1
|
Ford J, Ortalli S, Chen Z, Sap JBI, Tredwell M, Gouverneur V. Expedient Access to 18F-Fluoroheteroarenes via Deaminative Radiofluorination of Aniline-Derived Pyridinium Salts. Angew Chem Int Ed Engl 2024; 63:e202404945. [PMID: 38624193 DOI: 10.1002/anie.202404945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/15/2024] [Accepted: 04/15/2024] [Indexed: 04/17/2024]
Abstract
Herein, we disclose that pyridinium salts derived from abundant (hetero)anilines represent a novel precursor class for nucleophilic aromatic substitution reactions with [18F]fluoride. The value of this new 18F-fluorodeamination is demonstrated with the synthesis of over 30 structurally diverse and complex heteroaryl 18F-fluorides, several derived from scaffolds that were yet to be labelled with fluorine-18. The protocol tolerates heteroarenes and functionalities commonly found in drug discovery libraries, and is amenable to scale-up and automation on a commercial radiosynthesiser.
Collapse
Affiliation(s)
- Joseph Ford
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, United Kingdom
| | - Sebastiano Ortalli
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, United Kingdom
| | - Zijun Chen
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, United Kingdom
| | - Jeroen B I Sap
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, United Kingdom
- Current address: Department of Translational Imaging, Genentech Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Matthew Tredwell
- Wales Research and Diagnostic PET Imaging Centre, Cardiff University, University Hospital of Wales, Heath Park, Cardiff, CF14 4XN, United Kingdom
- School of Chemistry, Cardiff University Main Building, Park Place, Cardiff, CF10 3AT, United Kingdom
| | - Véronique Gouverneur
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, United Kingdom
| |
Collapse
|
2
|
Pijeira MSO, Nunes PSG, Chaviano SL, Diaz AMA, DaSilva JN, Ricci-Junior E, Alencar LMR, Chen X, Santos-Oliveira R. Medicinal (Radio) Chemistry: Building Radiopharmaceuticals for the Future. Curr Med Chem 2024; 31:5481-5534. [PMID: 37594105 DOI: 10.2174/0929867331666230818092634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/30/2023] [Accepted: 07/13/2023] [Indexed: 08/19/2023]
Abstract
Radiopharmaceuticals are increasingly playing a leading role in diagnosing, monitoring, and treating disease. In comparison with conventional pharmaceuticals, the development of radiopharmaceuticals does follow the principles of medicinal chemistry in the context of imaging-altered physiological processes. The design of a novel radiopharmaceutical has several steps similar to conventional drug discovery and some particularity. In the present work, we revisited the insights of medicinal chemistry in the current radiopharmaceutical development giving examples in oncology, neurology, and cardiology. In this regard, we overviewed the literature on radiopharmaceutical development to study overexpressed targets such as prostate-specific membrane antigen and fibroblast activation protein in cancer; β-amyloid plaques and tau protein in brain disorders; and angiotensin II type 1 receptor in cardiac disease. The work addresses concepts in the field of radiopharmacy with a special focus on the potential use of radiopharmaceuticals for nuclear imaging and theranostics.
