1
|
Radzina M, Saule L, Mamis E, Pajuste E, Koester U, Cocolios TE, Proskurins J, Kalnina P, Zabolockis RJ, Palskis K, Talip Z, Jensen M, Duchemin C, Baatout S, Leufgen K, Stora T. Novel radionuclides: demand, production and distribution for translational research in Europe. EJNMMI Radiopharm Chem 2024; 9:85. [PMID: 39692851 DOI: 10.1186/s41181-024-00318-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 11/28/2024] [Indexed: 12/19/2024] Open
Abstract
BACKGROUND In the field of medical and scientific research, radionuclides are used to investigate various physiological and pathological processes. PRISMAP - the European medical radionuclide programme was created to bring together production facilities including intense neutron sources, an isotope mass separation facility, high-power accelerators, biomedical research institutes, and hospitals to support medical research. The aim of this article is to introduce readers with the current status of innovative radionuclides in Europe. MAIN BODY A survey was created targeting the latest trends mainly focused on the demand, the production and the distribution of non-routinely used medical radionuclides for use in research, and for pre-clinical and clinical trials. This survey has been disseminated through the PRISMAP community. 16 of 104 respondents were working in the field of radionuclide production. The data found common aspects from all producer-facility respondents: the biggest challenge for the producers is the availability of target materials, which goes hand-in-hand with their purity/enrichment grade. The results show that there are sufficient national or international distribution routes and methods established, although having reported challenges due to legislation constraints, especially for novel radionuclides. CONCLUSIONS Thanks to a questionnaire distributed by the PRISMAP consortium, the current status in radionuclides production was identified. Understanding the current status of radionuclide production is essential for assessing the continent's capabilities and addressing the burgeoning demands for cutting-edge medical radionuclides.
Collapse
Affiliation(s)
- Maija Radzina
- University of Latvia, Riga, Latvia
- CERN, Geneva, Switzerland
- Riga Stradins University, Riga, Latvia
| | - Laura Saule
- University of Latvia, Riga, Latvia.
- Riga Stradins University, Riga, Latvia.
| | - Edgars Mamis
- University of Latvia, Riga, Latvia
- CERN, Geneva, Switzerland
| | | | | | | | | | | | | | - Kristaps Palskis
- CERN, Geneva, Switzerland
- Riga Technical university, Riga, Latvia
| | - Zeynep Talip
- Paul Scherrer Institute, Villigen-PSI, Switzerland
| | - Mikael Jensen
- Technical University of Denmark, Kongens Lyngby, Denmark
| | | | - Sarah Baatout
- Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| | | | | |
Collapse
|
2
|
Amin MN, Rahman AKMR, Zubair MA, Rashed Nizam QM. Quantitative assessment of 167Tm isotope production: experimental data analysis and model validation. Radiol Phys Technol 2024:10.1007/s12194-024-00862-2. [PMID: 39644438 DOI: 10.1007/s12194-024-00862-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 11/09/2024] [Accepted: 11/18/2024] [Indexed: 12/09/2024]
Abstract
167Tm is an effective radioisotope for use in theragnostic purposes. This study aims to find the best alternative routes for producing 167Tm for appropriate cancer therapy and diagnostics. In this study, we comprehensively analyzed production cross-sections of 167Tm and investigated the behavior of these reactions using six different level density models and refined optical model potential (OMP) parameters with the nuclear reaction code TALYS 1.96. Using this code, we estimated the specific activity and production yield for promising production routes. For characterizing the 167Tm isotopes, the energy distribution of 167Tm was also analyzed for each prominent reaction by particle and heavy ion transport code system (PHITS). The maximum specific activity was estimated as 52.6-75.2 GBq/g with a production yield of 20.2-32.7 GBq/mAh for the route 169Tm(p,x)167Tm. The experimental value was reproduced with good agreement by TALYS adjusting different OMP parameters. 169Tm(p,x)167Tm is the alternative route for producing 167Tm, for which TALYS can reproduce the result more accurately.
Collapse
Affiliation(s)
- Md Nurul Amin
- Jamal Nazrul Islam Research Centre for Mathematical and Physical Sciences, University of Chittagong, Chattogram, 4331, Bangladesh
| | - A K M Rezaur Rahman
- Department of Physics, University of Chittagong, Chattogram, 4331, Bangladesh
| | - Muhammad Asif Zubair
- Department of Physics, University of Chittagong, Chattogram, 4331, Bangladesh
- Nuclear and Astrophysics Department, Mississippi State University, Mississippi State, MS, 39762, USA
| | | |
Collapse
|
3
|
Nazar AK, Basu S. Radiolabeled Somatostatin Analogs for Cancer Imaging. Semin Nucl Med 2024; 54:914-940. [PMID: 39122608 DOI: 10.1053/j.semnuclmed.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 07/01/2024] [Indexed: 08/12/2024]
Abstract
Somatostatin receptors (SSTR) are expressed by many tumours especially those related to neuro-endocrine origin and molecular functional imaging of SSTR expression using radiolabelled somatostatin analogs have revolutionized imaging of patients with these group of malignancies. Coming a long way from the first radiolabelled somatostatin analog 123I-Tyr-3-octreotide, there has been significant developments in terms of radionuclides used, the ligands and somatostatin derivatives. 111In-Pentetreotide extensively employed for imaging NETs at the beginning has now been replaced by 68Ga-SSA based PET-CT. SSA-PET/CT performs superior to conventional imaging modalities and has evolved in the mainframe for NET imaging. The advantages were multiple: (i) superior spatial resolution of PET versus SPECT, (ii) quantitative capabilities of PET aiding in disease activity and treatment response monitoring with better precision, (iii) shorter scan time and (iv) less patient exposure to radiation. The modality is indicated for staging, detecting the primary in CUP-NETs, restaging, treatment planning (along with FDG: the concept of dual-tracer PET-CT) as well as treatment response evaluation and follow-up of NETs. SSA PET/CT has also been incorporated in the guidelines for imaging of Pheochromocytoma-Paraganglioma, Medullary carcinoma thyroid, Meningioma and Tumor induced osteomalacia. At present, there is rising interest on (a) 18F-labelled SSA, (b) 64Cu-labelled SSA, and (c) somatostatin antagonists. 18F offers excellent imaging properties, 64Cu makes delayed imaging feasible which has implications in dosimetry and SSTR antagonists bind with the SST receptors with high affinity and specificity, providing high contrast images with less background, which can be translated to theranostics effectively. SSTR have been demonstrated in non-neuroendocrine tumours as well in the peer-reviewed literature, with studies demonstrating the potential of SSA PET/CT in Neuroblastoma, Nasopharyngeal carcinoma, carcinoma prostate (neuroendocrine differentiation) and lymphoma. This review will focus on the currently available SSAs and their history, different SPECT/PET agents, SSTR antagonists, comparison between the various imaging tracers, and their utility in both neuroendocrine and non-neuroendocrine tumors.
Collapse
Affiliation(s)
- Aamir K Nazar
- Radiation Medicine Centre, Bhabha Atomic Research Centre, Tata Memorial Centre Annexe, Mumbai; Homi Bhabha National Institute, Mumbai
| | - Sandip Basu
- Radiation Medicine Centre, Bhabha Atomic Research Centre, Tata Memorial Centre Annexe, Mumbai; Homi Bhabha National Institute, Mumbai.
| |
Collapse
|
4
|
Edelmann MR, Sladojevich F, Husbands SM, Otteneder MB, Blagbrough IS. A Brief Review of Radiolabelling Nucleic Acid-Based Molecules for Tracking and Monitoring. J Labelled Comp Radiopharm 2024; 67:410-424. [PMID: 39543953 DOI: 10.1002/jlcr.4126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 10/08/2024] [Accepted: 10/21/2024] [Indexed: 11/17/2024]
Abstract
The rise of nucleic acid-based therapeutics continues apace. At the same time, the need for radiolabelled oligonucleotides for determination of spatial distribution is increasing. Complex molecular structures with mostly multiple charges and low solubility in organic solvents increase the challenge of integrating radionuclides. In preclinical research, it is important to understand the fate of new drug candidates in biodistribution studies, target binding or biotransformation studies. Depending on a specific question, the selection of a respective radiolabelling strategy is crucial. Radiometals for molecular imaging with positron emission tomography or single-photon computed tomography generally require an attached chelating agent for stable complexation of the metal with the oligonucleotide, whereas labelling using carbon-11/-14 or tritium allows incorporation of the radioisotope into the native structure without altering it. Moreover, the suitability of direct radiolabelling of the oligonucleotide of interest or indirect radiolabelling, for example, by a two-step pretargeting approach, for the study design requires consideration. This review focuses on the challenges of radiolabelling nucleic acid-based molecules with beta-plus, gamma and beta-minus emitters and their use for tracking and monitoring.
Collapse
Affiliation(s)
- Martin R Edelmann
- Roche Pharma Research and Early Development, Roche Innovation Centre Basel, Therapeutic Modalities, Small Molecule Research, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Filippo Sladojevich
- Roche Pharma Research and Early Development, Roche Innovation Centre Basel, Therapeutic Modalities, Small Molecule Research, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | | | - Michael B Otteneder
- Roche Pharma Research and Early Development, Roche Innovation Centre Basel, Pharmaceutical Sciences, In Vivo Sciences, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | | |
Collapse
|
5
|
Ioannidis I, Lefkaritis G, Georgiades SN, Pashalidis I, Kontoghiorghes GJ. Towards Clinical Development of Scandium Radioisotope Complexes for Use in Nuclear Medicine: Encouraging Prospects with the Chelator 1,4,7,10-Tetraazacyclododecane-1,4,7,10-tetraacetic Acid (DOTA) and Its Analogues. Int J Mol Sci 2024; 25:5954. [PMID: 38892142 PMCID: PMC11173192 DOI: 10.3390/ijms25115954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/15/2024] [Accepted: 05/26/2024] [Indexed: 06/21/2024] Open
Abstract
Scandium (Sc) isotopes have recently attracted significant attention in the search for new radionuclides with potential uses in personalized medicine, especially in the treatment of specific cancer patient categories. In particular, Sc-43 and Sc-44, as positron emitters with a satisfactory half-life (3.9 and 4.0 h, respectively), are ideal for cancer diagnosis via Positron Emission Tomography (PET). On the other hand, Sc-47, as an emitter of beta particles and low gamma radiation, may be used as a therapeutic radionuclide, which also allows Single-Photon Emission Computed Tomography (SPECT) imaging. As these scandium isotopes follow the same biological pathway and chemical reactivity, they appear to fit perfectly into the "theranostic pair" concept. A step-by-step description, initiating from the moment of scandium isotope production and leading up to their preclinical and clinical trial applications, is presented. Recent developments related to the nuclear reactions selected and employed to produce the radionuclides Sc-43, Sc-44, and Sc-47, the chemical processing of these isotopes and the main target recovery methods are also included. Furthermore, the radiolabeling of the leading chelator, 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA), and its structural analogues with scandium is also discussed and the advantages and disadvantages of scandium complexation are evaluated. Finally, a review of the preclinical studies and clinical trials involving scandium, as well as future challenges for its clinical uses and applications, are presented.
