1
|
Hurtle BT, Jana S, Cai L, Pike VW. Ligand-Based Virtual Screening as a Path to New Chemotypes for Candidate PET Radioligands for Imaging Tauopathies. J Med Chem 2024; 67:14095-14109. [PMID: 39108178 DOI: 10.1021/acs.jmedchem.4c00934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Ligand-based virtual screening (LBVS) has rarely been tested as a method for discovering new structural scaffolds for PET radioligand development. This study used LBVS to discover potential chemotype leads for developing radioligands for PET imaging of tauopathies. ZINC12, a free database of over 12 million commercially available compounds, was searched to discover novel scaffolds based on similarities to four query compounds. Thirteen high-ranking hits were purchased and assayed for their ability to compete against three tritiated radioligands at their distinct binding sites in Alzheimer's disease brain tissue. Three hits were 2-substituted 6-methoxy naphthalenes. Synthetic elaboration of this new chemotype yielded three new ligands (25, 26, and 28) with high affinity for the [3H]6 (flortaucipur) neurofibrillary tangle binding site. Compound 28 showed remarkably high affinity (Ki, 7 nM) and other desirable properties for a candidate PET radioligand, including low topological polar surface area, moderate computed log D, and amenability for labeling with carbon-11. LBVS appears to be uniquely valuable for discovering new chemotypes for candidate PET radioligands.
Collapse
Affiliation(s)
- Bryan T Hurtle
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Susovan Jana
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Lisheng Cai
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Victor W Pike
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892, United States
| |
Collapse
|
2
|
Negi S, Khurana N, Duggal N. The misfolding mystery: α-synuclein and the pathogenesis of Parkinson's disease. Neurochem Int 2024; 177:105760. [PMID: 38723900 DOI: 10.1016/j.neuint.2024.105760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 05/02/2024] [Accepted: 05/06/2024] [Indexed: 05/12/2024]
Abstract
Neurodegenerative diseases such as Parkinson's disease (PD) are characterized by the death of neurons in specific areas of the brain. One of the proteins that is involved in the pathogenesis of PD is α-synuclein (α-syn). α-Syn is a normal protein that is found in all neurons, but in PD, it misfolds and aggregates into toxic fibrils. These fibrils can then coalesce into pathological inclusions, such as Lewy bodies and Lewy neurites. The pathogenic pathway of PD is thought to involve a number of steps, including misfolding and aggregation of α-syn, mitochondrial dysfunction, protein clearance impairment, neuroinflammation and oxidative stress. A deeper insight into the structure of α-syn and its fibrils could aid in understanding the disease's etiology. The prion-like nature of α-syn is also an important area of research. Prions are misfolded proteins that can spread from cell to cell, causing other proteins to misfold as well. It is possible that α-syn may behave in a similar way, spreading from cell to cell and causing a cascade of misfolding and aggregation. Various post-translational alterations have also been observed to play a role in the pathogenesis of PD. These alterations can involve a variety of nuclear and extranuclear activities, and they can lead to the misfolding and aggregation of α-syn. A better understanding of the pathogenic pathway of PD could lead to the development of new therapies for the treatment of this disease.
Collapse
Affiliation(s)
- Samir Negi
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi, G.T. Road, Phagwara, Punjab, 144411, India
| | - Navneet Khurana
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi, G.T. Road, Phagwara, Punjab, 144411, India
| | - Navneet Duggal
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi, G.T. Road, Phagwara, Punjab, 144411, India.