Collapse
Affiliation(s)
- Martha Sahylí Ortega Pijeira
- Laboratory of Nanoradiopharmaceuticals and Synthesis of Novel Radiopharmaceuticals, Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Rio de Janeiro 21941906, Brazil
| | - Paulo Sérgio Gonçalves Nunes
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas SP13083-970, Brazil
| | - Samila Leon Chaviano
- Laboratoire de Biomatériaux pour l'Imagerie Médicale, Axe Médicine Régénératrice, Centre de Recherche du Centre Hospitalier Universitaire de Québec - Université Laval, Québec, QC, Canada
| | - Aida M Abreu Diaz
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada
- Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada
- Institute de Génie Biomédical, Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada
| | - Jean N DaSilva
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada
- Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada
- Institute de Génie Biomédical, Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada
| | - Eduardo Ricci-Junior
- Laboratório de Desenvolvimento Galênico, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
| | - Luciana Magalhães Rebelo Alencar
- Laboratory of Biophysics and Nanosystems, Federal University of Maranhão, Av. dos Portugueses, 1966, Vila Bacanga, São Luís MA65080-805, Brazil
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore 117597, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 117599, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore 117597, Singapore
| | - Ralph Santos-Oliveira
- Laboratory of Nanoradiopharmaceuticals and Synthesis of Novel Radiopharmaceuticals, Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Rio de Janeiro 21941906, Brazil
- Laboratory of Radiopharmacy and Nanoradiopharmaceuticals, Rio de Janeiro State University, Rio de Janeiro 23070200, Brazil
| |
Collapse
|
3
|
Bock L, Schultheiß SK, Maschauer S, Lasch R, Gradl S, Prante O, Zard SZ, Heinrich MR. Synthesis of 2‐(Chlorodifluoromethyl)indoles for Nucleophilic Halogen Exchange with [
18
F]Fluoride. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Leonard Bock
- Department of Chemistry and Pharmacy, Pharmaceutical Chemistry Friedrich-Alexander-Universität Erlangen-Nürnberg Nikolaus-Fiebiger-Str. 10 91058 Erlangen Germany
| | - Stefanie K. Schultheiß
- Department of Chemistry and Pharmacy, Pharmaceutical Chemistry Friedrich-Alexander-Universität Erlangen-Nürnberg Nikolaus-Fiebiger-Str. 10 91058 Erlangen Germany
| | - Simone Maschauer
- Department of Nuclear Medicine, Molecular Imaging and Radiochemistry Friedrich-Alexander-Universität Erlangen-Nürnberg Schwabachanlage 12 91054 Erlangen Germany
| | - Roman Lasch
- Department of Chemistry and Pharmacy, Pharmaceutical Chemistry Friedrich-Alexander-Universität Erlangen-Nürnberg Nikolaus-Fiebiger-Str. 10 91058 Erlangen Germany
| | - Susanne Gradl
- Department of Chemistry and Pharmacy, Pharmaceutical Chemistry Friedrich-Alexander-Universität Erlangen-Nürnberg Nikolaus-Fiebiger-Str. 10 91058 Erlangen Germany
| | - Olaf Prante
- Department of Nuclear Medicine, Molecular Imaging and Radiochemistry Friedrich-Alexander-Universität Erlangen-Nürnberg Schwabachanlage 12 91054 Erlangen Germany
| | - Samir Z. Zard
- Laboratoire de Synthèse Organique associé au CNRS Ecole Polytechnique 91128 Palaiseau France
| | - Markus R. Heinrich
- Department of Chemistry and Pharmacy, Pharmaceutical Chemistry Friedrich-Alexander-Universität Erlangen-Nürnberg Nikolaus-Fiebiger-Str. 10 91058 Erlangen Germany
| |
Collapse
|
4
|
Yu Y, Liu A, Dhawan G, Mei H, Zhang W, Izawa K, Soloshonok VA, Han J. Fluorine-containing pharmaceuticals approved by the FDA in 2020: Synthesis and biological activity. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.05.042] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
5
|
Wolters EE, Dodich A, Boccardi M, Corre J, Drzezga A, Hansson O, Nordberg A, Frisoni GB, Garibotto V, Ossenkoppele R. Clinical validity of increased cortical uptake of [ 18F]flortaucipir on PET as a biomarker for Alzheimer's disease in the context of a structured 5-phase biomarker development framework. Eur J Nucl Med Mol Imaging 2021; 48:2097-2109. [PMID: 33547556 PMCID: PMC8175307 DOI: 10.1007/s00259-020-05118-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 11/15/2020] [Indexed: 12/14/2022]
Abstract
PURPOSE In 2017, the Geneva Alzheimer's disease (AD) Biomarker Roadmap initiative adapted the framework of the systematic validation of oncological diagnostic biomarkers to AD biomarkers, with the aim to accelerate their development and implementation in clinical practice. With this work, we assess the maturity of [18F]flortaucipir PET and define its research priorities. METHODS The level of maturity of [18F]flortaucipir was assessed based on the AD Biomarker Roadmap. The framework assesses analytical validity (phases 1-2), clinical validity (phases 3-4), and clinical utility (phase 5). RESULTS The main aims of phases 1 (rationale for use) and 2 (discriminative ability) have been achieved. [18F]Flortaucipir binds with high affinity to paired helical filaments of tau and has favorable kinetic properties and excellent discriminative accuracy for AD. The majority of secondary aims of phase 2 were fully achieved. Multiple studies showed high correlations between ante-mortem [18F]flortaucipir PET and post-mortem tau (as assessed by histopathology), and also the effects of covariates on tracer binding are well studied. The aims of phase 3 (early detection ability) were only partially or preliminarily achieved, and the aims of phases 4 and 5 were not achieved. CONCLUSION Current literature provides partial evidence for clinical utility of [18F]flortaucipir PET. The aims for phases 1 and 2 were mostly achieved. Phase 3 studies are currently ongoing. Future studies including representative MCI populations and a focus on healthcare outcomes are required to establish full maturity of phases 4 and 5.