Collapse
Affiliation(s)
- Ioannis Ioannidis
- Department of Chemistry, University of Cyprus, 2109 Nicosia, Cyprus; (I.I.); (G.L.); (S.N.G.); (I.P.)
| | - George Lefkaritis
- Department of Chemistry, University of Cyprus, 2109 Nicosia, Cyprus; (I.I.); (G.L.); (S.N.G.); (I.P.)
| | - Savvas N. Georgiades
- Department of Chemistry, University of Cyprus, 2109 Nicosia, Cyprus; (I.I.); (G.L.); (S.N.G.); (I.P.)
| | - Ioannis Pashalidis
- Department of Chemistry, University of Cyprus, 2109 Nicosia, Cyprus; (I.I.); (G.L.); (S.N.G.); (I.P.)
| | - George J. Kontoghiorghes
- Postgraduate Research Institute of Science, Technology, Environment and Medicine, 3021 Limassol, Cyprus
| |
Collapse
|
6
|
Whetter JN, Śmiłowicz D, Boros E. Exploring Aqueous Coordination Chemistry of Highly Lewis Acidic Metals with Emerging Isotopes for Nuclear Medicine. Acc Chem Res 2024; 57:933-944. [PMID: 38501206 DOI: 10.1021/acs.accounts.3c00781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Nuclear medicine harnesses radioisotopes for the diagnosis and treatment of disease. While the isotopes 99mTc and 111In have enabled the clinical diagnosis of millions of patients over the past 3 decades, more recent clinical translation of numerous 68Ga/177Lu-based radiopharmaceuticals for diagnostic imaging and therapy underscores the clinical utility of metal-based radiopharmaceuticals in mainstream cancer treatment. In addition to such established radionuclides, advancements in radioisotope production have enabled the production of radionuclides with a broad range of half-lives and emission properties of interest for nuclear medicine. Chemical means to form kinetically inert, in vivo-compatible species that can be modified with disease-targeting vectors is imperative. This presents a challenge for radiosiotopes of elements where the aqueous chemistry is still underdeveloped and poorly understood. Here, we discuss our efforts to date in exploring the aqueous, radioactive coordination chemistry of highly Lewis acidic metal ions and how our discoveries apply to the diagnosis and treatment of cancer in preclinical models of disease. The scope of this Account includes approaches to aqueous coordination of to-date understudied highly Lewis acidic metal ions with radioisotopes of emerging interest and the modulation of well-understood coordination environments of radio-coordination complexes to induce metal-catalyzed reactivity for separation and pro-drug applications.First, we discuss the development of seven-coordinate, small-cavity macrocyclic chelator platform mpatcn/picaga as an exemplary case study, which forms robust complexes with 44Sc/47Sc isotopes. Due to the high chemical hardness and pronounced Lewis acidity of the Sc3+ ion, the displacement of ternary ligand H2O by 18/natF- can be achieved to form an inert Sc-18/natF bond. Corresponding coordination complex natSc-18F is in vivo compatible and forms a theranostic tetrad with corresponding 44Sc/47Sc, 177Lu complexes all exhibiting homologous biodistribution profiles. Another exceptionally hard, highly Lewis acidic ion with underdeveloped aqueous chemistry and emerging interest in nuclear medicine is 45Ti4+. To develop de novo approaches to the mononuclear chelation of this ion under aqueous conditions, we employed a fragment-based bidentate ligand screening approach which identified two leads. The screen successfully predicted the formation of [45Ti][Ti(TREN-CAM)], a Ti-triscatechol complex that exhibits remarkable in vivo stability. Furthermore, the fragment-based screen also identified approaches that enabled solid-phase separation of Ti4+ and Sc3+ of interest in streamlining the isotope production of 45Ti and accessing new ways to separate 44Ti/44Sc for the development of a long-lived generator system. In addition to establishing the inert chelation of Ti4+ and Sc3+, we introduce controlled, metal-induced reactivity of corresponding coordination complexes on macroscopic and radiotracer scales. Metal-mediated autolytic amide bond cleavage (MMAAC) enables the temperature-dependent release of high-molar-activity, ready-to-inject radiopharmaceuticals; cleavage is selectively triggered by coordinated trivalent Lewis acid nat/68Ga3+ or Sc3+. Following the scope of reactivity and mechanistic studies, we validated MMAAC for the synthesis of high-molar-activity radiopharmaceuticals to image molecular targets with low expression and metal-mediated prodrug hydrolysis in vivo.This Account summarizes how developing the aqueous coordination chemistry and tuning the chemical reactivity of metal ions with high Lewis acidity at the macroscopic and tracer scales directly apply to the radiopharmaceutical synthesis with clinical potential.
Collapse
Affiliation(s)
- Jennifer N Whetter
- Department of Chemistry, University of Wisconsin─Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Dariusz Śmiłowicz
- Department of Chemistry, University of Wisconsin─Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Eszter Boros
- Department of Chemistry, University of Wisconsin─Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
7
|
Kilian K, Pyrzyńska K. Scandium Radioisotopes-Toward New Targets and Imaging Modalities. Molecules 2023; 28:7668. [PMID: 38005390 PMCID: PMC10675654 DOI: 10.3390/molecules28227668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/15/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
The concept of theranostics uses radioisotopes of the same or chemically similar elements to label biological ligands in a way that allows the use of diagnostic and therapeutic radiation for a combined diagnosis and treatment regimen. For scandium, radioisotopes -43 and -44 can be used as diagnostic markers, while radioisotope scandium-47 can be used in the same configuration for targeted therapy. This work presents the latest achievements in the production and processing of radioisotopes and briefly characterizes solutions aimed at increasing the availability of these radioisotopes for research and clinical practice.
Collapse
Affiliation(s)
- Krzysztof Kilian
- Heavy Ion Laboratory, University of Warsaw, Pasteura 5a, 02-093 Warsaw, Poland
| | - Krystyna Pyrzyńska
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland;
| |
Collapse
|
8
|
Schmidt CE, Gajecki L, Deri MA, Sanders VA. Current State of 44Ti/ 44Sc Radionuclide Generator Systems and Separation Chemistry. Curr Radiopharm 2023; 16:95-106. [PMID: 36372922 PMCID: PMC10375575 DOI: 10.2174/1874471016666221111154424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/11/2022] [Accepted: 10/18/2022] [Indexed: 11/13/2022]
Abstract
In recent years, there has been an increased interest in 44Ti/44Sc generators as an onsite source of 44Sc for medical applications without needing a proximal cyclotron. The relatively short half-life (3.97 hours) and high positron branching ratio (94.3%) of 44Sc make it a viable candidate for positron emission tomography (PET) imaging. This review discusses current 44Ti/44Sc generator designs, focusing on their chemistry, drawbacks, post-elution processing, and relevant preclinical studies of the 44Sc for potential PET radiopharmaceuticals.
Collapse
Affiliation(s)
- Christine E. Schmidt
- Ph.D. Program in Chemistry, Graduate Center of the City University of New York, New York, NY 10016
- Department of Chemistry, Lehman College of the City University of New York, New York, New York 10468
| | - Leah Gajecki
- Collider Accelerator Department, Brookhaven National Laboratory, Upton, NY 11973 USA
| | - Melissa A. Deri
- Ph.D. Program in Chemistry, Graduate Center of the City University of New York, New York, NY 10016
- Department of Chemistry, Lehman College of the City University of New York, New York, New York 10468
| | - Vanessa A. Sanders
- Collider Accelerator Department, Brookhaven National Laboratory, Upton, NY 11973 USA
| |
Collapse
|
9
|
Cyclotron Production of Gallium-68 Radiopharmaceuticals Using the 68Zn(p,n) 68Ga Reaction and Their Regulatory Aspects. Pharmaceutics 2022; 15:pharmaceutics15010070. [PMID: 36678699 PMCID: PMC9867404 DOI: 10.3390/pharmaceutics15010070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/10/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Designing and implementing various radionuclide production methods guarantees a sustainable supply, which is important for medical use. The use of medical cyclotrons for radiometal production can increase the availability of gallium-68 (68Ga) radiopharmaceuticals. Although generators have greatly influenced the demand for 68Ga radiopharmaceuticals, the use of medical cyclotrons is currently being explored. The resulting 68Ga production is several times higher than obtained from a generator. Moreover, the use of solid targets yields end of purification and end of synthesis (EOS) of up to 194 GBq and 72 GBq, respectively. Furthermore, experiments employing liquid targets have provided promising results, with an EOS of 3 GBq for [68Ga]Ga-PSMA-11. However, some processes can be further optimized, specifically purification, to achieve high 68Ga recovery and apparent molar activity. In the future, 68Ga will probably remain one of the most in-demand radionuclides; however, careful consideration is needed regarding how to reduce the production costs. Thus, this review aimed to discuss the production of 68Ga radiopharmaceuticals using Advanced Cyclotron Systems, Inc. (ACSI, Richmond, BC, Canada) Richmond, Canada and GE Healthcare, Wisconsin, USA cyclotrons, its related factors, and regulatory concerns.
Collapse
|
10
|
Petrov SA, Yusubov MS, Beloglazkina EK, Nenajdenko VG. Synthesis of Radioiodinated Compounds. Classical Approaches and Achievements of Recent Years. Int J Mol Sci 2022; 23:13789. [PMID: 36430267 PMCID: PMC9698107 DOI: 10.3390/ijms232213789] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 10/30/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022] Open
Abstract
This review demonstrates the progress in the synthesis of radioiodinated compounds over the past decade. The possibilities and limitations of radiopharmaceuticals with different iodine isotopes, as well as the synthesis of low and high molecular weight compounds containing radioiodine, are discussed. An analysis of synthesis strategies, substrate frameworks, isolation methods, and metabolic stability, and the possibility of industrial production of radioiodinated organic derivatives which can find applications in the synthesis of drugs and diagnostics are presented.
Collapse
Affiliation(s)
- Stanislav A. Petrov
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1-3, 119991 Moscow, Russia
| | - Mekhman S. Yusubov
- Research School of Chemistry and Applied Biomedical Sciences, The Tomsk Polytechnic University, 634050 Tomsk, Russia
| | - Elena K. Beloglazkina
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1-3, 119991 Moscow, Russia
| | - Valentine G. Nenajdenko
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1-3, 119991 Moscow, Russia
| |
Collapse
|
11
|
Dam JH, Langkjær N, Baun C, Olsen BB, Nielsen AY, Thisgaard H. Preparation and Evaluation of [18F]AlF-NOTA-NOC for PET Imaging of Neuroendocrine Tumors: Comparison to [68Ga]Ga-DOTA/NOTA-NOC. Molecules 2022; 27:molecules27206818. [PMID: 36296411 PMCID: PMC9609173 DOI: 10.3390/molecules27206818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 10/07/2022] [Accepted: 10/08/2022] [Indexed: 11/16/2022] Open
Abstract
Background: The somatostatin receptors 1–5 are overexpressed on neuroendocrine neoplasms and, as such, represent a favorable target for molecular imaging. This study investigates the potential of [18F]AlF-NOTA-[1-Nal3]-Octreotide and compares it in vivo to DOTA- and NOTA-[1-Nal3]-Octreotide radiolabeled with gallium-68. Methods: DOTA- and NOTA-NOC were radiolabeled with gallium-68 and NOTA-NOC with [18F]AlF. Biodistributions of the three radioligands were evaluated in AR42J xenografted mice at 1 h p.i and for [18F]AlF at 3 h p.i. Preclinical PET/CT was applied to confirm the general uptake pattern. Results: Gallium-68 was incorporated into DOTA- and NOTA-NOC in yields and radiochemical purities greater than 96.5%. NOTA-NOC was radiolabeled with [18F]AlF in yields of 38 ± 8% and radiochemical purity above 99% after purification. The biodistribution in tumor-bearing mice showed a high uptake in tumors of 26.4 ± 10.8 %ID/g for [68Ga]Ga-DOTA-NOC and 25.7 ± 5.8 %ID/g for [68Ga]Ga-NOTA-NOC. Additionally, [18F]AlF-NOTA-NOC exhibited a tumor uptake of 37.3 ± 10.5 %ID/g for [18F]AlF-NOTA-NOC, which further increased to 42.1 ± 5.3 %ID/g at 3 h p.i. Conclusions: The high tumor uptake of all radioligands was observed. However, [18F]AlF-NOTA-NOC surpassed the other clinically well-established radiotracers in vivo, especially at 3 h p.i. The tumor-to-blood and -liver ratios increased significantly over three hours for [18F]AlF-NOTA-NOC, making it possible to detect liver metastases. Therefore, [18F]AlF demonstrates promise as a surrogate pseudo-radiometal to gallium-68.
