1
|
Wang Z, Guo Z, Luo Y, Ma L, Hu X, Chen F, Li D. A review of the traditional uses, pharmacology, and toxicology of areca nut. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 134:156005. [PMID: 39241389 DOI: 10.1016/j.phymed.2024.156005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/24/2024] [Accepted: 05/31/2024] [Indexed: 09/09/2024]
Abstract
BACKGROUND Areca nut, the fruit of A. catechu, is an important Chinese herbal medicine and is the first of China's "four southern medicines". The main chemical components are alkaloids, phenols, polysaccharides, amino acids, and terpenoids. The flowers, leaves, fruits and seeds of A. catechu contain high medicinal value. However, with the emergence of adverse reactions in people who chew areca nut, people have doubts about the safety of the use of areca nut. PURPOSE In view of the two sides of pharmacology and toxicology of areca nut, this study comprehensively reviewed the components of different parts of A. catechu, the mechanism of pharmacology and toxicology, and the relationship between dosage and pharmacology and toxicology, in order to provide a new reference for the safe application of areca nut. METHODS We used "Areca nut", "Betel nut", and known biologically active ingredients in areca nut, combined with "natural active ingredients", "pharmacological activity", and "toxicological effect" as keywords to search in PubMed, Web of Science, Science Direct and CNKI up to March 2024. RESULTS A large number of studies have shown that low-dose areca nut has pharmacological effects such as deworming, anti-inflammatory, improving gastrointestinal function, lowering blood lipids, preventing atherosclerosis, anti-depression properties. The important mechanism involved in these effects is to reduce the generation of ROS, inhibit the activation of NADPH oxidase, increase the activity of antioxidant enzymes, affect MAPK, AKT, TLR, NF-κB, Nrf-2, PI3 K, STAT3 signaling pathway, reduce COX-2, IL-1β m RNA, MCP-1 and ICAM-1 mRNA gene expression, reduce IL-6, IL-8, IGE levels, activate AMPK signaling pathway, change the ion level in cells, and increase Bax/Bcl-2 ratio. It interferes with the biochemical metabolic process of bacteria. Long-term consumption of areca nut in large quantities will cause some adverse reactions or related malignant diseases to the human body. CONCLUSION We reviewed the pharmacological and toxicological effects and related mechanisms of areca nut, revealed the relationship between dose and pharmacological and toxicological effects, and discussed how to reduce the toxicity of areca nut and improve the comprehensive utilization of areca nut. It provides a reference for the study of the relationship between areca nut and human health, as well as the safe and rational use and full development and utilization of areca nut.
Collapse
Affiliation(s)
- Zihan Wang
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, China
| | - Ziyuan Guo
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, China
| | - Yinghua Luo
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, China
| | - Lingjun Ma
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, China
| | - Xiaosong Hu
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, China
| | - Fang Chen
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, China.
| | - Daotong Li
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
2
|
Rahimi-Moghaddam A, Ghorbanmehr N, Gharbi S, Nili F, Korsching E. Interplay of miR-542, miR-126, miR-143 and miR-26b with PI3K-Akt is a Diagnostic Signal and Putative Regulatory Target in HPV-Positive Cervical Cancer. Biochem Genet 2024:10.1007/s10528-024-10837-y. [PMID: 38849709 DOI: 10.1007/s10528-024-10837-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 05/09/2024] [Indexed: 06/09/2024]
Abstract
Human papillomavirus accounts for 99.7% of all cervical cancer cases worldwide. The viral oncoproteins alter normal cell signaling and gene expression, resulting in loss of cell cycle control and cancer development. Also, microRNAs (miRNAs) have been reported to play a critical role in cervical carcinogenesis. Especially these are not only appropriate targets for therapeutic intervention in cervical cancer but also early diagnostic signals. The given study tries to improve the sparse knowledge on miRNAs and their role in this physiological context. Deregulated miRNAs were identified by analyzing the raw data of the well-founded GSE20592 dataset including 16 tumor/normal pairs of human cervical tissue samples. The dataset was quantified by a conservative strategy based on HTSeq and Salmon, followed by target prediction via TargetScan and miRDB. The comprehensive pathway analysis of all factors was performed using DAVID. The theoretical results were subject of a stringent experimental validation in a well-characterized clinical cohort of 30 tumor/normal pairs of cervical samples. The top 31 miRNAs and their 140 primary target genes were closely intertwined with the PI3K-Akt signaling pathway. MiR-21-3p and miR-1-3p showed a prominent regulatory role while miR-542, miR-126, miR-143, and miR-26b are directly targeting both PI3K and AKT. This study provides insights into the regulation of PI3K-Akt signaling as an important inducer of cervical cancer and identified miR-542, miR-126, miR-143, and miR-26b as promising inhibitors of the PI3K-Akt action.