Collapse
Affiliation(s)
- E E Wolters
- Department of Radiology & Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, location VUmc, PO Box 7057, 1007 MB, Amsterdam, The Netherlands.
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands.
| | - A Dodich
- NIMTlab - Neuroimaging and Innovative Molecular Tracers Laboratory, University of Geneva, Geneva, Switzerland
- Centre for Mind/Brain Sciences-CIMeC, University of Trento, Rovereto, Italy
| | - M Boccardi
- Late Translational Dementia Studies Group, German Center for Neurodegenerative Diseases (DZNE), Rostock-Greifswald site, Rostock, Germany
| | - J Corre
- NIMTlab - Neuroimaging and Innovative Molecular Tracers Laboratory, University of Geneva, Geneva, Switzerland
- CURIC, Centre Universitaire Romand d'Implants Cochléaires, Department of Clinical Neurosciences, University of Geneva, Geneva, Switzerland
| | - A Drzezga
- Faculty of Medicine, University of Cologne, Cologne, Germany
- Institute of Neuroscience and Medicine (INM-2), Molecular Organization of the Brain, Research Center Jülich, Jülich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn-Cologne, Germany
| | - O Hansson
- Memory Clinic, Skåne University Hospital, Malmö, Sweden
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
| | - A Nordberg
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - G B Frisoni
- LANVIE - Laboratory of Neuroimaging of Aging, University of Geneva, Geneva, Switzerland
- Memory Clinic, University Hospital, Geneva, Switzerland
| | - V Garibotto
- NIMTlab - Neuroimaging and Innovative Molecular Tracers Laboratory, University of Geneva, Geneva, Switzerland
| | - R Ossenkoppele
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
| |
Collapse
|
6
|
Jiang H, Jain MK, Cai H. Automated production of [ 18F]Flortaucipir for PET imaging of tauopathies. AMERICAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING 2021; 11:167-177. [PMID: 34234995 PMCID: PMC8255216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 05/07/2021] [Indexed: 06/13/2023]
Abstract
Radiotracer [18F]Flortaucipir is an FDA-approved diagnostic agent for PET imaging of density and distribution of abnormal tau protein deposition (tauopathies) in Alzheimer's disease. A high-yield automated method for routine GMP-compliant [18F]Flortaucipir production is desired to meet increasing clinical need. In this work, we reported an automated radiosynthesis of [18F]Flortaucipir in a RNplus Research module and the quality control (QC) tests for human use under full GMP compliance. Briefly, automated radiosynthesis of [18F]Flortaucipir was processed via nucleophilic radiofluorination of precursor AV1622 and followed by acid hydrolysis in a RNplus Research module, which included the radiosynthesis, semi-preparative high-performance liquid chromatography (HPLC) purification, and the final formulation via solid phase extraction (SPE). The final products were obtained in non-decay corrected radiochemical yields of 14.8-16.6% (n = 3) within total synthesis time of 55 min. The radiochemical purities of [18F]Flortaucipir were > 99.9% and the molar activities were 247.9-384.8 GBq/µmol at end of synthesis. The results of QC tests met all the specifications for human use. In conclusion, [18F]Flortaucipir was reproducibly achieved with desired radiochemical yield and high radiochemical purity and molar activity. Three GMP compliant validation runs and QC results demonstrated the efficacy of this method for automated production of [18F]Flortaucipir for human use.