Collapse
Affiliation(s)
- Johan Hygum Dam
- Department of Nuclear Medicine, Odense University Hospital, Kløvervænget 47, DK-5000 Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, J.B. Winsløws Vej 19, DK-5000 Odense, Denmark
- Correspondence:
| | - Niels Langkjær
- Department of Nuclear Medicine, Odense University Hospital, Kløvervænget 47, DK-5000 Odense, Denmark
| | - Christina Baun
- Department of Nuclear Medicine, Odense University Hospital, Kløvervænget 47, DK-5000 Odense, Denmark
| | - Birgitte Brinkmann Olsen
- Department of Surgical Pathology, Zealand University Hospital, Sygehusvej 10, DK-4000 Roskilde, Denmark
| | - Aaraby Yoheswaran Nielsen
- Department of Nuclear Medicine, Odense University Hospital, Kløvervænget 47, DK-5000 Odense, Denmark
| | - Helge Thisgaard
- Department of Nuclear Medicine, Odense University Hospital, Kløvervænget 47, DK-5000 Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, J.B. Winsløws Vej 19, DK-5000 Odense, Denmark
| |
Collapse
|
12
|
Production Review of Accelerator-Based Medical Isotopes. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27165294. [PMID: 36014532 PMCID: PMC9415084 DOI: 10.3390/molecules27165294] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 08/15/2022] [Accepted: 08/16/2022] [Indexed: 11/17/2022]
Abstract
The production of reactor-based medical isotopes is fragile, which has meant supply shortages from time to time. This paper reviews alternative production methods in the form of cyclotrons, linear accelerators and neutron generators. Finally, the status of the production of medical isotopes in China is described.
Collapse
|
13
|
Bzowski P, Borys D, Gorczewski K, Chmura A, Daszewska K, Gorczewska I, Kastelik-Hryniewiecka A, Szydło M, d’Amico A, Sokół M. Efficiency of 124I radioisotope production from natural and enriched tellurium dioxide using 124Te(p,xn) 124I reaction. EJNMMI Phys 2022; 9:41. [PMID: 35666325 PMCID: PMC9170869 DOI: 10.1186/s40658-022-00471-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 05/19/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND 124I Iodine (T[Formula: see text] = 4.18 d) is the only long-life positron emitter radioisotope of iodine that may be used for both imaging and therapy as well as for 131I dosimetry. Its physical characteristics permits taking advantages of the higher Positron Emission Tomography (PET) image quality, whereas the availability of new molecules to be targeted with 124I makes it a novel innovative radiotracer probe for a specific molecular targeting. RESULTS In this study Monte Carlo and SRIM/TRIM modelling was applied to predict the nuclear parameters of the 124I production process in a small medical cyclotron IBA 18/9 Cyclone. The simulation production yields for 124I and the polluting radioisotopes were calculated for the natural and enriched 124TeO2 + Al2O3 solid targets irradiated with 14.8 MeV protons. The proton beam was degraded energetically from 18 MeV with 0.2 mm Havar foil. The 124Te(p,xn)124I reactions were taken into account in the simulations. The optimal thickness of the target material was calculated using the SRIM/TRIM and Geant4 codes. The results of the simulations were compared with the experimental data obtained for the natural TeO2 +Al2O3 target. The dry distillation technique of the 124-iodine was applied. CONCLUSIONS The experimental efficiency for the natural Te target was better than 41% with an average thick target (>0.8 mm) yield of 1.32 MBq/μAh. Joining the Monte Carlo and experimental approaches makes it possible to optimize the methodology for the 124I production from the expensive Te enriched targets.
Collapse
Affiliation(s)
- Paweł Bzowski
- Department of Nuclear Medicine and Endocrine Oncology, PET Diagnostics Unit, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, Gliwice, Poland
- Department of Systems Biology and Engineering, Silesian University of Technology, Akademicka 16, 44-100 Gliwice, Poland
- Biotechnology Center, Silesian University of Technology, Krzywoustego 8, 44-100 Gliwice, Poland
| | - Damian Borys
- Department of Nuclear Medicine and Endocrine Oncology, PET Diagnostics Unit, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, Gliwice, Poland
- Department of Systems Biology and Engineering, Silesian University of Technology, Akademicka 16, 44-100 Gliwice, Poland
- Biotechnology Center, Silesian University of Technology, Krzywoustego 8, 44-100 Gliwice, Poland
| | - Kamil Gorczewski
- Department of Nuclear Medicine and Endocrine Oncology, PET Diagnostics Unit, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, Gliwice, Poland
| | - Agnieszka Chmura
- Radiopharmacy and Preclinical PET Imaging Unit, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, Gliwice, Poland
| | - Kinga Daszewska
- Radiopharmacy and Preclinical PET Imaging Unit, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, Gliwice, Poland
| | - Izabela Gorczewska
- Department of Nuclear Medicine and Endocrine Oncology, PET Diagnostics Unit, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, Gliwice, Poland
| | - Anna Kastelik-Hryniewiecka
- Radiopharmacy and Preclinical PET Imaging Unit, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, Gliwice, Poland
| | - Marcin Szydło
- Radiopharmacy and Preclinical PET Imaging Unit, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, Gliwice, Poland
| | - Andrea d’Amico
- Department of Nuclear Medicine and Endocrine Oncology, PET Diagnostics Unit, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, Gliwice, Poland
| | - Maria Sokół
- Department of Medical Physics, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, Gliwice, Poland
| |
Collapse
|
14
|
Nuclear data for light charged particle induced production of emerging medical radionuclides. RADIOCHIM ACTA 2022. [DOI: 10.1515/ract-2022-0011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Abstract
Whatever the radionuclide to be used in nuclear medicine, it is essential to know the expected yield during the production process, but also of all the possible radionuclidic impurities coproduced, that can have an impact on the product final quality, as well as in the related waste management. The availability of the majority of emerging radioisotopes, including the theranostic ones or pairs, is mainly limited by the fact that, for most of them, the optimal production route still needs to be strengthened if not defined in some cases. The aim of this work is to present a review on the charged particle induced nuclear cross sections to produce some emerging radionuclides for medical applications to show that all types of projectiles should be considered in the quest of producing medical radionuclides. An accurate analysis of the production routes is presented for some radionuclides (67Cu, 47Sc, 89Zr, 103Pd, 186gRe, 97Ru, 211At) chosen as examples to highlight (i) how the quality of the final product strongly depends on the chosen target/projectile/energy parameters set, (ii) how deuteron production routes may sometimes be more effective than the proton ones or lead to a different impurity profile and (iii) how α-particle beams may allow to bypass the limitations occurring when using Z = 1 beams. An overview of possible advantages and drawbacks of the cited production routes and of potential cross sections that still need to be measured, is also reported.
Collapse
|
15
|
Roy I, Krishnan S, Kabashin AV, Zavestovskaya IN, Prasad PN. Transforming Nuclear Medicine with Nanoradiopharmaceuticals. ACS NANO 2022; 16:5036-5061. [PMID: 35294165 DOI: 10.1021/acsnano.1c10550] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Nuclear medicine is expected to make major advances in cancer diagnosis and therapy; tumor-targeted radiopharmaceuticals preferentially eradicate tumors while causing minimal damage to healthy tissues. The current scope of nuclear medicine can be significantly expanded by integration with nanomedicine, which utilizes nanoparticles for cancer diagnosis and therapy by capitalizing on the increased surface area-to-volume ratio, the passive/active targeting ability and high loading capacity, the greater interaction cross section with biological tissues, the rich surface properties of nanomaterials, the facile decoration of nanomaterials with a plethora of functionalities, and the potential for multiplexing several functionalities within one construct. This review provides a comprehensive discussion of nuclear nanomedicine using tumor-targeted nanoparticles for cancer radiation therapy with either pre-embedded radionuclides or nonradioactive materials which can be extrinsically triggered using various external nuclear particle sources to produce in situ radioactivity. In addition, it describes the prospect of combining nuclear nanomedicine with other modalities to enable synergistically enhanced combination therapies. The review also discusses advances in the fabrication of radionuclides as well as describes laser ablation technologies for producing nanoradiopharmaceuticals, which combine the ease of production with exceptional purity and rapid biodegradability, along with additional imaging or therapeutic functionalities. From a practical standpoint, these attributes of nanoradiopharmaceuticals may provide distinct advantages in diagnostic/therapeutic sensitivity and specificity, imaging resolution, and scalability of turnkey platforms. Coupling image-guided targeted radiation therapy with the possibility of in situ activation of nanomaterials as well as combining with other therapeutic modalities using a multifunctional nanoplatform could herald an era of exciting technological and therapeutic advances to radically transform the landscape of nuclear medicine. The review concludes with a discussion of current challenges and presents the authors' views on future opportunities to stimulate further research in this rewarding field of high societal impact.
Collapse
Affiliation(s)
- Indrajit Roy
- Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Sunil Krishnan
- Department of Radiation Oncology, Mayo Clinic Florida, Jacksonville, Florida 32224, United States
| | - Andrei V Kabashin
- Aix Marseille University, CNRS, LP3, Campus de Luminy - Case 917, 13288 Marseille, France
- MEPhI, Institute of Engineering Physics for Biomedicine (PhysBio), 115409 Moscow, Russia
| | - Irina N Zavestovskaya
- MEPhI, Institute of Engineering Physics for Biomedicine (PhysBio), 115409 Moscow, Russia
- Nuclear Physics and Astrophysics Department, LPI of RAS, 119991 Moscow, Russia
| | - Paras N Prasad
- MEPhI, Institute of Engineering Physics for Biomedicine (PhysBio), 115409 Moscow, Russia
- Department of Chemistry and Institute for Lasers, Photonics, and Biophotonics, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| |
Collapse
|
16
|
Bernardes E, Caravan P, van Dam RM, Deuther-Conrad W, Ellis B, Furumoto S, Guillet B, Huang YY, Jia H, Laverman P, Li Z, Liu Z, Lodi F, Miao Y, Perk L, Schirrmacher R, Vercoullie J, Yang H, Yang M, Yang X, Zhang J, Zhang MR, Zhu H. Highlight selection of radiochemistry and radiopharmacy developments by editorial board. EJNMMI Radiopharm Chem 2022; 7:9. [PMID: 35471681 PMCID: PMC9043146 DOI: 10.1186/s41181-022-00162-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 02/15/2022] [Indexed: 11/22/2022] Open
Abstract
Background The Editorial Board of EJNMMI Radiopharmacy and Chemistry releases a biyearly highlight commentary to update the readership on trends in the field of radiopharmaceutical development.