Collapse
Affiliation(s)
- Akram Rahimi-Moghaddam
- Department of Biotechnology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| | - Nassim Ghorbanmehr
- Department of Biotechnology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran.
| | - Sedigheh Gharbi
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Fatemeh Nili
- Department of Pathology, Imam Khomeini-Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Eberhard Korsching
- Cancer and Complex Systems Research Group, Medical Faculty, University of Muenster, Muenster, Germany
| |
Collapse
|
3
|
Sun Y, Feng J, Hou W, Qi H, Liu Y. Comprehensive insights into areca nut: active components and omics technologies for bioactivity evaluation and quality control. Front Pharmacol 2024; 15:1407212. [PMID: 38873426 PMCID: PMC11169615 DOI: 10.3389/fphar.2024.1407212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/06/2024] [Indexed: 06/15/2024] Open
Abstract
Areca nut (AN), the fruit or seed of Areca catechu Linn, has many uses, including chewing and medicinal purposes. It has sparked worries about health due to the presence of alkaloids. Chewing AN may have a variety of negative consequences; however, the medicinal use of AN has no notable adverse effects. To completely understand and effectively use AN, researchers have investigated its chemical makeup or biological activity, analyzed the variations between different AN species and different periods, and improved extraction and processing procedures. Today, an increasing number of researchers are exploring the underlying reasons for AN variations, as well as the molecular mechanisms of biosynthesis of chemical components, to comprehend and change AN at the genetic level. This review presents an overview of the clinical study, pharmacology, and detection of the main bioactive components in AN, and the main factors influencing their content, delving into the omics applications in AN research. On the basis of the discussions and summaries, this review identifies current research gaps and proposes future directions for investigation.
Collapse
Affiliation(s)
- Yuanyuan Sun
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education and National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jian Feng
- Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine, International Joint Research Center for Quality of Traditional Chinese Medicine, Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Haikou, China
| | - Wencheng Hou
- Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine, International Joint Research Center for Quality of Traditional Chinese Medicine, Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Haikou, China
| | - Huasha Qi
- Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine, International Joint Research Center for Quality of Traditional Chinese Medicine, Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Haikou, China
| | - Yangyang Liu
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education and National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine, International Joint Research Center for Quality of Traditional Chinese Medicine, Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Haikou, China
| |
Collapse
|
4
|
Wang TH, Shen YW, Chen HY, Chen CC, Lin NC, Shih YH, Hsia SM, Chiu KC, Shieh TM. Arecoline Induces ROS Accumulation, Transcription of Proinflammatory Factors, and Expression of KRT6 in Oral Epithelial Cells. Biomedicines 2024; 12:412. [PMID: 38398015 PMCID: PMC10887121 DOI: 10.3390/biomedicines12020412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Areca nut is a major contributor to the high prevalence of oral cancer in Asia. The precise mechanisms by which areca nut stimulates mucosal cells and contributes to the progression of oral cancer urgently require clarification. The current study aimed to assess the effects of arecoline on the normal human gingival epithelium cell line S-G. Cell viability, levels of reactive oxygen species (ROS), protein expression, cellular morphology, and gene expression were evaluated using the MTT test, flow cytometry, Western blot analysis, optical or confocal microscopy, and RT-qPCR. Keratin (KRT6) analysis involved matched normal and cancer tissues from clinical head and neck specimens. The results demonstrated that 12.5 µg/mL of arecoline induced ROS production, tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6) mRNA expression in S-G cells. This activation of the MAPK/ERK pathway increased KRT6 expression while limiting cell migration. In head and neck cancer tissues, KRT6B gene expression exceeded that of normal tissues. This study confirms that arecoline induces ROS accumulation in normal cells, leading to the secretion of proinflammatory factors and KRT6 expression. This impedes oral mucosal healing, thereby promoting the progression of oral cancer.
