1
|
Guo F, Ling G, Zhai Z, Lei Y, Mo L, Piao H. Identification and validation of prognostic genes and immune landscape signatures based on a fatty acid oxidation‑related risk score model in glioma. Oncol Lett 2024; 27:88. [PMID: 38249808 PMCID: PMC10797317 DOI: 10.3892/ol.2024.14222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 12/04/2023] [Indexed: 01/23/2024] Open
Abstract
Fatty acid oxidation (FAO) plays a crucial role in glioma metabolism and its interaction with the immune microenvironment. The aim of the present study was to investigate the relationship between FAO-related genes and glioma by constructing gene clusters using a glioma cohort. A total of 287 differentially expressed genes related to FAO were identified and the top 50 genes were selected based on their P-values. Subsequently, patients were classified into two distinct gene subtypes (A and B) based on these genes. Scores for each patient were calculated using the 50 genes and the patients were divided into the high and low-score groups accordingly. Patients in subtype B exhibited higher tumor grades and poor prognostic factors such as older age and worse survival rates. The high-score subgroup had unfavorable indicators, including isocitrate dehydrogenase 1 wild-type, high tumor grade and 1p19q non-codeleted, while immune checkpoint expression was generally higher in the high-score subgroup. The constructed scoring model was validated using an external dataset, and the tissue inhibitor of metalloproteinase 1 gene was identified through protein interaction analysis, suggesting its potential involvement in glioma malignancy and promotion of glioblastoma proliferation. In conclusion, FAO-related genes may contribute to tumor development through immune mechanisms and the present study may provide novel insights for potential therapeutic strategies in glioma treatment.
Collapse
Affiliation(s)
- Fangzhou Guo
- Graduate School, The Second Affiliated Hospital, Dalian Medical University, Dalian, Liaoning 116000, P.R. China
- Department of Neurosurgery, Guangxi Medical University Cancer Hospital, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Guoyuan Ling
- Graduate School, The Second Affiliated Hospital, Dalian Medical University, Dalian, Liaoning 116000, P.R. China
- Department of Neurosurgery, Guangxi Medical University Cancer Hospital, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Zhenzhu Zhai
- Department of Neurosurgery, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning 110801, P.R. China
- The First Clinical College, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning 110801, P.R. China
| | - Yi Lei
- Department of Neurosurgery, Guangxi Medical University Cancer Hospital, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Ligen Mo
- Department of Neurosurgery, Guangxi Medical University Cancer Hospital, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Haozhe Piao
- Department of Neurosurgery, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning 110801, P.R. China
| |
Collapse
|
2
|
Vetchinkina EA, Kalinkin AI, Kuznetsova EB, Kiseleva AE, Alekseeva EA, Nemtsova MV, Bure IV. Diagnostic and prognostic value of long non-coding RNA PROX1‑AS1 and miR-647 expression in gastric cancer. ADVANCES IN MOLECULAR ONCOLOGY 2022. [DOI: 10.17650/2313-805x-2022-9-4-50-60] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Introduction. Gastric cancer remains one of the most common cancers and has a high mortality rate worldwide. Epigenetic alternations of non-coding RNAs (ncRNAs), including microRNAs and long ncRNAs can contribute to its pathogenesis and progression, and could be potent diagnostic and prognostic biomarkers.Aim. Estimation of PROX1‑AS1 and miR-647 expression in gastric cancer and investigation of its clinical significance. Materials and methods. Tumor and adjacent normal tissues (n = 62), and sectional normal tissue samples (n = 5) were included in the study. The expression of the ncRNAs was quantified by reverse transcription-polymerase chain reaction assay.Results. We have reviled the significant difference in the PROX1‑AS1 expression in tumor (p = 0.002) and non-tumor tissues (p <0.001) obtained from gastric cancer patients in comparison with sectional gastric tissues without pathology. Pearson correlation analysis confirmed a negative correlation between PROX1‑AS1 and miR-647 in gastric cancer both in tumor (р <0,001) and adjacent normal tissues (р <0.001). Besides, expression of PROX1‑AS1 and miR-647 was associated with the size and extent of the primary tumor.Conclusion. The obtained results allow to suggest a potential prognostic value of PROX1‑AS1 and miR-647 in gastric cancer.
Collapse
Affiliation(s)
- E. A. Vetchinkina
- I.M. Sechenov First Moscow State Medical University, Ministry of Health of Russia
| | | | - E. B. Kuznetsova
- I.M. Sechenov First Moscow State Medical University, Ministry of Health of Russia; N.P. Bochkov Medical and Genetic Research Center
| | - A. E. Kiseleva
- I.M. Sechenov First Moscow State Medical University, Ministry of Health of Russia
| | - E. A. Alekseeva
- I.M. Sechenov First Moscow State Medical University, Ministry of Health of Russia; N.P. Bochkov Medical and Genetic Research Center
| | - M. V. Nemtsova
- I.M. Sechenov First Moscow State Medical University, Ministry of Health of Russia; N.P. Bochkov Medical and Genetic Research Center
| | - I. V. Bure
- I.M. Sechenov First Moscow State Medical University, Ministry of Health of Russia
| |
Collapse
|
3
|
Fu C, Yang K, Zou Y, Huo R. Identification of Key microRNAs and Genes in Infantile Hemangiomas. Front Genet 2022; 13:766561. [PMID: 35360837 PMCID: PMC8963821 DOI: 10.3389/fgene.2022.766561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 02/21/2022] [Indexed: 11/29/2022] Open
Abstract
Infantile hemangiomas (IHs) are the most frequent vascular tumors that occur during infancy. Microribonucleic acids (miRNAs) have been demonstrated as critical regulators of gene expression in various diseases. However, the function of miRNAs in IH still remains largely unknown. In the present study, we performed a miRNA microarray analysis of IH and identified 68 differentially expressed miRNAs (DEMs). In addition, miRNA-gene networks and protein-protein interactions were constructed, and the hub miRNAs and genes of IH were screened out. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were used for biological analysis of DEMs and differentially expressed genes (DEGs). The pathway enrichment analysis of DEMs revealed several tumor-related pathways, including proteoglycans in cancer, signaling pathway regulating pluripotency of stem cells and TGF-beta signaling pathway. DEGs were mainly enriched in biological processes, including intracellular signal transduction, cell adhesion, and cell death. KEGG pathway analysis indicated that DEGs were enriched in tumorigenesis- and angiogenesis-related pathways such as proteoglycans in cancer, MAPK signaling pathway and Rap1 signaling pathway. Collectively, this study first established a comprehensive miRNA-gene network in IH, which should provide novel insights into IH pathogenesis and be beneficial to the understanding of neovascularization-related disorders.
Collapse
Affiliation(s)
- Cong Fu
- Department of Burn and Plastic Surgery, Shandong Provincial Hospital, Shandong First Medical University, Jinan, China
| | - Kun Yang
- Department of Medicine, Shandong University, Jinan, China
| | - Yuqing Zou
- Department of Medicine, Shandong University, Jinan, China
| | - Ran Huo
- Department of Burn and Plastic Surgery, Shandong Provincial Hospital, Shandong First Medical University, Jinan, China
- Department of Medicine, Shandong University, Jinan, China
- *Correspondence: Ran Huo,
| |
Collapse
|