portugal
| | - Miguel Vaz
- Department of Plastic Surgery and Burns Unit, Coimbra University Hospital Centre (CHUC), Av. Bissaya Barreto s/n, 3000-075 Coimbra, Portugal
| | - Margarida Marques
- Department of Anesthesiology, Coimbra University Hospital Centre (CHUC), Coimbra, Portugal
| | - Isabel Tourais
- Department of Anesthesiology, Coimbra University Hospital Centre (CHUC), Coimbra, Portugal
| | - Catarina Chaves
- Department of Clinical Pathology, Coimbra University Hospital Centre (CHUC), Coimbra, Portugal
| | - Luís Almeida
- MedinUP, Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Porto, Porto, Portugal
| | - José Artur Paiva
- Department of Emergency and Intensive Care Medicine, Centro Hospitalar São João, Porto, Portugal
- Faculty of Medicine, University of Porto; Grupo de Infecção e Sépsis, Porto, Portugal
| |
Collapse
|
16
|
Průcha M, Zazula R, Russwurm S. Sepsis Diagnostics in the Era of "Omics" Technologies. Prague Med Rep 2018; 119:9-29. [PMID: 29665344 DOI: 10.14712/23362936.2018.2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Abstract
Sepsis is a multifactorial clinical syndrome with an extremely dynamic clinical course and with high diverse clinical phenotype. Early diagnosis is crucial for the final clinical outcome. Previous studies have not identified a biomarker for the diagnosis of sepsis which would have sufficient sensitivity and specificity. Identification of the infectious agents or the use of molecular biology, next gene sequencing, has not brought significant benefit for the patient in terms of early diagnosis. Therefore, we are currently searching for biomarkers, through "omics" technologies with sufficient diagnostic specificity and sensitivity, able to predict the clinical course of the disease and the patient response to therapy. Current progress in the use of systems biology technologies brings us hope that by using big data from clinical trials such biomarkers will be found.
Collapse
Affiliation(s)
- Miroslav Průcha
- Department of Clinical Biochemistry, Haematology and Immunology, Na Homolce Hospital, Prague, Czech Republic.
| | - Roman Zazula
- Department of Anesthesiology and Intensive Care, First Faculty of Medicine, Charles University and Thomayer Hospital, Prague, Czech Republic
| | - Stefan Russwurm
- Department of Anesthesiology and Intensive Care, University Hospital Jena, Jena, Germany
| |
Collapse
|
17
|
Jayaraman SP, Anand RJ, DeAntonio JH, Mangino M, Aboutanos MB, Kasirajan V, Ivatury RR, Valadka AB, Glushakova O, Hayes RL, Bachmann LM, Brophy GM, Contaifer D, Warncke UO, Brophy DF, Wijesinghe DS. Metabolomics and Precision Medicine in Trauma: The State of the Field. Shock 2018; 50:5-13. [PMID: 29280924 PMCID: PMC5995639 DOI: 10.1097/shk.0000000000001093] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Trauma is a major problem in the United States. Mortality from trauma is the number one cause of death under the age of 45 in the United States and is the third leading cause of death for all age groups. There are approximately 200,000 deaths per year due to trauma in the United States at a cost of over $671 billion in combined healthcare costs and lost productivity. Unsurprisingly, trauma accounts for approximately 30% of all life-years lost in the United States. Due to immense development of trauma systems, a large majority of trauma patients survive the injury, but then go on to die from complications arising from the injury. These complications are marked by early and significant metabolic changes accompanied by inflammatory responses that lead to progressive organ failure and, ultimately, death. Early resuscitative and surgical interventions followed by close monitoring to identify and rescue treatment failures are key to successful outcomes. Currently, the adequacy of resuscitation is measured using vital signs, noninvasive methods such as bedside echocardiography or stroke volume variation, and other laboratory endpoints of resuscitation, such as lactate and base deficit. However, these methods may be too crude to understand cellular and subcellular changes that may be occurring in trauma patients. Better diagnostic and therapeutic markers are needed to assess the adequacy of interventions and monitor responses at a cellular and subcellular level and inform clinical decision-making before complications are clinically apparent. The developing field of metabolomics holds great promise in the identification and application of biochemical markers toward the clinical decision-making process.
