1
|
Chen C, Wang J, Sun M, Li J, Wang HMD. Toward the next-generation phyto-nanomedicines: cell-derived nanovesicles (CDNs) for natural product delivery. Biomed Pharmacother 2021; 145:112416. [PMID: 34781147 DOI: 10.1016/j.biopha.2021.112416] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/27/2021] [Accepted: 11/05/2021] [Indexed: 02/08/2023] Open
Abstract
Phytochemicals are plant-derived bioactive compounds, which have been widely used for therapeutic purposes. Due to the poor water-solubility, low bioavailability and non-specific targeting characteristic, diverse classes of nanocarriers are utilized for encapsulation and delivery of bio-effective agents. Cell-derived nanovesicles (CDNs), known for exosomes or extracellular vesicles (EVs), are biological nanoparticles with multiple functions. Compared to the artificial counterpart, CDNs hold great potential in drug delivery given the higher stability, superior biocompatibility and the lager capability of encapsulating bioactive molecules. Here, we provide a bench-to-bedside review of CDNs-based nanoplatform, including the bio-origin, preparation, characterization and functionalization. Beyond that, the focus is laid on the therapeutic effect of CDNs-mediated drug delivery for natural products. The state-of-art development as well as some pre-clinical applications of using CDNs for disease treatment is also summarized. It is highly expected that the continuing development of CDNs-based delivery systems will further promote the clinical utilization and translation of phyto-nanomedicines.
Collapse
Affiliation(s)
- Chaoxiang Chen
- College of Food and Biological Engineering, Jimei University, China
| | - Jialin Wang
- College of Food and Biological Engineering, Jimei University, China
| | - Mengdi Sun
- College of Food and Biological Engineering, Jimei University, China
| | - Jian Li
- College of Food and Biological Engineering, Jimei University, China.
| | - Hui-Min David Wang
- Graduate Institute of Biomedical Engineering, National Chung Hsing University, Taiwan; Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung City 404, Taiwan; Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| |
Collapse
|
2
|
Quijia CR, Bonatto CC, Silva LP, Andrade MA, Azevedo CS, Lasse Silva C, Vega M, de Santana JM, Bastos IMD, Carneiro MLB. Liposomes Composed by Membrane Lipid Extracts from Macrophage Cell Line as a Delivery of the Trypanocidal N, N'-Squaramide 17 towards Trypanosoma cruzi. MATERIALS 2020; 13:ma13235505. [PMID: 33276688 PMCID: PMC7730638 DOI: 10.3390/ma13235505] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/21/2020] [Accepted: 10/23/2020] [Indexed: 12/20/2022]
Abstract
Chagas is a neglected tropical disease caused by Trypanosoma cruzi, and affects about 25 million people worldwide. N, N’-Squaramide 17 (S) is a trypanocidal compound with relevant in vivo effectiveness. Here, we produced, characterized, and evaluated cytotoxic and trypanocidal effects of macrophage-mimetic liposomes from lipids extracted of RAW 264.7 cells to release S. As results, the average hydrodynamic diameter and Zeta potential of mimetic lipid membranes containing S (MLS) was 196.5 ± 11 nm and −61.43 ± 2.3 mV, respectively. Drug entrapment efficiency was 73.35% ± 2.05%. After a 72 h treatment, MLS was observed to be active against epimastigotes in vitro (IC50 = 15.85 ± 4.82 μM) and intracellular amastigotes (IC50 = 24.92 ± 4.80 μM). Also, it induced low cytotoxicity with CC50 of 1199.50 ± 1.22 μM towards VERO cells and of 1973.97 ± 5.98 μM in RAW 264.7. MLS also induced fissures in parasite membrane with a diameter of approximately 200 nm in epimastigotes. MLS showed low cytotoxicity in mammalian cells and high trypanocidal activity revealing this nanostructure a promising candidate for the development of Chagas disease treatment.
Collapse
Affiliation(s)
- Christian Rafael Quijia
- Microscopy Laboratory, Department of Cell Biology, Institute of Biology, University of Brasília, UnB—Brasilia, Federal District, Brasília DF 70910-900, Brazil;
- Laboratory of Nanobiotechnology, Embrapa Genetic Resources and Biotechnology, Parque Estação Biológica, PqEB, Av. W5 Norte (Final) Caixa Postal 02372, Brasília DF 70.770-917, Brazil; (C.C.B.); (L.P.S.)
- Pathogen-Host Interface Laboratory, Department of Cell Biology, Institute of Biology, University of Brasília, UnB—Brasilia, Federal District, Brasília DF 70910-900, Brazil; (M.A.A.); (C.S.A.); (C.L.S.); (J.M.d.S.)
| | - Cínthia Caetano Bonatto
- Laboratory of Nanobiotechnology, Embrapa Genetic Resources and Biotechnology, Parque Estação Biológica, PqEB, Av. W5 Norte (Final) Caixa Postal 02372, Brasília DF 70.770-917, Brazil; (C.C.B.); (L.P.S.)
| | - Luciano Paulino Silva
- Laboratory of Nanobiotechnology, Embrapa Genetic Resources and Biotechnology, Parque Estação Biológica, PqEB, Av. W5 Norte (Final) Caixa Postal 02372, Brasília DF 70.770-917, Brazil; (C.C.B.); (L.P.S.)
| | - Milene Aparecida Andrade
- Pathogen-Host Interface Laboratory, Department of Cell Biology, Institute of Biology, University of Brasília, UnB—Brasilia, Federal District, Brasília DF 70910-900, Brazil; (M.A.A.); (C.S.A.); (C.L.S.); (J.M.d.S.)
| | - Clenia Santos Azevedo
- Pathogen-Host Interface Laboratory, Department of Cell Biology, Institute of Biology, University of Brasília, UnB—Brasilia, Federal District, Brasília DF 70910-900, Brazil; (M.A.A.); (C.S.A.); (C.L.S.); (J.M.d.S.)
| | - Camila Lasse Silva
- Pathogen-Host Interface Laboratory, Department of Cell Biology, Institute of Biology, University of Brasília, UnB—Brasilia, Federal District, Brasília DF 70910-900, Brazil; (M.A.A.); (C.S.A.); (C.L.S.); (J.M.d.S.)
| | - Manel Vega
- Department of Chemistry, University of the Balearic Islands, Palma on the Island of Majorca, Carretera de Valldemossa, km 7.5, 07122 Palma, Illes Balears, Spain;
| | - Jaime Martins de Santana
- Pathogen-Host Interface Laboratory, Department of Cell Biology, Institute of Biology, University of Brasília, UnB—Brasilia, Federal District, Brasília DF 70910-900, Brazil; (M.A.A.); (C.S.A.); (C.L.S.); (J.M.d.S.)
| | - Izabela Marques Dourado Bastos
- Pathogen-Host Interface Laboratory, Department of Cell Biology, Institute of Biology, University of Brasília, UnB—Brasilia, Federal District, Brasília DF 70910-900, Brazil; (M.A.A.); (C.S.A.); (C.L.S.); (J.M.d.S.)
- Correspondence: (I.M.D.B.); (M.L.B.C.); Tel.: +55-61-3107-3051 (I.M.D.B.)
| | - Marcella Lemos Brettas Carneiro
- Microscopy Laboratory, Department of Cell Biology, Institute of Biology, University of Brasília, UnB—Brasilia, Federal District, Brasília DF 70910-900, Brazil;
- Correspondence: (I.M.D.B.); (M.L.B.C.); Tel.: +55-61-3107-3051 (I.M.D.B.)
| |
Collapse
|