| |
Collapse
|
3
|
Mohammadi H, Ariaei A, Ghobadi Z, Gorgich EAC, Rustamzadeh A. Which neuroimaging and fluid biomarkers method is better in theranostic of Alzheimer's disease? An umbrella review. IBRO Neurosci Rep 2024; 16:403-417. [PMID: 38497046 PMCID: PMC10940808 DOI: 10.1016/j.ibneur.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/24/2024] [Indexed: 03/19/2024] Open
Abstract
Biomarkers are measured to evaluate physiological and pathological processes as well as responses to a therapeutic intervention. Biomarkers can be classified as diagnostic, prognostic, predictor, clinical, and therapeutic. In Alzheimer's disease (AD), multiple biomarkers have been reported so far. Nevertheless, finding a specific biomarker in AD remains a major challenge. Three databases, including PubMed, Web of Science, and Scopus were selected with the keywords of Alzheimer's disease, neuroimaging, biomarker, and blood. The results were finalized with 49 potential CSF/blood and 35 neuroimaging biomarkers. To distinguish normal from AD patients, amyloid-beta42 (Aβ42), plasma glial fibrillary acidic protein (GFAP), and neurofilament light (NFL) as potential biomarkers in cerebrospinal fluid (CSF) as well as the serum could be detected. Nevertheless, most of the biomarkers fairly change in the CSF during AD, listed as kallikrein 6, virus-like particles (VLP-1), galectin-3 (Gal-3), and synaptotagmin-1 (Syt-1). From the neuroimaging aspect, atrophy is an accepted biomarker for the neuropathologic progression of AD. In addition, Magnetic resonance spectroscopy (MRS), diffusion weighted imaging (DWI), diffusion tensor imaging (DTI), tractography (DTT), positron emission tomography (PET), and functional magnetic resonance imaging (fMRI), can be used to detect AD. Using neuroimaging and CSF/blood biomarkers, in combination with artificial intelligence, it is possible to obtain information on prognosis and follow-up on the different stages of AD. Hence physicians could select the suitable therapy to attenuate disease symptoms and follow up on the efficiency of the prescribed drug.
Collapse
Affiliation(s)
- Hossein Mohammadi
- Department of Bioimaging, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences (MUI), Isfahan, Islamic Republic of Iran
| | - Armin Ariaei
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Zahra Ghobadi
- Advanced Medical Imaging Ward, Pars Darman Medical Imaging Center, Karaj, Islamic Republic of Iran
| | - Enam Alhagh Charkhat Gorgich
- Department of Anatomy, School of Medicine, Iranshahr University of Medical Sciences, Iranshahr, Islamic Republic of Iran
| | - Auob Rustamzadeh
- Cellular and Molecular Research Center, Research Institute for Non-communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
| |
Collapse
|
4
|
Djekidel M. The changing landscape of nuclear medicine and a new era: the "NEW (Nu) CLEAR Medicine": a framework for the future. FRONTIERS IN NUCLEAR MEDICINE (LAUSANNE, SWITZERLAND) 2023; 3:1213714. [PMID: 39380958 PMCID: PMC11460298 DOI: 10.3389/fnume.2023.1213714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/13/2023] [Indexed: 10/10/2024]
Abstract
Nuclear Medicine is witnessing a revolution across a large spectrum of patient care applications, hardware, software and novel radiopharmaceuticals. We propose to offer a framework of the nuclear medicine practice of the future that incorporates multiple novelties and coined as the NEW (nu) Clear medicine. All these new developments offer a significant clarity and real clinical impact, and we need a concerted effort from all stakeholders in the field for bedside implementation and success.