Collapse
Affiliation(s)
- Sudha P Jayaraman
- Department of Surgery, Division of Acute Care Surgical Services, School of Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Rahul J Anand
- Department of Surgery, Division of Acute Care Surgical Services, School of Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Jonathan H DeAntonio
- Department of Surgery, Division of Acute Care Surgical Services, School of Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Martin Mangino
- Department of Surgery, Division of Acute Care Surgical Services, School of Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Michel B Aboutanos
- Department of Surgery, Division of Acute Care Surgical Services, School of Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Vigneshwar Kasirajan
- Department of Surgery, Division of Cardiothoracic Surgery, School of Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Rao R Ivatury
- Department of Surgery, Division of Acute Care Surgical Services, School of Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Alex B Valadka
- Department of Neurosurgery, School of Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Olena Glushakova
- Department of Neurosurgery, School of Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Ronald L Hayes
- Department of Neurosurgery, School of Medicine, Virginia Commonwealth University, Richmond, Virginia
- Center of Innovative Research, Banyan Biomarkers, Inc., Alachua, Florida
| | - Lorin M Bachmann
- Department of Pathology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Gretchen M Brophy
- Department of Pharmacotherapy and Outcomes Science, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia
| | - Daniel Contaifer
- Department of Pharmacotherapy and Outcomes Science, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia
| | - Urszula O Warncke
- Department of Pharmacotherapy and Outcomes Science, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia
| | - Donald F Brophy
- Department of Pharmacotherapy and Outcomes Science, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia
| | - Dayanjan S Wijesinghe
- Department of Surgery, Division of Acute Care Surgical Services, School of Medicine, Virginia Commonwealth University, Richmond, Virginia
- Department of Pharmacotherapy and Outcomes Science, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia
- da Vinci Center, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
18
|
Cabral L, Afreixo V, Meireles R, Vaz M, Chaves C, Caetano M, Almeida L, Paiva JA. Checking procalcitonin suitability for prognosis and antimicrobial therapy monitoring in burn patients. BURNS & TRAUMA 2018; 6:10. [PMID: 29610766 PMCID: PMC5878422 DOI: 10.1186/s41038-018-0112-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 03/06/2018] [Indexed: 02/06/2023]
Abstract
Background Due to greater infection susceptibility, sepsis is the main cause of death in burn patients. Quick diagnosis and patient stratification, early and appropriated antimicrobial therapy, and focus control are crucial for patients' survival. On the other hand, superfluous extension of therapy is associated with adverse events and arousal of microbial resistance. The use of biomarkers, necessarily coupled with close clinical examination, may predict outcomes, stratifying patients who need more intensive care, and monitor the efficacy of antimicrobial therapy, allowing faster de-escalation or stop, reducing the development of resistance and possibly the financial burden, without increasing mortality. The aim of this work is to check the suitability of procalcitonin (PCT) to fulfill these goals in a large sample of septic burn patients. Methods One hundred and one patients, with 15% or more of total body surface area (TBSA) burned, admitted from January 2011 to December 2014 at Coimbra Burns Unit (CBU), in Portugal were included in the sample. All patients had a diagnosis of sepsis, according to the American Burn Association (ABA) criteria. The sample was factored by survival (68 survivors and 33 non-survivors). The maximum value of PCT in each day was used for statistical analysis. Data were summarized by location measures (mean, median, minimum, maximum, quartiles) and dispersion measures (standard error and range measures). Statistical analysis was performed with SPSS© 23.0 IBM© for Windows©. Results There were statistically significant differences between PCT levels of patients from the survivor and non-survivor groups during the first and the last weeks of hospitalization as well as during the first week after sepsis suspicion, being slightly higher during this period. During the first 7 days of antimicrobial therapy, PCT was always higher in the non-survivor, still without reaching statistical significance, but when the analysis was extended till the 15th day, PCT increased significantly, rapidly, and steadily, denouncing therapy failure. Conclusion Despite being not an ideal biomarker, PCT proved to have good prognostic power in septic burn patients, paralleling the evolution of the infectious process and reflecting the efficacy of antimicrobial therapy, and the inclusion of its serial dosing may be advised to reinforce antimicrobial stewardship programs at burn units; meanwhile, more accurate approaches are not available.