Collapse
Affiliation(s)
- Huailei Jiang
- Department of Radiology, Mayo ClinicJacksonville, FL, USA
- Karmanos Cancer InstituteDetroit, MI, USA
| | - Manoj K Jain
- Department of Radiology, Mayo ClinicJacksonville, FL, USA
| | - Hancheng Cai
- Department of Radiology, Mayo ClinicJacksonville, FL, USA
| |
Collapse
|
7
|
Kaur T, Brooks AF, Hockley BG, Torres J, Henderson BD, Scott PJH, Shao X. An updated synthesis of N 1 '-([ 11 C]methyl)naltrindole for positron emission tomography imaging of the delta opioid receptor. J Labelled Comp Radiopharm 2020; 64:187-193. [PMID: 33274468 DOI: 10.1002/jlcr.3898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/30/2020] [Accepted: 11/30/2020] [Indexed: 11/08/2022]
Abstract
A new method for the synthesis of the highly selective delta opioid receptor (DOR) antagonist radiotracer N1 '-([11 C]methyl)naltrindole ([11 C]MeNTI) is described. The original synthesis required hydrogenation of a benzyl protecting group after 11 C-labeling, which is challenging in modern radiochemistry laboratories that tend to be heavily automated and operate according to current good manufacturing practice. To address this challenge, we describe development of a novel MeNTI precursor bearing a methoxymethyl acetal (MOM) protecting group, which is easily removed with HCl, and employ it in an updated synthesis of [11 C]MeNTI. The new synthesis is fully automated and validated for clinical use. The total synthesis time is 45 min and provides [11 C]MeNTI in good activity yield (49 ± 8 mCi), molar activity (3,926 ± 326 Ci/mmol) and radiochemical purity (97% ± 2%).
Collapse
Affiliation(s)
- Tanpreet Kaur
- Department of Radiology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Allen F Brooks
- Department of Radiology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Brian G Hockley
- Department of Radiology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Jovany Torres
- Department of Radiology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Bradford D Henderson
- Department of Radiology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Peter J H Scott
- Department of Radiology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Xia Shao
- Department of Radiology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
8
|
Jackson IM, Lee SJ, Sowa AR, Rodnick ME, Bruton L, Clark M, Preshlock S, Rothley J, Rogers VE, Botti LE, Henderson BD, Hockley BG, Torres J, Raffel DM, Brooks AF, Frey KA, Kilbourn MR, Koeppe RA, Shao X, Scott PJH. Use of 55 PET radiotracers under approval of a Radioactive Drug Research Committee (RDRC). EJNMMI Radiopharm Chem 2020; 5:24. [PMID: 33175263 PMCID: PMC7658275 DOI: 10.1186/s41181-020-00110-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 10/19/2020] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND In the US, EU and elsewhere, basic clinical research studies with positron emission tomography (PET) radiotracers that are generally recognized as safe and effective (GRASE) can often be conducted under institutional approval. For example, in the United States, such research is conducted under the oversight of a Radioactive Drug Research Committee (RDRC) as long as certain requirements are met. Firstly, the research must be for basic science and cannot be intended for immediate therapeutic or diagnostic purposes, or to determine the safety and effectiveness of the PET radiotracer. Secondly, the PET radiotracer must be generally recognized as safe and effective. Specifically, the mass dose to be administered must not cause any clinically detectable pharmacological effect in humans, and the radiation dose to be administered must be the smallest dose practical to perform the study and not exceed regulatory dose limits within a 1-year period. In our experience, the main barrier to using a PET radiotracer under RDRC approval is accessing the required information about mass and radioactive dosing. RESULTS The University of Michigan (UM) has a long history of using PET radiotracers in clinical research studies. Herein we provide dosing information for 55 radiotracers that will enable other PET Centers to use them under the approval of their own RDRC committees. CONCLUSIONS The data provided herein will streamline future RDRC approval, and facilitate further basic science investigation of 55 PET radiotracers that target functionally relevant biomarkers in high impact disease states.