Collapse
Affiliation(s)
- Mehdi Djekidel
- Radiology/Nuclear Medicine, Northwell Health, New York, NY, United States
| |
Collapse
|
5
|
Ozsahin I, Onakpojeruo EP, Uzun B, Uzun Ozsahin D, Butler TA. A Multi-Criteria Decision Aid Tool for Radiopharmaceutical Selection in Tau PET Imaging. Pharmaceutics 2023; 15:1304. [PMID: 37111789 PMCID: PMC10147085 DOI: 10.3390/pharmaceutics15041304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/09/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
The accumulation of pathologically misfolded tau is a feature shared by a group of neurodegenerative disorders collectively referred to as tauopathies. Alzheimer's disease (AD) is the most prevalent of these tauopathies. Immunohistochemical evaluation allows neuropathologists to visualize paired-helical filaments (PHFs)-tau pathological lesions, but this is possible only after death and only shows tau in the portion of brain sampled. Positron emission tomography (PET) imaging allows both the quantitative and qualitative analysis of pathology over the whole brain of a living subject. The ability to detect and quantify tau pathology in vivo using PET can aid in the early diagnosis of AD, provide a way to monitor disease progression, and determine the effectiveness of therapeutic interventions aimed at reducing tau pathology. Several tau-specific PET radiotracers are now available for research purposes, and one is approved for clinical use. This study aims to analyze, compare, and rank currently available tau PET radiotracers using the fuzzy preference ranking organization method for enrichment of evaluations (PROMETHEE), which is a multi-criteria decision-making (MCDM) tool. The evaluation is based on relatively weighted criteria, such as specificity, target binding affinity, brain uptake, brain penetration, and rates of adverse reactions. Based on the selected criteria and assigned weights, this study shows that a second-generation tau tracer, [18F]RO-948, may be the most favorable. This flexible method can be extended and updated to include new tracers, additional criteria, and modified weights to help researchers and clinicians select the optimal tau PET tracer for specific purposes. Additional work is needed to confirm these results, including a systematic approach to defining and weighting criteria and clinical validation of tracers in different diseases and patient populations.
Collapse
Affiliation(s)
- Ilker Ozsahin
- Brain Health Imaging Institute, Department of Radiology, Weill Cornell Medicine, New York, NY 10065, USA
- Operational Research Center in Healthcare, Near East University, Nicosia 99138, TRNC, Turkey
| | | | - Berna Uzun
- Operational Research Center in Healthcare, Near East University, Nicosia 99138, TRNC, Turkey
- Department of Statistics, Carlos III University of Madrid, Getafe, 28903 Madrid, Spain
| | - Dilber Uzun Ozsahin
- Operational Research Center in Healthcare, Near East University, Nicosia 99138, TRNC, Turkey
- Medical Diagnostic Imaging Department, College of Health Sciences & Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
| | - Tracy A. Butler
- Brain Health Imaging Institute, Department of Radiology, Weill Cornell Medicine, New York, NY 10065, USA
| |
Collapse
|
6
|
Tan Z, Haider A, Zhang S, Chen J, Wei J, Liao K, Li G, Wei H, Dong C, Ran W, Li Y, Li Y, Rong J, Li Y, Liang SH, Xu H, Wang L. Quantitative assessment of translocator protein (TSPO) in the non-human primate brain and clinical translation of [ 18F]LW223 as a TSPO-targeted PET radioligand. Pharmacol Res 2023; 189:106681. [PMID: 36746361 DOI: 10.1016/j.phrs.2023.106681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/12/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023]
Abstract
OBJECTIVES Translocator protein 18 kDa (TSPO) positron emission tomography (PET) can be harnessed for the non-invasive detection of macrophage-driven inflammation. [18F]LW223, a newly reported TSPO PET tracer which was insensitive to rs6971 polymorphism, showed favorable performance characteristics in a recent imaging study involving a rat myocardial infarction model. To enable quantitative neuroimaging with [18F]LW223, we conducted kinetic analysis in the non-human primate (NHP) brain. Further, we sought to assess the utility of [18F]LW223-based TSPO imaging in a first-in-human study. METHODS Radiosynthesis of [18F]LW223 was accomplished on an automated module, whereas molar activities, stability in formulation, lipophilicity and unbound free fraction (fu) of the probe were measured. Brain penetration and target specificity of [18F]LW223 in NHPs were corroborated by PET-MR imaging under baseline and pre-blocking conditions using the validated TSPO inhibitor, (R)-PK11195, at