Results This commentary of highlights has resulted in 23 different topics selected by each member of the Editorial Board addressing a variety of aspects ranging from novel radiochemistry to first in man application of novel radiopharmaceuticals and also a contribution in relation to MRI-agents is included. Conclusion Trends in (radio)chemistry and radiopharmacy are highlighted demonstrating the progress in the research field being the scope of EJNMMI Radiopharmacy and Chemistry.
Collapse
Affiliation(s)
| | - Peter Caravan
- Massuchusetts General Hospital, Harvard University, Cambridge, USA
| | | | - Winnie Deuther-Conrad
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Leipzig, Germany. .,Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany.
| | - Beverley Ellis
- Manchester University NHS Foundation Trust, Manchester, UK
| | | | | | - Ya-Yao Huang
- National Taiwan University College of Medicine, Taipei, Taiwan
| | | | | | | | | | | | | | - Lars Perk
- Radboud University Medical Center, Nijmegen, The Netherlands
| | | | | | | | - Min Yang
- Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu, People's Republic of China
| | - Xing Yang
- Peking University First Hospital, Beijing, China
| | | | | | - Hua Zhu
- Peking University Cancer Hospital, Beijing, China
| |
Collapse
|
17
|
Pijeira MSO, Viltres H, Kozempel J, Sakmár M, Vlk M, İlem-Özdemir D, Ekinci M, Srinivasan S, Rajabzadeh AR, Ricci-Junior E, Alencar LMR, Al Qahtani M, Santos-Oliveira R. Radiolabeled nanomaterials for biomedical applications: radiopharmacy in the era of nanotechnology. EJNMMI Radiopharm Chem 2022; 7:8. [PMID: 35467307 PMCID: PMC9038981 DOI: 10.1186/s41181-022-00161-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 04/01/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Recent advances in nanotechnology have offered new hope for cancer detection, prevention, and treatment. Nanomedicine, a term for the application of nanotechnology in medical and health fields, uses nanoparticles for several applications such as imaging, diagnostic, targeted cancer therapy, drug and gene delivery, tissue engineering, and theranostics. RESULTS Here, we overview the current state-of-the-art of radiolabeled nanoparticles for molecular imaging and radionuclide therapy. Nanostructured radiopharmaceuticals of technetium-99m, copper-64, lutetium-177, and radium-223 are discussed within the scope of this review article. CONCLUSION Nanoradiopharmaceuticals may lead to better development of theranostics inspired by ingenious delivery and imaging systems. Cancer nano-theranostics have the potential to lead the way to more specific and individualized cancer treatment.
Collapse
Affiliation(s)
- Martha Sahylí Ortega Pijeira
- Laboratory of Nanoradiopharmaceuticals and Synthesis of Novel Radiopharmaceuticals, Nuclear Engineering Institute, Brazilian Nuclear Energy Commission, Rua Helio de Almeida, 75, Ilha Do Fundão, Rio de Janeiro, RJ, 21941906, Brazil
| | - Herlys Viltres
- School of Engineering Practice and Technology, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L8, Canada
| | - Jan Kozempel
- Department of Nuclear Chemistry, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Břehová 7, 11519, Prague 1, Czech Republic
| | - Michal Sakmár
- Department of Nuclear Chemistry, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Břehová 7, 11519, Prague 1, Czech Republic
| | - Martin Vlk
- Department of Nuclear Chemistry, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Břehová 7, 11519, Prague 1, Czech Republic
| | - Derya İlem-Özdemir
- Department of Radiopharmacy, Faculty of Pharmacy, Ege University, 35040, Bornova, Izmir, Turkey
| | - Meliha Ekinci
- Department of Radiopharmacy, Faculty of Pharmacy, Ege University, 35040, Bornova, Izmir, Turkey
| | - Seshasai Srinivasan
- School of Engineering Practice and Technology, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L8, Canada
| | - Amin Reza Rajabzadeh
- School of Engineering Practice and Technology, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L8, Canada
| | - Eduardo Ricci-Junior
- School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, 21940000, Brazil
| | - Luciana Magalhães Rebelo Alencar
- Laboratory of Biophysics and Nanosystems, Department of Physics, Federal University of Maranhão, Campus Bacanga, São Luís, Maranhão, 65080-805, Brazil
| | - Mohammed Al Qahtani
- Cyclotron and Radiopharmaceuticals Department, King Faisal Specialist Hospital & Research Centre, Riyadh, 11211, Saudi Arabia
| | - Ralph Santos-Oliveira
- Laboratory of Nanoradiopharmaceuticals and Synthesis of Novel Radiopharmaceuticals, Nuclear Engineering Institute, Brazilian Nuclear Energy Commission, Rua Helio de Almeida, 75, Ilha Do Fundão, Rio de Janeiro, RJ, 21941906, Brazil.
- Laboratory of Radiopharmacy and Nanoradiopharmaceuticals, State University of Rio de Janeiro, Rio de Janeiro, 23070200, Brazil.
| |
Collapse
|
18
|
An overview of nuclear data standardisation work for accelerator-based production of medical radionuclides in Pakistan. RADIOCHIM ACTA 2022. [DOI: 10.1515/ract-2022-0012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Abstract
The standardisation of nuclear reaction cross section data is an integral part of optimisation of production routes of medical radionuclides. The production cross sections are available for the reactor and cyclotron produced radionuclides to be used for diagnostics or therapeutic procedures. The types of nuclear data needed, and the sources of their availability are summarized. The method of standardisation of charged-particle data is briefly described. A historical overview of research work in Pakistan in this direction is given. Examples of a few medically important radionuclides, such as 64Cu, 86Y, 89Zr, 103Pd, 186Re, etc., whose data were standardised and evaluated are highlighted. Calculated thick target yields from the recommended data are given. Some new directions in the nuclear data research are outlined.
Collapse
|
19
|
Design, synthesis, and preclinical evaluation of a novel bifunctional macrocyclic chelator for theranostics of cancers. Eur J Nucl Med Mol Imaging 2022; 49:2618-2633. [DOI: 10.1007/s00259-022-05750-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 03/01/2022] [Indexed: 12/22/2022]
|
20
|
Nerella SG, Singh P, Sanam T, Digwal CS. PET Molecular Imaging in Drug Development: The Imaging and Chemistry Perspective. Front Med (Lausanne) 2022; 9:812270. [PMID: 35295604 PMCID: PMC8919964 DOI: 10.3389/fmed.2022.812270] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/18/2022] [Indexed: 11/13/2022] Open
Abstract
Positron emission tomography with selective radioligands advances the drug discovery and development process by revealing information about target engagement, proof of mechanism, pharmacokinetic and pharmacodynamic profiles. Positron emission tomography (PET) is an essential and highly significant tool to study therapeutic drug development, dose regimen, and the drug plasma concentrations of new drug candidates. Selective radioligands bring up target-specific information in several disease states including cancer, cardiovascular, and neurological conditions by quantifying various rates of biological processes with PET, which are associated with its physiological changes in living subjects, thus it reveals disease progression and also advances the clinical investigation. This study explores the major roles, applications, and advances of PET molecular imaging in drug discovery and development process with a wide range of radiochemistry as well as clinical outcomes of positron-emitting carbon-11 and fluorine-18 radiotracers.
Collapse
Affiliation(s)
- Sridhar Goud Nerella
- Department of Neuroimaging and Interventional Radiology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Priti Singh
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Hyderabad, India
| | - Tulja Sanam
- Department of Microbiology and Applied Sciences, University of Agricultural Sciences, Bangalore, India
| | - Chander Singh Digwal
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Hyderabad, India
| |
Collapse
|
21
|
Chen J, Wang J, Xu M, Jia X, Song G, Liu Z. Production of positron-emitting radionuclide yttrium-86 with a computer-aided design target for positron emission tomography. Nucl Med Biol 2022; 108-109:54-60. [DOI: 10.1016/j.nucmedbio.2022.03.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/18/2022] [Accepted: 03/08/2022] [Indexed: 01/21/2023]
|
22
|
Benešová M, Reischl G. Production of radionuclides: Cyclotrons and reactors. Nucl Med Mol Imaging 2022. [DOI: 10.1016/b978-0-12-822960-6.00003-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
23
|
Matulewicz T. Radioactive nuclei for β
+
γ PET and theranostics: selected candidates. BIO-ALGORITHMS AND MED-SYSTEMS 2021. [DOI: 10.1515/bams-2021-0142] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Abstract
Positron emission tomography (PET) is an established medical diagnostic imaging method. Continuous improvements are aimed at refining image reconstruction, reducing the amount of radioactive tracer and combining with targeted therapy. Time-of-flight (TOF)-PET provides the localization of the tracer through improved time resolution, nuclear physics may contribute to this goal via selection of radioactive nuclei emitting additional γ-rays. This additional radiation, when properly detected, localizes the decay of the tracer at the line of response (LoR) determined by two detected 511 keV quanta. Selected candidates are presented. Some are particularly interesting, as they are strong candidates for theranostic applications.
Collapse
|
24
|
Pandey MK, DeGrado TR. Cyclotron Production of PET Radiometals in Liquid Targets: Aspects and Prospects. Curr Radiopharm 2021; 14:325-339. [PMID: 32867656 PMCID: PMC9909776 DOI: 10.2174/1874471013999200820165734] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/11/2020] [Accepted: 07/23/2020] [Indexed: 11/22/2022]
Abstract
The present review describes the methodological aspects and prospects of the production of Positron Emission Tomography (PET) radiometals in a liquid target using low-medium energy medical cyclotrons. The main objective of this review is to delineate and discuss the critical factors involved in the liquid target production of radiometals, including type of salt solution, solution composition, beam energy, beam current, the effect of irradiation duration (length of irradiation) and challenges posed by in-target chemistry in relation with irradiation parameters. We also summarize the optimal parameters for the production of various radiometals in liquid targets. Additionally, we discuss the future prospects of PET radiometals production in the liquid targets for academic research and clinical applications. Significant emphasis has been given to the production of 68Ga using liquid targets due to the growing demand for 68Ga labeled PSMA vectors, [68Ga]- Ga-DOTATATE, [68Ga]Ga-DOTANOC and some upcoming 68Ga labeled radiopharmaceuticals. Other PET radiometals included in the discussion are 86Y, 63Zn and 89Zr.