Collapse
Affiliation(s)
- Luís Cabral
- 1Department of Plastic Surgery and Burns Unit, Unidade de Queimados, Coimbra University Hospital Centre (CHUC), Av. Bissaya Barreto s/n, 3000-075 Coimbra, Portugal.,2Autonomous Section of Health Sciences (SACS), University of Aveiro, Aveiro, Portugal
| | - Vera Afreixo
- 3CIDMA - Center for Research and Development in Mathematics and Applications, iBiMED, Institute for Biomedicine, University of Aveiro, Aveiro, Portugal
| | - Rita Meireles
- 1Department of Plastic Surgery and Burns Unit, Unidade de Queimados, Coimbra University Hospital Centre (CHUC), Av. Bissaya Barreto s/n, 3000-075 Coimbra, Portugal
| | - Miguel Vaz
- 1Department of Plastic Surgery and Burns Unit, Unidade de Queimados, Coimbra University Hospital Centre (CHUC), Av. Bissaya Barreto s/n, 3000-075 Coimbra, Portugal
| | - Catarina Chaves
- 4Clinical Pathology Department, Coimbra University Hospital Centre (CHUC), Coimbra, Portugal
| | - Marisa Caetano
- 5Pharmacy Department, Coimbra University Hospital Centre (CHUC), Coimbra, Portugal
| | - Luís Almeida
- 6MedinUP, Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Porto, Porto, Portugal
| | - José Artur Paiva
- 7Department of Emergency and Intensive Care Medicine, Centro Hospitalar São João, Porto, Portugal.,8Faculty of Medicine, University of Porto, Grupo de Infecção e Sépsis, Porto, Portugal
| |
Collapse
|
19
|
Abstract
Traumatic injury as one of the world's most relevant but neglected health concerns results in modulated inflammasome activity, which is closely linked to the development of post-injury complications. Cytokine-producing capacity of cells is important for the appropriate immune response to trauma and requires not only synthesis and transcription of inflammasome components but also their activation. Unfortunately, the precise role of inflammasome in trauma is still largely unknown. However, in the following chapter, we provide an overview on the best described inflammasomes in the various settings of trauma, introducing the recent findings on the up-to-date best described NLRP inflammasomes and underlying cytokines in the inflammatory response to trauma.
Collapse
Affiliation(s)
- Borna Relja
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany.
| | | |
Collapse
|
20
|
Fractional Laser Releases Tumor-Associated Antigens in Poorly Immunogenic Tumor and Induces Systemic Immunity. Sci Rep 2017; 7:12751. [PMID: 28986576 PMCID: PMC5630620 DOI: 10.1038/s41598-017-13095-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 09/19/2017] [Indexed: 01/13/2023] Open
Abstract
Currently ablative fractional photothermolysis (aFP) with CO2 laser is used for a wide variety of dermatological indications. This study presents and discusses the utility of aFP for treating oncological indications. We used a fractional CO2 laser and anti-PD-1 inhibitor to treat a tumor established unilaterally by the CT26 wild type (CT26WT) colon carcinoma cell line. Inoculated tumors grew significantly slower in aFP-treated groups (aFP and aFP + anti-PD-1 groups) and complete remission was observed in the aFP-treated groups. Flow cytometric analysis showed aFP treatment elicited an increase of CD3+, CD4+, CD8+ vand epitope specific CD8+ T cells. Moreover, the ratio of CD8+ T cells to Treg increased in the aFP-treated groups. Additionally, we established a bilateral CT26WT-inoculated mouse model, treating tumors on one-side and observing both tumors. Interestingly, tumors grew significantly slower in the aFP + anti-PD-1 groups and complete remission was observed for tumors on both aFP-treated and untreated sides. This study has demonstrated a potential role of aFP treatments in oncology.
Collapse
|
21
|
Fractional laser exposure induces neutrophil infiltration (N1 phenotype) into the tumor and stimulates systemic anti-tumor immune response. PLoS One 2017; 12:e0184852. [PMID: 28922374 PMCID: PMC5602663 DOI: 10.1371/journal.pone.0184852] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 08/25/2017] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Ablative fractional photothermolysis (aFP) using a CO2 laser generates multiple small diameter tissue lesions within the irradiation field. aFP is commonly used for a wide variety of dermatological indications, including treatment of photodamaged skin and dyschromia, drug delivery and modification of scars due to acne, surgical procedures and burns. In this study we explore the utility of aFP for treating oncological indications, including induction of local tumor regression and inducing anti-tumor immunity, which is in marked contrast to current indications of aFP. METHODOLOGY/PRINCIPAL FINDINGS We used a fractional CO2 laser to treat a tumor established by BALB/c colon carcinoma cell line (CT26.CL25), which expressed a tumor antigen, beta-galactosidase (beta-gal). aFP treated tumors grew significantly slower as compared to untreated controls. Complete remission after a single aFP treatment was observed in 47% of the mice. All survival mice from the tumor inoculation rejected re-inoculation of the CT26.CL25 colon carcinoma cells and moreover 80% of the survival mice rejected CT26 wild type colon carcinoma cells, which are parental cells of CT26.CL25 cells. Histologic section of the FP-treated tumors showed infiltrating neutrophil in the tumor early after aFP treatment. Flow cytometric analysis of tumor-infiltrating lymphocytes showed aFP treatment abrogated the increase in regulatory T lymphocyte (Treg), which suppresses anti-tumor immunity and elicited the expansion of epitope-specific CD8+ T lymphocytes, which were required to mediate the tumor-suppressing effect of aFP. CONCLUSION We have demonstrated that aFP is able to induce a systemic anti-tumor adaptive immunity preventing tumor recurrence in a murine colon carcinoma in a mouse model. This study demonstrates a potential role of aFP treatments in oncology and further studies should be performed.