Collapse
Affiliation(s)
- Isaac M Jackson
- Department of Radiology, University of Michigan, 2276 Medical Science Bldg I, SPC 5610, Ann Arbor, MI, 48109, USA
- Present Address: Stanford University, Stanford, CA, USA
| | - So Jeong Lee
- Department of Radiology, University of Michigan, 2276 Medical Science Bldg I, SPC 5610, Ann Arbor, MI, 48109, USA
- Present Address: Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Alexandra R Sowa
- Department of Radiology, University of Michigan, 2276 Medical Science Bldg I, SPC 5610, Ann Arbor, MI, 48109, USA
| | - Melissa E Rodnick
- Department of Radiology, University of Michigan, 2276 Medical Science Bldg I, SPC 5610, Ann Arbor, MI, 48109, USA
| | - Laura Bruton
- Department of Radiology, University of Michigan, 2276 Medical Science Bldg I, SPC 5610, Ann Arbor, MI, 48109, USA
| | - Mara Clark
- Department of Radiology, University of Michigan, 2276 Medical Science Bldg I, SPC 5610, Ann Arbor, MI, 48109, USA
| | - Sean Preshlock
- Department of Radiology, University of Michigan, 2276 Medical Science Bldg I, SPC 5610, Ann Arbor, MI, 48109, USA
| | - Jill Rothley
- Department of Radiology, University of Michigan, 2276 Medical Science Bldg I, SPC 5610, Ann Arbor, MI, 48109, USA
| | - Virginia E Rogers
- Department of Radiology, University of Michigan, 2276 Medical Science Bldg I, SPC 5610, Ann Arbor, MI, 48109, USA
| | - Leslie E Botti
- Department of Radiology, University of Michigan, 2276 Medical Science Bldg I, SPC 5610, Ann Arbor, MI, 48109, USA
| | - Bradford D Henderson
- Department of Radiology, University of Michigan, 2276 Medical Science Bldg I, SPC 5610, Ann Arbor, MI, 48109, USA
| | - Brian G Hockley
- Department of Radiology, University of Michigan, 2276 Medical Science Bldg I, SPC 5610, Ann Arbor, MI, 48109, USA
| | - Jovany Torres
- Department of Radiology, University of Michigan, 2276 Medical Science Bldg I, SPC 5610, Ann Arbor, MI, 48109, USA
| | - David M Raffel
- Department of Radiology, University of Michigan, 2276 Medical Science Bldg I, SPC 5610, Ann Arbor, MI, 48109, USA
| | - Allen F Brooks
- Department of Radiology, University of Michigan, 2276 Medical Science Bldg I, SPC 5610, Ann Arbor, MI, 48109, USA
| | - Kirk A Frey
- Department of Radiology, University of Michigan, 2276 Medical Science Bldg I, SPC 5610, Ann Arbor, MI, 48109, USA
| | - Michael R Kilbourn
- Department of Radiology, University of Michigan, 2276 Medical Science Bldg I, SPC 5610, Ann Arbor, MI, 48109, USA
| | - Robert A Koeppe
- Department of Radiology, University of Michigan, 2276 Medical Science Bldg I, SPC 5610, Ann Arbor, MI, 48109, USA
| | - Xia Shao
- Department of Radiology, University of Michigan, 2276 Medical Science Bldg I, SPC 5610, Ann Arbor, MI, 48109, USA
| | - Peter J H Scott
- Department of Radiology, University of Michigan, 2276 Medical Science Bldg I, SPC 5610, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
9
|
Kramer V, Brooks AF, Haeger A, Kuljis RO, Rafique W, Koeppe RA, Raffel DM, Frey KA, Amaral H, Scott PJH, Riss PJ. Evaluation of [ 18F]- N-Methyl lansoprazole as a Tau PET Imaging Agent in First-in-Human Studies. ACS Chem Neurosci 2020; 11:427-435. [PMID: 31898886 DOI: 10.1021/acschemneuro.9b00639] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Development of positron emission tomography (PET) imaging agents capable of quantifying tau aggregates in neurodegenerative disorders such as Alzheimer's disease (AD) is of enormous importance in the field of dementia research. The aim of the present study was to conduct first-in-man imaging studies with the potential novel tau imaging agent [18F]N-methyl lansoprazole ([18F]NML). Herein we report validation of the synthesis of [18F]NML for clinical use by labeling the trifluoromethyl group via radiofluorination of the corresponding gem-difluoro enol ether precursor. This is the first use of this method for clinical production of PET radiotracers and confirmed that it can be readily implemented at multiple production facilities to provide [18F]NML in good noncorrected radiochemical yield (3.4 ± 1.5 GBq, 4.6% ± 2.6%) and molar activity (120.1 ± 186.3 GBq/μmol), excellent