Collapse
Affiliation(s)
- Mukesh K. Pandey
- Division of Nuclear Medicine, Department of Radiology, Mayo Clinic Rochester, Minneapolis, 55905, USA,Address correspondence to this author at the Division of Nuclear Medicine, Department of Radiology, Mayo Clinic Rochester, Minneapolis, 55905, USA; E-mail:
| | - Timothy R. DeGrado
- Division of Nuclear Medicine, Department of Radiology, Mayo Clinic Rochester, Minneapolis, 55905, USA
| |
Collapse
|
25
|
Sciacca G, Martini P, Cisternino S, Mou L, Amico J, Esposito J, Gorgoni G, Cazzola E. A Universal Cassette-Based System for the Dissolution of Solid Targets. Molecules 2021; 26:6255. [PMID: 34684836 PMCID: PMC8539783 DOI: 10.3390/molecules26206255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 11/16/2022] Open
Abstract
Cyclotron-based radionuclides production by using solid targets has become important in the last years due to the growing demand of radiometals, e.g., 68Ga, 89Zr, 43/47Sc, and 52/54Mn. This shifted the focus on solid target management, where the first fundamental step of the radiochemical processing is the target dissolution. Currently, this step is generally performed with commercial or home-made modules separated from the following purification/radiolabelling modules. The aim of this work is the realization of a flexible solid target dissolution system to be easily installed on commercial cassette-based synthesis modules. This would offer a complete target processing and radiopharmaceutical synthesis performable in a single module continuously. The presented solid target dissolution system concept relies on an open-bottomed vial positioned upon a target coin. In particular, the idea is to use the movement mechanism of a syringe pump to position the vial up and down on the target, and to exploit the heater/cooler reactor of the module as a target holder. All the steps can be remotely controlled and are incorporated in the cassette manifold together with the purification and radiolabelling steps. The performance of the device was tested by processing three different irradiated targets under different dissolution conditions.
Collapse
Affiliation(s)
- Gabriele Sciacca
- Legnaro National Laboratories, National Institute for Nuclear Physics, 35020 Legnaro, Italy; (S.C.); (L.M.); (J.E.)
- Department of Industrial Engineering, University of Padova, 35131 Padova, Italy
| | - Petra Martini
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy;
| | - Sara Cisternino
- Legnaro National Laboratories, National Institute for Nuclear Physics, 35020 Legnaro, Italy; (S.C.); (L.M.); (J.E.)
- Department of Industrial Engineering, University of Padova, 35131 Padova, Italy
| | - Liliana Mou
- Legnaro National Laboratories, National Institute for Nuclear Physics, 35020 Legnaro, Italy; (S.C.); (L.M.); (J.E.)
| | - Jonathan Amico
- Cyclotron & Radiopharmacy Department, Sacro Cuore Hospital, 37024 Negrar, Italy; (J.A.); (G.G.); (E.C.)
| | - Juan Esposito
- Legnaro National Laboratories, National Institute for Nuclear Physics, 35020 Legnaro, Italy; (S.C.); (L.M.); (J.E.)
| | - Giancarlo Gorgoni
- Cyclotron & Radiopharmacy Department, Sacro Cuore Hospital, 37024 Negrar, Italy; (J.A.); (G.G.); (E.C.)
| | - Emiliano Cazzola
- Cyclotron & Radiopharmacy Department, Sacro Cuore Hospital, 37024 Negrar, Italy; (J.A.); (G.G.); (E.C.)
| |
Collapse
|
26
|
George KJH, Borjian S, Cross MC, Hicks JW, Schaffer P, Kovacs MS. Expanding the PET radioisotope universe utilizing solid targets on small medical cyclotrons. RSC Adv 2021; 11:31098-31123. [PMID: 35498914 PMCID: PMC9041346 DOI: 10.1039/d1ra04480j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/25/2021] [Indexed: 12/17/2022] Open
Abstract
Molecular imaging with medical radioisotopes enables the minimally-invasive monitoring of aberrant biochemical, cellular and tissue-level processes in living subjects. The approach requires the administration of radiotracers composed of radioisotopes attached to bioactive molecules, the pairing of which considers several aspects of the radioisotope in addition to the biological behavior of the targeting molecule to which it is attached. With the advent of modern cellular and biochemical techniques, there has been a virtual explosion in potential disease recognition antigens as well as targeting moieties, which has subsequently opened new applications for a host of emerging radioisotopes with well-matched properties. Additionally, the global radioisotope production landscape has changed rapidly, with reactor-based production and its long-defined, large-scale centralized manufacturing and distribution paradigm shifting to include the manufacture and distribution of many radioisotopes via a worldwide fleet of cyclotrons now in operation. Cyclotron-based radioisotope production has become more prevalent given the commercial availability of instruments, coupled with the introduction of new target hardware, process automation and target manufacturing methods. These advances enable sustained, higher-power irradiation of solid targets that allow hospital-based radiopharmacies to produce a suite of radioisotopes that drive research, clinical trials, and ultimately clinical care. Over the years, several different radioisotopes have been investigated and/or selected for radiolabeling due to favorable decay characteristics (i.e. a suitable half-life, high probability of positron decay, etc.), well-elucidated chemistry, and a feasible production framework. However, longer-lived radioisotopes have surged in popularity given recent regulatory approvals and incorporation of radiopharmaceuticals into patient management within the medical community. This review focuses on the applications, nuclear properties, and production and purification methods for some of the most frequently used/emerging positron-emitting, solid-target-produced radioisotopes that can be manufactured using small-to-medium size cyclotrons (≤24 MeV).
Collapse
Affiliation(s)
- K J H George
- Lawson Health Research Institute 268 Grosvenor Street London ON N6A 4V2 Canada
- Medical Biophysics, Western University 1151 Richmond Street N. London ON N6A 5C1 Canada
| | - S Borjian
- ARTMS 301-4475 Wayburn Drive Burnaby BC V5G 4X4 Canada
| | - M C Cross
- ARTMS 301-4475 Wayburn Drive Burnaby BC V5G 4X4 Canada
| | - J W Hicks
- Lawson Health Research Institute 268 Grosvenor Street London ON N6A 4V2 Canada
- Medical Biophysics, Western University 1151 Richmond Street N. London ON N6A 5C1 Canada
| | - P Schaffer
- Life Sciences, TRIUMF 4004 Wesbrook Mall Vancouver BC V6T 2A3 Canada
- ARTMS 301-4475 Wayburn Drive Burnaby BC V5G 4X4 Canada
- Radiology, University of British Columbia 2775 Laurel St Vancouver BC V5Z 1M9 Canada
- Chemistry, Simon Fraser University 8888 University Dr Burnaby BC V5A 1S6 Canada
| | - M S Kovacs
- Lawson Health Research Institute 268 Grosvenor Street London ON N6A 4V2 Canada
- Medical Biophysics, Western University 1151 Richmond Street N. London ON N6A 5C1 Canada
- Medical Imaging, Western University 1151 Richmond Street N. London ON N6A 5C1 Canada
| |
Collapse
|
27
|
Labelling via [Al 18F] 2+ Using Precomplexed Al-NODA Moieties. Pharmaceuticals (Basel) 2021; 14:ph14080818. [PMID: 34451915 PMCID: PMC8399807 DOI: 10.3390/ph14080818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/11/2021] [Accepted: 08/16/2021] [Indexed: 12/02/2022] Open
Abstract
Over the past 20 years, 68Ga-labelled radiopharmaceuticals have become an important part in clinical routine. However, the worldwide supply with 68Ge/68Ga generators is limited as well as the number of patient doses per batch of 68Ga radiopharmaceutical. In the recent years, a new technique appeared, making use of the ease of aqueous labelling via chelators as with 68Ga but using 18F instead. This technique takes advantage of the strong coordinative bond between aluminium and fluoride, realized in the aqueous cation [Al18F]2+. Most applications to date make use of one-pot syntheses with free Al(III) ions in the system. In contrast, we investigated the labelling approach split into two steps: generating the Al-bearing precursor in pure form and using this Al compound as a precursor in the labelling step with aqueous [18F]fluoride. Hence, no free Al3+ ions are present in the labelling step. We investigated the impact of parameters: temperature, pH, addition of organic solvent, and reaction time using the model chelator NH2-MPAA-NODA. With optimized parameters we could stably achieve a 80% radiochemical yield exerting a 30-min reaction time at 100 °C. This technique has the potential to become an important approach in radiopharmaceutical syntheses.
Collapse
|
28
|
Mari M, Carrozza D, Ferrari E, Asti M. Applications of Radiolabelled Curcumin and Its Derivatives in Medicinal Chemistry. Int J Mol Sci 2021; 22:ijms22147410. [PMID: 34299029 PMCID: PMC8306375 DOI: 10.3390/ijms22147410] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/02/2021] [Accepted: 07/07/2021] [Indexed: 12/27/2022] Open
Abstract
Curcumin is a natural occurring molecule that has aroused much interest among researchers over the years due to its pleiotropic set of biological properties. In the nuclear medicine field, radiolabelled curcumin and curcumin derivatives have been studied as potential radiotracers for the early diagnosis of Alzheimer’s disease and cancer. In the present review, the synthetic pathways, labelling methods and the preclinical investigations involving these radioactive compounds are treated. The studies entailed chemical modifications for enhancing curcumin stability, as well as its functionalisation for the labelling with several radiohalogens or metal radionuclides (fluorine-18, technetium-99m, gallium-68, etc.). Although some drawbacks have yet to be addressed, and none of the radiolabelled curcuminoids have so far achieved clinical application, the studies performed hitherto provide useful insights and lay the foundation for further developments.
Collapse
Affiliation(s)
- Matteo Mari
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Via G. Campi 103, 41125 Modena, Italy
| | - Debora Carrozza
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Via G. Campi 103, 41125 Modena, Italy
| | - Erika Ferrari
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Via G. Campi 103, 41125 Modena, Italy
| | - Mattia Asti
- Radiopharmaceutical Chemistry Section, Nuclear Medicine Unit, AUSL-IRCCS di Reggio Emilia, Viale Risorgimento 80, 42122 Reggio Emilia, Italy
| |
Collapse
|
29
|
Vi C, Mandarano G, Shigdar S. Diagnostics and Therapeutics in Targeting HER2 Breast Cancer: A Novel Approach. Int J Mol Sci 2021; 22:6163. [PMID: 34200484 PMCID: PMC8201268 DOI: 10.3390/ijms22116163] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/25/2021] [Accepted: 05/30/2021] [Indexed: 01/02/2023] Open
Abstract
Breast cancer is one of the most commonly occurring cancers in women globally and is the primary cause of cancer mortality in females. BC is highly heterogeneous with various phenotypic expressions. The overexpression of HER2 is responsible for 15-30% of all invasive BC and is strongly associated with malignant behaviours, poor prognosis and decline in overall survival. Molecular imaging offers advantages over conventional imaging modalities, as it provides more sensitive and specific detection of tumours, as these techniques measure the biological and physiological processes at the cellular level to visualise the disease. Early detection and diagnosis of BC is crucial to improving clinical outcomes and prognosis. While HER2-specific antibodies and nanobodies may improve the sensitivity and specificity of molecular imaging, the radioisotope conjugation process may interfere with and may compromise their binding functionalities. Aptamers are single-stranded oligonucleotides capable of targeting biomarkers with remarkable binding specificity and affinity. Aptamers can be functionalised with radioisotopes without compromising target specificity. The attachment of different radioisotopes can determine the aptamer's functionality in the treatment of HER2(+) BC. Several HER2 aptamers and investigations of them have been described and evaluated in this paper. We also provide recommendations for future studies with HER2 aptamers to target HER2(+) BC.