Collapse
|
22
|
Hazeldine J, Naumann DN, Toman E, Davies D, Bishop JRB, Su Z, Hampson P, Dinsdale RJ, Crombie N, Duggal NA, Harrison P, Belli A, Lord JM. Prehospital immune responses and development of multiple organ dysfunction syndrome following traumatic injury: A prospective cohort study. PLoS Med 2017; 14:e1002338. [PMID: 28719602 PMCID: PMC5515405 DOI: 10.1371/journal.pmed.1002338] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 05/31/2017] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Almost all studies that have investigated the immune response to trauma have analysed blood samples acquired post-hospital admission. Thus, we know little of the immune status of patients in the immediate postinjury phase and how this might influence patient outcomes. The objective of this study was therefore to comprehensively assess the ultra-early, within 1-hour, immune response to trauma and perform an exploratory analysis of its relationship with the development of multiple organ dysfunction syndrome (MODS). METHODS AND FINDINGS The immune and inflammatory response to trauma was analysed in 89 adult trauma patients (mean age 41 years, range 18-90 years, 75 males) with a mean injury severity score (ISS) of 24 (range 9-66), from whom blood samples were acquired within 1 hour of injury (mean time to sample 42 minutes, range 17-60 minutes). Within minutes of trauma, a comprehensive leukocytosis, elevated serum pro- and anti-inflammatory cytokines, and evidence of innate cell activation that included neutrophil extracellular trap generation and elevated surface expression of toll-like receptor 2 and CD11b on monocytes and neutrophils, respectively, were observed. Features consistent with immune compromise were also detected, notably elevated numbers of immune suppressive CD16BRIGHT CD62LDIM neutrophils (82.07 x 106/l ± 18.94 control versus 1,092 x 106/l ± 165 trauma, p < 0.0005) and CD14+HLA-DRlow/- monocytes (34.96 x 106/l ± 4.48 control versus 95.72 x 106/l ± 8.0 trauma, p < 0.05) and reduced leukocyte cytokine secretion in response to lipopolysaccharide stimulation. Exploratory analysis via binary logistic regression found a potential association between absolute natural killer T (NKT) cell numbers and the subsequent development of MODS. Study limitations include the relatively small sample size and the absence of data relating to adaptive immune cell function. CONCLUSIONS Our study highlighted the dynamic and complex nature of the immune response to trauma, with immune alterations consistent with both activation and suppression evident within 1 hour of injury. The relationship of these changes, especially in NKT cell numbers, to patient outcomes such as MODS warrants further investigation.
Collapse
Affiliation(s)
- Jon Hazeldine
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
- NIHR Surgical Reconstruction and Microbiology Research Centre, Queen Elizabeth Hospital Birmingham, Birmingham, United Kingdom
- * E-mail:
| | - David N. Naumann
- NIHR Surgical Reconstruction and Microbiology Research Centre, Queen Elizabeth Hospital Birmingham, Birmingham, United Kingdom
| | - Emma Toman
- NIHR Surgical Reconstruction and Microbiology Research Centre, Queen Elizabeth Hospital Birmingham, Birmingham, United Kingdom
| | - David Davies
- NIHR Surgical Reconstruction and Microbiology Research Centre, Queen Elizabeth Hospital Birmingham, Birmingham, United Kingdom
| | - Jonathan R. B. Bishop
- NIHR Surgical Reconstruction and Microbiology Research Centre, Queen Elizabeth Hospital Birmingham, Birmingham, United Kingdom
| | - Zhangjie Su
- NIHR Surgical Reconstruction and Microbiology Research Centre, Queen Elizabeth Hospital Birmingham, Birmingham, United Kingdom
| | - Peter Hampson
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
- Scar Free Foundation, Birmingham Centre for Burns Research, Birmingham, United Kingdom
| | - Robert J. Dinsdale
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
- Scar Free Foundation, Birmingham Centre for Burns Research, Birmingham, United Kingdom
| | - Nicholas Crombie
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
- Midlands Air Ambulance, Unit 16 Enterprise Trading Estate, Brierley Hill, West Midlands, United Kingdom
| | - Niharika Arora Duggal
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Paul Harrison
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
- Scar Free Foundation, Birmingham Centre for Burns Research, Birmingham, United Kingdom
| | - Antonio Belli
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
- NIHR Surgical Reconstruction and Microbiology Research Centre, Queen Elizabeth Hospital Birmingham, Birmingham, United Kingdom
| | - Janet M. Lord
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
- NIHR Surgical Reconstruction and Microbiology Research Centre, Queen Elizabeth Hospital Birmingham, Birmingham, United Kingdom
| |
Collapse
|