Collapse
Affiliation(s)
- Tong-Hong Wang
- Biobank, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| | - Yen-Wen Shen
- School of Dentistry, China Medical University, Taichung 404328, Taiwan
| | - Hsin-Ying Chen
- School of Dentistry, China Medical University, Taichung 404328, Taiwan
| | - Chih-Chieh Chen
- Department of Sports Medicine, China Medical University, Taichung 404328, Taiwan
| | - Nan-Chin Lin
- School of Dentistry, China Medical University, Taichung 404328, Taiwan
- Department of Oral and Maxillofacial Surgery, Show Chwan Memorial Hospital, Changhua 505029, Taiwan
- Department of Oral and Maxillofacial Surgery, Changhua Christian Hospital, Changhua 500011, Taiwan
| | - Yin-Hwa Shih
- Department of Healthcare Administration, Asia University, Taichung 41354, Taiwan
| | - Shih-Min Hsia
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 110301, Taiwan
| | - Kuo-Chou Chiu
- Division of General Dentistry, Taichung Armed Forces General Hospital, Taichung 411228, Taiwan
| | - Tzong-Ming Shieh
- School of Dentistry, China Medical University, Taichung 404328, Taiwan
| |
Collapse
|
5
|
Dai H, Li L, Yang Y, Chen H, Dong X, Mao Y, Gao Y. Screening microRNAs as potential prognostic biomarkers for lung adenocarcinoma. Ann Med 2023; 55:2241013. [PMID: 37930873 PMCID: PMC10629414 DOI: 10.1080/07853890.2023.2241013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 07/21/2023] [Indexed: 11/08/2023] Open
Abstract
OBJECTIVE To screen and identify microRNAs (miRNAs) associated with the prognosis of lung adenocarcinoma (LUAD) using clinical samples and construct a prediction model for the prognosis of LUAD. METHODS 160 patient samples were used to screen and identify miRNAs associated with the prognosis of LUAD. Differentially expressed miRNAs were analyzed using gene chip technology. The selected miRNAs were validated using samples from the validation sample group. Cox proportional hazards regression was used to construct the model and Kaplan-Meier was used to plot survival curves. Model power was assessed by testing the prognosis of the constructed model using real-time polymerase chain reaction (RT-PCR) data. RESULTS The data showed that miR-1260b, miR-21-3p and miR-92a-3p were highly expressed in the early recurrence and metastasis group, while miR-2467-3p, miR-4659a-3p, miR-4514, miR-1471 and miR-3621 were lowly expressed. It was further confirmed that miR-21-3p was significantly highly expressed in the early recurrence and metastasis group (p = 0.02). Receiver operating characteristic (ROC) curve results showed cut-off point value of 0.0172, sensitivity of 88.2% and specificity of 100%. The predictive results of the constructed model were in good agreement with the actual prognosis of patients by using the validation sample test (Kappa = 0.426, p < 0.001), with a model sensitivity of 74.4%, a specificity of 68.3%, and an accuracy of 71.3%. CONCLUSION miRNAs associated with the prognosis of patients with stage I LUAD were screened and validated, and a risk model for predicting the prognosis of patients was constructed. This model has good consistency with the actual prognosis of patients.
Collapse
Affiliation(s)
- Hongshuang Dai
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center; National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lin Li
- Department of Pathology, National Cancer Center;National Clinical Research Center for Cancer, Chinese Academy of Medical Sciences and Peking Union Medical College Cancer Hospital, Beijing, China
| | - Yikun Yang
- Department of Thoracic Surgical Oncology, National Cancer Center; National Clinical Research Center for Cancer, Chinese Academy of Medical Sciences and Peking Union Medical College Cancer Hospital, Beijing, China
| | - Huang Chen
- Department of Pathology, China-Japan Friendship Hospital, Beijing, China
| | - Xin Dong
- Department of Clinical Laboratory, National Cancer Center; National Clinical Research Center for Cancer, Chinese Academy of Medical Sciences and Peking Union Medical College Cancer Hospital, Beijing, China
| | - Yousheng Mao
- Department of Thoracic Surgical Oncology, National Cancer Center; National Clinical Research Center for Cancer, Chinese Academy of Medical Sciences and Peking Union Medical College Cancer Hospital, Beijing, China
| | - Yanning Gao
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center; National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
6
|
Liu PF, Chang YF. The Controversial Roles of Areca Nut: Medicine or Toxin? Int J Mol Sci 2023; 24:ijms24108996. [PMID: 37240342 DOI: 10.3390/ijms24108996] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/12/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Areca nut (AN) is used for traditional herbal medicine and social activities in several countries. It was used as early as about A.D. 25-220 as a remedy. Traditionally, AN was applied for several medicinal functions. However, it was also reported to have toxicological effects. In this review article, we updated recent trends of research in addition to acquire new knowledge about AN. First, the history of AN usage from ancient years was described. Then, the chemical components of AN and their biological functions was compared; arecoline is an especially important compound in AN. AN extract has different effects caused by different components. Thus, the dual effects of AN with pharmacological and toxicological effects were summarized. Finally, we described perspectives, trends and challenges of AN. It will provide the insight of removing or modifying the toxic compounds of AN extractions for enhancing their pharmacological activity to treat several diseases in future applications.