Collapse
Affiliation(s)
- Chris Vi
- School of Medicine, Deakin University, Geelong, VIC 3220, Australia; (C.V.); (G.M.)
| | - Giovanni Mandarano
- School of Medicine, Deakin University, Geelong, VIC 3220, Australia; (C.V.); (G.M.)
- Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, VIC 3220, Australia
| | - Sarah Shigdar
- School of Medicine, Deakin University, Geelong, VIC 3220, Australia; (C.V.); (G.M.)
- Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, VIC 3220, Australia
| |
Collapse
|
30
|
Mikolajczak R, Huclier-Markai S, Alliot C, Haddad F, Szikra D, Forgacs V, Garnuszek P. Production of scandium radionuclides for theranostic applications: towards standardization of quality requirements. EJNMMI Radiopharm Chem 2021; 6:19. [PMID: 34036449 PMCID: PMC8149571 DOI: 10.1186/s41181-021-00131-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 03/26/2021] [Indexed: 01/23/2023] Open
Abstract
In the frame of "precision medicine", the scandium radionuclides have recently received considerable interest, providing personalised adjustment of radiation characteristics to optimize the efficiency of medical care or therapeutic benefit for particular groups of patients. Radionuclides of scandium, namely scandium-43 and scandium-44 (43/44Sc) as positron emitters and scandium-47 (47Sc), beta-radiation emitter, seem to fit ideally into the concept of theranostic pair. This paper aims to review the work on scandium isotopes production, coordination chemistry, radiolabeling, preclinical studies and the very first clinical studies. Finally, standardized procedures for scandium-based radiopharmaceuticals have been proposed as a basis to pave the way for elaboration of the Ph.Eur. monographs for perspective scandium radionuclides.
Collapse
Affiliation(s)
- R Mikolajczak
- Radioisotope Centre POLATOM, National Centre for Nuclear Research, Andrzej Soltan 7, 05-400, Otwock, Poland
| | - S Huclier-Markai
- Laboratoire Subatech, UMR 6457, IMT Nantes Atlantique /CNRS-IN2P3 / Université de Nantes, 4 Rue A. Kastler, BP 20722, 44307, Nantes Cedex 3, France.
- ARRONAX GIP, 1 rue Aronnax, 44817, Nantes Cedex, France.
| | - C Alliot
- ARRONAX GIP, 1 rue Aronnax, 44817, Nantes Cedex, France
- CRCINA, Inserm / CNRS / Université de Nantes, 8 quai Moncousu, 44007, Nantes Cedex 1, France
| | - F Haddad
- Laboratoire Subatech, UMR 6457, IMT Nantes Atlantique /CNRS-IN2P3 / Université de Nantes, 4 Rue A. Kastler, BP 20722, 44307, Nantes Cedex 3, France
- ARRONAX GIP, 1 rue Aronnax, 44817, Nantes Cedex, France
| | - D Szikra
- Faculty of Medicine, Department of Medical Imaging, Division of Nuclear Medicine and Translational Imaging, University of Debrecen, Nagyerdei krt. 98, Debrecen, 4032, Hungary
- Scanomed Ltd., Nagyerdei krt. 98, Debrecen, 4032, Hungary
| | - V Forgacs
- Faculty of Medicine, Department of Medical Imaging, Division of Nuclear Medicine and Translational Imaging, University of Debrecen, Nagyerdei krt. 98, Debrecen, 4032, Hungary
| | - P Garnuszek
- Radioisotope Centre POLATOM, National Centre for Nuclear Research, Andrzej Soltan 7, 05-400, Otwock, Poland
| |
Collapse
|
31
|
Mieszkowska M, Grdeń M. Electrochemical deposition of nickel targets from aqueous electrolytes for medical radioisotope production in accelerators: a review. J Solid State Electrochem 2021. [DOI: 10.1007/s10008-021-04950-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
AbstractThis paper reviews reported methods of the electrochemical deposition of nickel layers which are used as target materials for accelerator production of medical radioisotopes. The review focuses on the electrodeposition carried out from aqueous electrolytes. It describes the main challenges related to the preparation of suitable Ni target layers, such as work with limited amounts of expensive isotopically enriched nickel; electrodeposition of sufficiently thick, smooth and free of cracks layers; and recovery of unreacted Ni isotopes from the irradiated targets and from used electrolytic baths.
Collapse
|
32
|
Radchenko V, Baimukhanova A, Filosofov D. Radiochemical aspects in modern radiopharmaceutical trends: a practical guide. SOLVENT EXTRACTION AND ION EXCHANGE 2021. [DOI: 10.1080/07366299.2021.1874099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Valery Radchenko
- Life Sciences Division, TRIUMF, Vancouver, Canada
- Department of Chemistry, University of British Columbia, Vancouver, BC, Canada
| | - Ayagoz Baimukhanova
- Dzelepov Laboratory of Nuclear Problems, Joint Institute for Nuclear Research, Dubna, Russian Federation
- Scientific and Technical Center of Radiochemistry and Isotopes Production, Institute of Nuclear Physics, Almaty, Kazakhstan
| | - Dmitry Filosofov
- Dzelepov Laboratory of Nuclear Problems, Joint Institute for Nuclear Research, Dubna, Russian Federation
| |
Collapse
|
33
|
Goud NS, Bhattacharya A, Joshi RK, Nagaraj C, Bharath RD, Kumar P. Carbon-11: Radiochemistry and Target-Based PET Molecular Imaging Applications in Oncology, Cardiology, and Neurology. J Med Chem 2021; 64:1223-1259. [PMID: 33499603 DOI: 10.1021/acs.jmedchem.0c01053] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The positron emission tomography (PET) molecular imaging technique has gained its universal value as a remarkable tool for medical diagnosis and biomedical research. Carbon-11 is one of the promising radiotracers that can report target-specific information related to its pharmacology and physiology to understand the disease status. Currently, many of the available carbon-11 (t1/2 = 20.4 min) PET radiotracers are heterocyclic derivatives that have been synthesized using carbon-11 inserted different functional groups obtained from primary and secondary carbon-11 precursors. A spectrum of carbon-11 PET radiotracers has been developed against many of the upregulated and emerging targets for the diagnosis, prognosis, prediction, and therapy in the fields of oncology, cardiology, and neurology. This review focuses on the carbon-11 radiochemistry and various target-specific PET molecular imaging agents used in tumor, heart, brain, and neuroinflammatory disease imaging along with its associated pathology.
Collapse
Affiliation(s)
- Nerella Sridhar Goud
- Department of Neuroimaging and Interventional Radiology (NIIR), National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru 560 029, India
| | - Ahana Bhattacharya
- Department of Neuroimaging and Interventional Radiology (NIIR), National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru 560 029, India
| | - Raman Kumar Joshi
- Department of Neuroimaging and Interventional Radiology (NIIR), National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru 560 029, India
| | - Chandana Nagaraj
- Department of Neuroimaging and Interventional Radiology (NIIR), National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru 560 029, India
| | - Rose Dawn Bharath
- Department of Neuroimaging and Interventional Radiology (NIIR), National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru 560 029, India
| | - Pardeep Kumar
- Department of Neuroimaging and Interventional Radiology (NIIR), National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru 560 029, India
| |
Collapse
|
34
|
PET Radiochemistry. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00027-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
35
|
Bailey DL, Sabanathan D, Aslani A, Campbell DH, Walsh BJ, Lengkeek NA. RetroSPECT: Gallium-67 as a Long-Lived Imaging Agent for Theranostics. ASIA OCEANIA JOURNAL OF NUCLEAR MEDICINE & BIOLOGY 2021; 9:1-8. [PMID: 33392343 PMCID: PMC7701228 DOI: 10.22038/aojnmb.2020.51714.1355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/28/2020] [Accepted: 10/31/2020] [Indexed: 11/06/2022]
Abstract
A limitation to the wider introduction of personalised dosimetry in theranostics is the relative paucity of imaging radionuclides with suitable physical and chemical properties to be paired with a long-lived therapeutic partner. As most of the beta-emitting therapeutic radionuclides emit gamma radiation as well they could potentially be used as the imaging radionuclide as well as the therapeutic radionuclide. However, the downsides are that the beta radiation will deliver a significant radiation dose as part of the treatment planning procedure, and the gamma radiation branching ratio is often quite low. Gallium-67 has been in use in nuclear medicine for over 50 years. However, the tremendous interest in gallium imaging in theranostics in recent times has focused on the PET radionuclide gallium-68. In this article it is suggested that the longer-lived gallium-67, which has desirable characteristics for imaging with the gamma camera and a suitably long half-life to match biological timescales for drug uptake and turnover, has been overlooked, in particular, for treatment planning with radionuclide therapy. Gallium-67 could also allow non-PET facilities to participate in theranostic imaging prior to treatment or for monitoring response after therapy. Gallium-67 could play a niche role in the future development of personalised medicine with theranostics.
Collapse
Affiliation(s)
- Dale L. Bailey
- Department of Nuclear Medicine, Royal North Shore Hospital, Sydney, Australia
- Faculty of Medicine & Health, University of Sydney, Sydney, Australia
| | | | - Alireza Aslani
- Department of Nuclear Medicine, Royal North Shore Hospital, Sydney, Australia
- Faculty of Medicine & Health, University of Sydney, Sydney, Australia
| | | | | | - Nigel A. Lengkeek
- Biosciences, Australian Nuclear Science & Technology Organisation (ANSTO), Sydney, Australia
| |
Collapse
|
36
|
Southwell JW, Black CM, Duhme-Klair AK. Experimental Methods for Evaluating the Bacterial Uptake of Trojan Horse Antibacterials. ChemMedChem 2020; 16:1063-1076. [PMID: 33238066 DOI: 10.1002/cmdc.202000806] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Indexed: 01/10/2023]
Abstract
The field of antibacterial siderophore conjugates, referred to as Trojan Horse antibacterials, has received increasing attention in recent years, driven by the rise of antimicrobial resistance. Trojan Horse antibacterials offer an opportunity to exploit the specific pathways present in bacteria for active iron uptake, potentially allowing the drugs to bypass membrane-associated resistance mechanisms. Hence, the Trojan Horse approach might enable the redesigning of old antibiotics and the development of antibacterials that target specific pathogens. Critical parts of evaluating such Trojan Horse antibacterials and improving their design are the quantification of their bacterial uptake and the identification of the pathways by which this occurs. In this minireview, we highlight a selection of the biological and chemical methods used to study the uptake of Trojan Horse antibacterials, exemplified with case studies, some of which have led to drug candidates in clinical development or approved antibiotics.