radiochemical purity (>97%), and suitable for human use (n = 15). With [18F]NML in hand, we conducted rodent biodistribution, estimates of human dosimetry, and preliminary evaluation of [18F]NML in human subjects at two imaging sites. Healthy controls (n = 4) and mildly cognitively impaired (MCI) AD patients (n = 6) received [18F]NML (tau), [18F]AV1451 (tau), and [18F]florbetaben or [18F]florbetapir (amyloid) PET scans. A single progressive supranuclear palsy (PSP) patient also received [18F]NML and [18F]AV1451 PET scans. [18F]NML showed good brain uptake, reasonable pharmacokinetics, and appropriate imaging characteristics in healthy controls. The mean ± SD of the administered mass of [18F/19F]NML was 2.01 ± 2.17 μg (range, 0.16-8.27 μg) and the mean administered activity was 350 ± 62 MBq (range, 199-403 MBq). There were no adverse or clinically detectable pharmacologic effects in any of the 11 subjects, and no significant changes in vital signs were observed. However, despite high affinity for tau in vitro, brain retention in MCI/AD and PSP patients was low, and there was no evidence of specific signals in vivo that corresponded to tau. Although it is still unclear why clinical translation of the radiotracer was unsuccessful, we nevertheless conclude that further development of [18F]NML as a tau PET imaging agent is not warranted at this time.
Collapse
Affiliation(s)
- Vasko Kramer
- Center for Nuclear Medicine & PET/CT Positronmed, Providencia, 7501068 Santiago, Chile
- Positronpharma SA, Providencia, 7500921 Santiago Chile
| | - Allen F. Brooks
- Department of Radiology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Arlette Haeger
- Center for Nuclear Medicine & PET/CT Positronmed, Providencia, 7501068 Santiago, Chile
| | - Rodrigo O. Kuljis
- Center for Nuclear Medicine & PET/CT Positronmed, Providencia, 7501068 Santiago, Chile
| | - Waqas Rafique
- realomics SRI, Kjemisk Institutt, Universitetet i Oslo, Sem Sælands vei 26, Kjemibygningen, 0371 Oslo, Norway
| | - Robert A. Koeppe
- Department of Radiology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - David M. Raffel
- Department of Radiology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Kirk A. Frey
- Department of Radiology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Horacio Amaral
- Center for Nuclear Medicine & PET/CT Positronmed, Providencia, 7501068 Santiago, Chile
- Positronpharma SA, Providencia, 7500921 Santiago Chile
| | - Peter J. H. Scott
- Department of Radiology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Patrick J. Riss
- realomics SRI, Kjemisk Institutt, Universitetet i Oslo, Sem Sælands vei 26, Kjemibygningen, 0371 Oslo, Norway
- Klinik for Kirurgi og Nevrofag, Oslo Universitets Sykehus HF−Rikshospitalet, Postboks
4950 Nydalen, 0424 Oslo, Norway
- Norsk Medisinsk Syklotronsenter AS, Gaustad, Postboks
4950 Nydalen, 0424 Oslo, Norway
| |
Collapse
|
10
|
Drake LR, Pham JM, Desmond TJ, Mossine AV, Lee SJ, Kilbourn MR, Koeppe RA, Brooks AF, Scott PJ. Identification of AV-1451 as a Weak, Nonselective Inhibitor of Monoamine Oxidase. ACS Chem Neurosci 2019; 10:3839-3846. [PMID: 31339297 DOI: 10.1021/acschemneuro.9b00326] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
[18F]AV-1451 is one of the most widely used radiotracers for positron emission tomography (PET) imaging of tau protein aggregates in neurodegenerative disorders. While the radiotracer binds with high affinity to tau neurofibrillary tangles, extensive clinical studies have simultaneously revealed off-target tracer accumulation in areas of low tau burden such as the basal ganglia and choroid plexus. Though there are a number of possible reasons for this accumulation, it is often attributed to off-target binding to monoamine oxidase (MAO). In this paper, we investigate the association between [18F]AV-1451 and MAO through (i) enzyme inhibition assays, (ii) autoradiography with postmortem tissue samples, and (iii) nonhuman primate PET imaging. We confirm that [18F]AV-1451 is a weak inhibitor of MAO-A and -B and that MAO inhibitors can alter binding of [18F]AV-1451 in autoradiography and in vivo PET imaging.