Collapse
Affiliation(s)
- Pei-Feng Liu
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| | - Yung-Fu Chang
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Translational Research Center of Neuromuscular Diseases, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| |
Collapse
|
7
|
Ko AMS, Tu HP, Ko YC. Systematic Review of Roles of Arecoline and Arecoline N-Oxide in Oral Cancer and Strategies to Block Carcinogenesis. Cells 2023; 12:1208. [PMID: 37190117 PMCID: PMC10137008 DOI: 10.3390/cells12081208] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/11/2023] [Accepted: 04/19/2023] [Indexed: 05/17/2023] Open
Abstract
Betel quid and areca nut are complex mixture carcinogens, but little is known about whether their derived single-agent arecoline or arecoline N-oxide (ANO) is carcinogenic, and the underlying mechanisms remain unclear. In this systematic review, we analyzed recent studies on the roles of arecoline and ANO in cancer and strategies to block carcinogenesis. In the oral cavity, flavin-containing monooxygenase 3 oxidizes arecoline to ANO, and both alkaloids conjugate with N-acetylcysteine to form mercapturic acid compounds, which are excreted in urine, reducing arecoline and ANO toxicity. However, detoxification may not be complete. Arecoline and ANO upregulated protein expression in oral cancer tissue from areca nut users compared to expression levels in adjacent normal tissue, suggesting a causal relationship between these compounds and oral cancer. Sublingual fibrosis, hyperplasia, and oral leukoplakia were diagnosed in mice subjected to oral mucosal smearing of ANO. ANO is more cytotoxic and genotoxic than arecoline. During carcinogenesis and metastasis, these compounds increase the expression of epithelial-mesenchymal transition (EMT) inducers such as reactive oxygen species, transforming growth factor-β1, Notch receptor-1, and inflammatory cytokines, and they activate EMT-related proteins. Arecoline-induced epigenetic markers such as sirtuin-1 hypermethylation, low protein expression of miR-22, and miR-886-3-p accelerate oral cancer progression. Antioxidants and targeted inhibitors of the EMT inducers used reduce the risk of oral cancer development and progression. Our review findings substantiate the association of arecoline and ANO with oral cancer. Both of these single compounds are likely carcinogenic to humans, and their mechanisms and pathways of carcinogenesis are useful indicators for cancer therapy and prognosis.
Collapse
Affiliation(s)
- Albert Min-Shan Ko
- Department of Biomedical Sciences, Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan 33302, Taiwan
- Cardiovascular Department, Chang Gung Memorial Hospital, Taoyuan 33302, Taiwan
- Health Aging Research Center, Chang Gung University, Taoyuan 33302, Taiwan
| | - Hung-Pin Tu
- Department of Public Health and Environmental Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
| | - Ying-Chin Ko
- Department of Medical Research, China Medical University Hospital, China Medical University, No. 2 Yu-Der Road, Taichung 40447, Taiwan
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei 106216, Taiwan
| |
Collapse
|
8
|
Zhang CY, Liu S, Yang M. Antioxidant and anti-inflammatory agents in chronic liver diseases: Molecular mechanisms and therapy. World J Hepatol 2023; 15:180-200. [PMID: 36926234 PMCID: PMC10011909 DOI: 10.4254/wjh.v15.i2.180] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/30/2022] [Accepted: 02/09/2023] [Indexed: 02/24/2023] Open
Abstract
Chronic liver disease (CLD) is a continuous process that causes a reduction of liver function lasting more than six months. CLD includes alcoholic liver disease (ALD), non-alcoholic fatty liver disease (NAFLD), chronic viral infection, and autoimmune hepatitis, which can lead to liver fibrosis, cirrhosis, and cancer. Liver inflammation and oxidative stress are commonly associated with the development and progression of CLD. Molecular signaling pathways such as AMP-activated protein kinase (AMPK), C-Jun N-terminal kinase, and peroxisome proliferator-activated receptors (PPARs) are implicated in the pathogenesis of CLD. Therefore, antioxidant and anti-inflammatory agents from natural products are new potent therapies for ALD, NAFLD, and hepatocellular carcinoma (HCC). In this review, we summarize some powerful products that can be potential applied in all the stages of CLD, from ALD/NAFLD to HCC. The selected agents such as β-sitosterol, curcumin, genistein, and silymarin can regulate the activation of several important molecules, including AMPK, Farnesoid X receptor, nuclear factor erythroid 2-related factor-2, PPARs, phosphatidylinositol-3-kinase, and lysyl oxidase-like proteins. In addition, clinical trials are undergoing to evaluate their efficacy and safety.
Collapse
Affiliation(s)
- Chun-Ye Zhang
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, United States
| | - Shuai Liu
- The First Affiliated Hospital, Zhejiang University, Hangzhou 310006, Zhejiang Province, China
| | - Ming Yang
- Department of Surgery, University of Missouri, Columbia, MO 65211, United States
| |
Collapse
|