Collapse
Affiliation(s)
- James W Southwell
- Department of Chemistry, University of York, Heslington, North Yorkshire, YO10 5DD, UK
| | - Conor M Black
- Department of Chemistry, University of York, Heslington, North Yorkshire, YO10 5DD, UK
| | | |
Collapse
|
37
|
Bolzati C, Duatti A. The emerging value of 64Cu for molecular imaging and therapy. THE QUARTERLY JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING : OFFICIAL PUBLICATION OF THE ITALIAN ASSOCIATION OF NUCLEAR MEDICINE (AIMN) [AND] THE INTERNATIONAL ASSOCIATION OF RADIOPHARMACOLOGY (IAR), [AND] SECTION OF THE SOCIETY OF RADIOPHARMACEUTICAL CHEMISTRY AND BIOLOGY 2020; 64:329-337. [PMID: 33026210 DOI: 10.23736/s1824-4785.20.03292-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Along with other novel metallic radionuclides, copper-64 (64Cu) is currently being investigated as an alternative option to the gallium-68 (68Ga) and lutetium-177 (177Lu) radiopharmaceuticals widely used for targeting somatostatin receptors, expressed by neuroendocrine tumors (NETs), and recently prostate specific membrane antigen (PSMA), expressed by prostate cancer cells. This interest is mostly driven by the peculiar nuclear properties of 64Cu that make it an almost ideal example of theranostic radionuclide. In fact, 64Cu emits both low-energy positrons, β- particles and a swarm of Auger electrons. This combination of different emissions may allow to collect high-resolution PET images, but also to use the same radiopharmaceutical for eliciting a therapeutic effect. Another unique behavior of 64Cu originates from the fundamental biological role played in organisms by the ionic forms of the copper element, which is naturally involved in a multitude of cellular processes including cell replication. These intrinsic biological characteristics has led to the discovery that 64Cu, under its simplest dicationic form Cu2+, is able to specifically target a variety of cancerous cells and to detect the onset of a metastatic process in its initial stage. This short review reports an outline of the status of 64Cu radiopharmaceuticals and of the most relevant results that are constantly disclosed by preclinical and investigational clinical studies.
Collapse
Affiliation(s)
| | - Adriano Duatti
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Ferrara, Italy -
| |
Collapse
|
38
|
Hasan S, Prelas MA. Molybdenum-99 production pathways and the sorbents for 99Mo/99mTc generator systems using (n, γ) 99Mo: a review. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-03524-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
39
|
Dewulf J, Adhikari K, Vangestel C, Wyngaert TVD, Elvas F. Development of Antibody Immuno-PET/SPECT Radiopharmaceuticals for Imaging of Oncological Disorders-An Update. Cancers (Basel) 2020; 12:E1868. [PMID: 32664521 PMCID: PMC7408676 DOI: 10.3390/cancers12071868] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/06/2020] [Accepted: 07/10/2020] [Indexed: 01/12/2023] Open
Abstract
Positron emission tomography (PET) and single-photon emission computed tomography (SPECT) are molecular imaging strategies that typically use radioactively labeled ligands to selectively visualize molecular targets. The nanomolar sensitivity of PET and SPECT combined with the high specificity and affinity of monoclonal antibodies have shown great potential in oncology imaging. Over the past decades a wide range of radio-isotopes have been developed into immuno-SPECT/PET imaging agents, made possible by novel conjugation strategies (e.g., site-specific labeling, click chemistry) and optimization and development of novel radiochemistry procedures. In addition, new strategies such as pretargeting and the use of antibody fragments have entered the field of immuno-PET/SPECT expanding the range of imaging applications. Non-invasive imaging techniques revealing tumor antigen biodistribution, expression and heterogeneity have the potential to contribute to disease diagnosis, therapy selection, patient stratification and therapy response prediction achieving personalized treatments for each patient and therefore assisting in clinical decision making.
Collapse
Affiliation(s)
- Jonatan Dewulf
- Molecular Imaging Center Antwerp, Faculty of Medicine and Health Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium; (J.D.); (C.V.); (T.V.D.W.)
- Department of Nuclear Medicine, Antwerp University Hospital, Wilrijkstraat 10, B-2650 Edegem, Belgium
| | - Karuna Adhikari
- Faculty of Pharmaceutical Biomedical and Veterinary Sciences, Medicinal Chemistry, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium;
| | - Christel Vangestel
- Molecular Imaging Center Antwerp, Faculty of Medicine and Health Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium; (J.D.); (C.V.); (T.V.D.W.)
- Department of Nuclear Medicine, Antwerp University Hospital, Wilrijkstraat 10, B-2650 Edegem, Belgium
| | - Tim Van Den Wyngaert
- Molecular Imaging Center Antwerp, Faculty of Medicine and Health Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium; (J.D.); (C.V.); (T.V.D.W.)
- Department of Nuclear Medicine, Antwerp University Hospital, Wilrijkstraat 10, B-2650 Edegem, Belgium
| | - Filipe Elvas
- Molecular Imaging Center Antwerp, Faculty of Medicine and Health Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium; (J.D.); (C.V.); (T.V.D.W.)
- Department of Nuclear Medicine, Antwerp University Hospital, Wilrijkstraat 10, B-2650 Edegem, Belgium
| |
Collapse
|
40
|
Klenner MA, Darwish T, Fraser BH, Massi M, Pascali G. Labeled Rhenium Complexes: Radiofluorination, α-MSH Cyclization, and Deuterium Substitutions. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mitchell A. Klenner
- National Deuteration Facility (NDF) & Human Health, Australian Nuclear Science and Technology Organisation (ANSTO), Lucas Heights, New South Wales, Australia 2234
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia, Australia 6102
| | - Tamim Darwish
- National Deuteration Facility (NDF) & Human Health, Australian Nuclear Science and Technology Organisation (ANSTO), Lucas Heights, New South Wales, Australia 2234
| | - Benjamin H. Fraser
- National Deuteration Facility (NDF) & Human Health, Australian Nuclear Science and Technology Organisation (ANSTO), Lucas Heights, New South Wales, Australia 2234
| | - Massimiliano Massi
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia, Australia 6102
| | - Giancarlo Pascali
- National Deuteration Facility (NDF) & Human Health, Australian Nuclear Science and Technology Organisation (ANSTO), Lucas Heights, New South Wales, Australia 2234
- Prince of Wales Hospital, Randwick, New South Wales, Australia 2031
- School of Chemistry, University of New South Wales (UNSW), Kensington, New South Wales, Australia 2052
| |
Collapse
|
41
|
Lau J, Rousseau E, Kwon D, Lin KS, Bénard F, Chen X. Insight into the Development of PET Radiopharmaceuticals for Oncology. Cancers (Basel) 2020; 12:E1312. [PMID: 32455729 PMCID: PMC7281377 DOI: 10.3390/cancers12051312] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/17/2020] [Accepted: 05/18/2020] [Indexed: 12/20/2022] Open
Abstract
While the development of positron emission tomography (PET) radiopharmaceuticals closely follows that of traditional drug development, there are several key considerations in the chemical and radiochemical synthesis, preclinical assessment, and clinical translation of PET radiotracers. As such, we outline the fundamentals of radiotracer design, with respect to the selection of an appropriate pharmacophore. These concepts will be reinforced by exemplary cases of PET radiotracer development, both with respect to their preclinical and clinical evaluation. We also provide a guideline for the proper selection of a radionuclide and the appropriate labeling strategy to access a tracer with optimal imaging qualities. Finally, we summarize the methodology of their evaluation in in vitro and animal models and the road to clinical translation. This review is intended to be a primer for newcomers to the field and give insight into the workflow of developing radiopharmaceuticals.
Collapse
Affiliation(s)
- Joseph Lau
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Etienne Rousseau
- Department of Nuclear Medicine and Radiobiology, University of Sherbrooke, Sherbrooke, QC J1H 5N4, Canada;
| | - Daniel Kwon
- Department of Molecular Oncology, BC Cancer, Vancouver, BC V5Z 1L3, Canada; (D.K.); (K.-S.L.); (F.B.)
| | - Kuo-Shyan Lin
- Department of Molecular Oncology, BC Cancer, Vancouver, BC V5Z 1L3, Canada; (D.K.); (K.-S.L.); (F.B.)
| | - François Bénard
- Department of Molecular Oncology, BC Cancer, Vancouver, BC V5Z 1L3, Canada; (D.K.); (K.-S.L.); (F.B.)
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA;
| |
Collapse
|
42
|
Kelly JM, Ponnala S, Amor-Coarasa A, Zia NA, Nikolopoulou A, Williams C, Schlyer DJ, DiMagno SG, Donnelly PS, Babich JW. Preclinical Evaluation of a High-Affinity Sarcophagine-Containing PSMA Ligand for 64Cu/ 67Cu-Based Theranostics in Prostate Cancer. Mol Pharm 2020; 17:1954-1962. [PMID: 32286841 DOI: 10.1021/acs.molpharmaceut.0c00060] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The application of small molecules targeting prostate-specific membrane antigen (PSMA) has emerged as a highly promising clinical strategy for visualization and treatment of prostate cancer. Ligands that integrate the ability to both quantify the distribution of radioactivity and treat disease through the use of a matched pair of radionuclides have particular value in clinical and regulatory settings. In this study, we describe the development and preclinical evaluation of RPS-085, a ligand that binds PSMA and serum albumin and exploits the 64/67Cu radionuclide pair for prostate cancer theranostics. RPS-085 was synthesized by conjugation of a PSMA-targeting moiety, an Nε-(2-(4-iodophenyl)acetyl)lysine albumin binding group, and a bifunctionalized MeCOSar chelator. The IC50 of the metal-free RPS-085 was determined in a competitive binding assay. The affinity for human serum albumin of the radiolabeled compound was determined by high-performance affinity chromatography. Radiolabeling was performed in NH4OAc buffer at 25 °C. The stability of the radiolabeled compounds was assessed in vitro and in vivo. The biodistribution of [64/67Cu]Cu-RPS-085 was determined following intravenous administration to male BALB/c mice bearing LNCaP tumor xenografts. The radiochemical yields of [64/67Cu]Cu-RPS-085 were nearly quantitative after 20 min. The metal-free complex is a potent inhibitor of PSMA (IC50 = 29 ± 2 nM), and the radiolabeled compound has moderate affinity for human serum albumin (Kd = 9.9 ± 1.7 μM). Accumulation of the tracer in mice was primarily evident in tumor and kidneys. Activity in all other tissues, including blood, was negligible, and the radiolabeled compounds demonstrated high stability in vitro and in vivo. Tumor activity reached a maximum at 4 h post injection (p.i.) and cleared gradually over a period of 96 h. By contrast, activity in the kidney cleared rapidly from 4 to 24 h p.i. As a consequence, by 24 h p.i., the tumor-to-kidney ratio exceeds 2, and the predicted dose to tumors is significantly greater than the dose to kidneys. [64Cu]Cu-RPS-085 combines rapid tissue distribution and clearance with prolonged retention in LNCaP tumor xenografts. The pharmacokinetics should enable radioligand therapy using [67Cu]Cu-RPS-085. By virtue of its rapid kidney clearance, the therapeutic index of [67Cu]Cu-RPS-085 likely compares favorably to its parent structure, [177Lu]Lu-RPS-063, a highly avid PSMA-targeting compound. On this basis, [64/67Cu]Cu-RPS-085 show great promise as PSMA-targeting theranostic ligands for prostate cancer imaging and therapy.