Collapse
Affiliation(s)
- Lindsey R. Drake
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jonathan M. Pham
- Department of Radiology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Timothy J. Desmond
- Department of Radiology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Andrew V. Mossine
- Department of Radiology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - So Jeong Lee
- Department of Radiology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Michael R. Kilbourn
- Department of Radiology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Robert A. Koeppe
- Department of Radiology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Allen F. Brooks
- Department of Radiology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Peter J.H. Scott
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Radiology, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
11
|
Dahl K, Garcia A, Stephenson NA, Vasdev N. "In-loop" 18 F-fluorination: A proof-of-concept study. J Labelled Comp Radiopharm 2019; 62:292-297. [PMID: 31083778 DOI: 10.1002/jlcr.3751] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 05/07/2019] [Accepted: 05/08/2019] [Indexed: 02/04/2023]
Abstract
There is a great demand to develop more cost-efficient and robust manufacturing processes for fluorine-18 (18 F) labelled compounds and radiopharmaceuticals. Herein, we present to our knowledge the first radiofluorination "in-loop," where [18 F]triflyl fluoride was used as the labelling agent. Initial development of the "in-loop" [18 F]fluorination method was optimized by reacting [18 F]triflyl fluoride with 1,4-dinitrobenzene to form [18 F]1-fluoro-4-nitrobenzene. This methodology was then applied for the syntheses of two well-known radiopharmaceuticals, namely, [18 F]T807 for imaging of tau protein and [18 F]FEPPA for imaging the translocator protein 18 KDa. Both radiotracers were synthesized and formulated using an automated radiosynthesis module with nondecay corrected radiochemical yields of 27% and 29% (relative [18 F]F- ), respectively. The overall syntheses times for [18 F]T807 and [18 F]FEPPA were 65 and 55 minutes, respectively. In these cases, our "in-loop" radiofluorination methodology enabled us to obtain equal or superior yields compared with conventional reactions in a vial. The radiochemical purities were more than 99%, and the molar activities were more than 350 GBq/μmol at the end-of-synthesis for both radiotracers. This novel method is simple, efficient, and allows for a reliable production of radiofluorinated compounds and radiopharmaceuticals.
Collapse
Affiliation(s)
- Kenneth Dahl
- Azrieli Centre for Neuro-Radiochemistry, Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Armando Garcia
- Azrieli Centre for Neuro-Radiochemistry, Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Nickeisha A Stephenson
- Azrieli Centre for Neuro-Radiochemistry, Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Department of Chemistry, University of the West Indies, Mona, Kingston, Jamaica.,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Neil Vasdev
- Azrieli Centre for Neuro-Radiochemistry, Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
12
|
Matesic L, Greguric I, Pascali G. Microfluidic Radiosynthesis of the Muscarinic M2 Imaging Agent [18F]FP-TZTP. Aust J Chem 2018. [DOI: 10.1071/ch18266] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
3-(4-(3-[18F]Fluoropropylthio)-1,2,5-thiadiazol-3-yl)-1-methyl-1,2,5,6-tetrahydropyridine ([18F]FP-TZTP) is a selective 18F-radiotracer for the muscarinic acetylcholine receptor subtype M2, which can be used to perform positron emission tomography (PET) scans on patients with neurological disorders such as Alzheimer’s disease. [18F]FP-TZTP was produced using continuous-flow microfluidics, a technique that uses reduced amounts of chemical reagents, shorter reaction times and in general, results in higher radiochemical yields compared to currently used techniques. The optimal 18F-radiolabelling conditions consisted of a total flow rate of 40 µL min−1 and 190°C, which produced [18F]FP-TZTP in 26 ± 10 % radiochemical yield with a molar activity of 182 ± 65 GBq µmol−1 and >99 % radiochemical purity.
Collapse
|