Collapse
Affiliation(s)
- James M Kelly
- Division of Radiopharmaceutical Sciences and MI3 Institute, Department of Radiology, Weill Cornell Medicine, New York, New York 10021, United States
| | - Shashikanth Ponnala
- Division of Radiopharmaceutical Sciences and MI3 Institute, Department of Radiology, Weill Cornell Medicine, New York, New York 10021, United States
| | - Alejandro Amor-Coarasa
- Division of Radiopharmaceutical Sciences and MI3 Institute, Department of Radiology, Weill Cornell Medicine, New York, New York 10021, United States
| | - Nicholas A Zia
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Anastasia Nikolopoulou
- Division of Radiopharmaceutical Sciences and MI3 Institute, Department of Radiology, Weill Cornell Medicine, New York, New York 10021, United States.,Citigroup Biomedical Imaging Center, Weill Cornell Medicine, New York, New York 10021, United States
| | - Clarence Williams
- Division of Radiopharmaceutical Sciences and MI3 Institute, Department of Radiology, Weill Cornell Medicine, New York, New York 10021, United States
| | - David J Schlyer
- Brookhaven National Laboratory, Upton, New York 11973, United States.,Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| | - Stephen G DiMagno
- College of Pharmacy, University of Illinois-Chicago, Chicago, Illinois 60612, United States
| | - Paul S Donnelly
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - John W Babich
- Division of Radiopharmaceutical Sciences and MI3 Institute, Department of Radiology, Weill Cornell Medicine, New York, New York 10021, United States.,Citigroup Biomedical Imaging Center, Weill Cornell Medicine, New York, New York 10021, United States.,Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, New York 10065, United States
| |
Collapse
|
43
|
Gracheva N, Carzaniga TS, Schibli R, Braccini S, van der Meulen NP. 165Er: A new candidate for Auger electron therapy and its possible cyclotron production from natural holmium targets. Appl Radiat Isot 2020; 159:109079. [DOI: 10.1016/j.apradiso.2020.109079] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/28/2020] [Accepted: 02/07/2020] [Indexed: 01/11/2023]
|
44
|
Single center experience on the production of fluorine-18 radiopharmaceuticals using a 7.5 MeV cyclotron: capabilities and challenges. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-2695-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
AbstractA plethora of cyclotron options have been developed to fulfil the demands of nuclear medicine industries in PET and SPECT radioisotopes. As a remote site, the difficulties of transporting fluorine 18 radiopharmaceuticals for PET examinations were overcome by the installation of a 7.5 MeV cyclotron for in-house production. The addition of a third-party synthesis module enabled the synthesis of 7 additional radiotracers according to a ‘’dose on demand’’ principle. Radiochemical yield is considered the primary factor in producing sufficient activity for a single patient dose, since low energy cyclotrons can only offer low initial activities. We hereby report the average radiochemical yields, synthesis times and doses per production for [18F]FDG, [18F]PSMA-1007, [18F]DOPA, [18F]FET, [18F]FLT, [18F]FMISO, [18F]Choline and [18F]FES using a BG75 cyclotron and a Neptis Mosaic-RS. Additionally, the presence of radionuclidic impurities in the final product was examined.
Collapse
|
45
|
Lo WL, Liang CH, Chen LC, Lee SY, Lo SN, Chen MW, Lu RM, Liu IJ, Wu HC, Chang CH. Imaging and biodistribution of radiolabeled SP90 peptide in BT-483 tumor bearing mice. Appl Radiat Isot 2020; 161:109162. [PMID: 32561130 DOI: 10.1016/j.apradiso.2020.109162] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 03/22/2020] [Accepted: 03/27/2020] [Indexed: 01/01/2023]
Abstract
The objective of this study was to evaluate radiolabeled DOTA-SP90 as a radiotracer for breast cancer. The in vitro competition assay showed that radiolabeled DOTA-SP90 had significant binding affinity to BT-483 cancer cells. Biodistribution, nanoSPECT/CT and nanoPET/CT imaging results indicated that radiolabeled DOTA-SP90 can accumulate in tumors. In addition, radiolabeled DOTA-SP90 peptides can also detect metastatic tumors. Therefore, radiolabeled SP90 peptide may provide the potential capability as diagnostic agent for breast cancer patients.
Collapse
Affiliation(s)
- Wei-Lin Lo
- Isotope Application Division, Institute of Nuclear Energy Research, Taoyuan, Taiwan
| | - Chen-Hsien Liang
- Isotope Application Division, Institute of Nuclear Energy Research, Taoyuan, Taiwan
| | - Liang-Cheng Chen
- Isotope Application Division, Institute of Nuclear Energy Research, Taoyuan, Taiwan
| | - Shih-Ying Lee
- Isotope Application Division, Institute of Nuclear Energy Research, Taoyuan, Taiwan
| | - Sheng-Nan Lo
- Isotope Application Division, Institute of Nuclear Energy Research, Taoyuan, Taiwan
| | - Ming-Wei Chen
- Isotope Application Division, Institute of Nuclear Energy Research, Taoyuan, Taiwan
| | - Ruei-Min Lu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - I-Ju Liu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Han-Chung Wu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Chih-Hsien Chang
- Isotope Application Division, Institute of Nuclear Energy Research, Taoyuan, Taiwan.
| |
Collapse
|
46
|
Kumar K. The Current Status of the Production and Supply of Gallium-68. Cancer Biother Radiopharm 2020; 35:163-166. [DOI: 10.1089/cbr.2019.3301] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- Krishan Kumar
- Laboratory for Translational Research in Imaging Pharmaceuticals, Department of Radiology, The Wright Center of Innovation in Biomedical Imaging, The Ohio State University, Columbus, Ohio
| |
Collapse
|
47
|
Tshibangu T, Cawthorne C, Serdons K, Pauwels E, Gsell W, Bormans G, Deroose CM, Cleeren F. Automated GMP compliant production of [ 18F]AlF-NOTA-octreotide. EJNMMI Radiopharm Chem 2020; 5:4. [PMID: 31997090 PMCID: PMC6989705 DOI: 10.1186/s41181-019-0084-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 12/16/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Gallium-68 labeled synthetic somatostatin analogs for PET/CT imaging are the current gold standard for somatostatin receptor imaging in neuroendocrine tumor patients. Despite good imaging properties, their use in clinical practice is hampered by the low production levels of 68Ga eluted from a 68Ge/68Ga generator. In contrast, 18F-tracers can be produced in large quantities allowing centralized production and distribution to distant PET centers. [18F]AlF-NOTA-octreotide is a promising tracer that combines a straightforward Al18F-based production procedure with excellent in vivo pharmacokinetics and specific tumor uptake, demonstrated in SSTR2 positive tumor mice. However, advancing towards clinical studies with [18F]AlF-NOTA-octreotide requires the development of an efficient automated GMP production process and additional preclinical studies are necessary to further evaluate the in vivo properties of [18F]AlF-NOTA-octreotide. In this study, we present the automated GMP production of [18F]AlF-NOTA-octreotide on the Trasis AllinOne® radio-synthesizer platform and quality control of the drug product in accordance with GMP. Further, radiometabolite studies were performed and the pharmacokinetics and biodistribution of [18F]AlF-NOTA-octreotide were assessed in healthy rats using μPET/MR. RESULTS The production process of [18F]AlF-NOTA-octreotide has been validated by three validation production runs and the tracer was obtained with a final batch activity of 10.8 ± 1.3 GBq at end of synthesis with a radiochemical yield of 26.1 ± 3.6% (dc), high radiochemical purity and stability (96.3 ± 0.2% up to 6 h post synthesis) and an apparent molar activity of 160.5 ± 75.3 GBq/μmol. The total synthesis time was 40 ± 3 min. Further, the quality control was successfully implemented using validated analytical procedures. Finally, [18F]AlF-NOTA-octreotide showed high in vivo stability and favorable pharmacokinetics with high and specific accumulation in SSTR2-expressing organs in rats. CONCLUSION This robust and automated production process provides high batch activity of [18F]AlF-NOTA-octreotide allowing centralized production and shipment of the compound to remote PET centers. Further, the production process and quality control developed for [18F]AlF-NOTA-octreotide is easily implementable in a clinical setting and the tracer is a potential clinical alternative for somatostatin directed 68Ga labeled peptides obviating the need for a 68Ge/68Ga-generator. Finally, the favorable in vivo properties of [18F]AlF-NOTA-octreotide in rats, with high and specific accumulation in SSTR2 expressing organs, supports clinical translation.
Collapse
Affiliation(s)
- Térence Tshibangu
- Radiopharmaceutical Research, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Herestraat 49 Box 821, 3000 Leuven, Belgium
| | - Christopher Cawthorne
- Nuclear Medicine, University Hospitals Leuven, Leuven, Belgium
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
- Biomedical MRI/MoSAIC, Department of Imaging and Pathology, Biomedical Sciences Group, KU Leuven, Leuven, Belgium
| | - Kim Serdons
- Nuclear Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Elin Pauwels
- Nuclear Medicine, University Hospitals Leuven, Leuven, Belgium
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Willy Gsell
- Biomedical MRI/MoSAIC, Department of Imaging and Pathology, Biomedical Sciences Group, KU Leuven, Leuven, Belgium
| | - Guy Bormans
- Radiopharmaceutical Research, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Herestraat 49 Box 821, 3000 Leuven, Belgium
| | - Christophe M. Deroose
- Nuclear Medicine, University Hospitals Leuven, Leuven, Belgium
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Frederik Cleeren
- Radiopharmaceutical Research, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Herestraat 49 Box 821, 3000 Leuven, Belgium
| |
Collapse
|
48
|
Ermert J, Benešová M, Hugenberg V, Gupta V, Spahn I, Pietzsch HJ, Liolios C, Kopka K. Radiopharmaceutical Sciences. Clin Nucl Med 2020. [DOI: 10.1007/978-3-030-39457-8_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
49
|
Stolarz A, Sitarz M, Szkliniarz K, Choiński J, Jastrzębski J, Trzcińska A, Zipper W. Calcium targets for production of the medical Sc radioisotopes in reactions with p, d or α projectiles. EPJ WEB OF CONFERENCES 2020. [DOI: 10.1051/epjconf/202022906004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The scandium radioisotopes for medical application can be produced in reactions of calcium with proton, deuteron or alpha projectiles. Enriched isotopic calcium material is commercially available mainly as calcium carbonate which can be used directly for production of Sc radioisotopes or can be converted into other calcium compounds or into metallic form. The superiority of application of calcium oxide is shown throughout analysis of use of each target chemical form.
Collapse
|
50
|
Mikolajczak R, van der Meulen NP, Lapi SE. Radiometals for imaging and theranostics, current production, and future perspectives. J Labelled Comp Radiopharm 2019; 62:615-634. [PMID: 31137083 DOI: 10.1002/jlcr.3770] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 04/10/2019] [Accepted: 05/15/2019] [Indexed: 02/06/2023]
Abstract
The aim of this review is to make the reader familiar with currently available radiometals, their production modes, capacities, and quality concerns related to their medical use, as well as new emerging radiometals and irradiation technologies from the perspective of their diagnostic and theranostic applications. Production methods of 177 Lu serve as an example of various issues related to the production yield, specific activity, radionuclidic and chemical purity, and production economy. Other radiometals that are currently used or explored for potential medical applications, with particular focus on their theranostic value, are discussed. Using radiometals for diagnostic imaging and therapy is on the rise. The high demand for radiometals for medical use prompts investigations towards using alternative irradiation reactions, while using existing nuclear reactors and accelerator facilities. This review discusses these production capacities and what is necessary to cover the growing demand for theranostic nuclides.
Collapse
Affiliation(s)
- Renata Mikolajczak
- Radioisotope Centre POLATOM, National Centre for Nuclear Research, Otwock, Poland
| | | | - Suzanne E Lapi
- Department of Radiology, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|