doses ranging from 5 to 10 mg/kg. Kinetic modeling was performed using one-tissue compartment model (1TCM), two-tissue compartment model (2TCM) and Logan graphical analyses, using dynamic PET data acquisition, arterial blood collection and metabolic stability testing. Clinical PET scans were performed in two healthy volunteers (HVs). Regional brain standard uptake value ratio (SUVr) was assessed for different time intervals. RESULTS [18F]LW223 was synthesized in non-decay corrected radiochemical yields (n.d.c. RCYs) of 33.3 ± 6.5% with molar activities ranging from 1.8 ± 0.7 Ci/µmol (n = 11). [18F]LW223 was stable in formulation for up to 4 h and LogD7.4 of 2.31 ± 0.13 (n = 6) and fu of 5.80 ± 1.42% (n = 6) were determined. [18F]LW223 exhibited good brain penetration in NHPs, with a peak SUV value of ca. 1.79 in the whole brain. Pre-treatment with (R)-PK11195 substantially accelerated the washout and attenuated the area under the time-activity curve, indicating in vivo specificity of [18F]LW223 towards TSPO. Kinetic modeling demonstrated that 2TCM was the most suitable model for [18F]LW223-based neuroimaging. Global transfer rate constants (K1) and total volumes of distribution (VT) were found to be 0.10 ± 0.01 mL/cm3/min and 2.30 ± 0.17 mL/cm3, respectively. Dynamic PET data analyses across distinct time windows revealed that the VT values were relatively stable after 60 min post-injection. In a preliminary clinical study with two healthy volunteers, [18F]LW223 exhibited good brain uptake and considerable tracer retention across all analyzed brain regions. Of note, an excellent correlation between SUVr with VT was obtained when assessing the time interval from 20 to 40 min post tracer injection (SUVr(20-40 min), R2 = 0.94, p < 0.0001), suggesting this time window may be suitable to estimate specific binding to TSPO in human brain. CONCLUSION Our findings indicate that [18F]LW223 is suitable for quantitative TSPO-targeted PET imaging in higher species. Employing state-of-the-art kinetic modeling, we found that [18F]LW223 was effective in mapping TSPO throughout the NHP brain, with best model fits obtained from 2TCM and Logan graphical analyses. Overall, our results indicate that [18F]LW223 exhibits favorable tracer performance characteristics in higher species, and this novel imaging tool may hold promise to provide effective neuroinflammation imaging in patients with neurological disease.
Collapse
Affiliation(s)
- Zhiqiang Tan
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Ahmed Haider
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Rd, Atlanta, GA 30322, USA
| | - Shaojuan Zhang
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Jiahui Chen
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Rd, Atlanta, GA 30322, USA
| | - Junjie Wei
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Kai Liao
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Guocong Li
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Huiyi Wei
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Chenchen Dong
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Wenqing Ran
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Ying Li
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Yuefeng Li
- Guangdong Landau Biotechnology Co. Ltd., Guangzhou 510555, China
| | - Jian Rong
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Rd, Atlanta, GA 30322, USA
| | - Yinlong Li
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Rd, Atlanta, GA 30322, USA
| | - Steven H Liang
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Rd, Atlanta, GA 30322, USA.
| | - Hao Xu
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China.
| | - Lu Wang
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China.
| |
Collapse
|
7
|
The Role of Molecular Imaging in Personalized Medicine. J Pers Med 2023; 13:jpm13020369. [PMID: 36836603 PMCID: PMC9959741 DOI: 10.3390/jpm13020369] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/13/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
The concept of personalized medicine refers to the tailoring of medical treatment to each patient's unique characteristics. Scientific advancements have led to a better understanding of how a person's unique molecular and genetic profile makes them susceptible to certain diseases. It provides individualized medical treatments that will be safe and effective for each patient. Molecular imaging modalities play an essential role in this aspect. They are used widely in screening, detection and diagnosis, treatment, assessing disease heterogeneity and progression planning, molecular characteristics, and long-term follow-up. In contrast to conventional imaging approaches, molecular imaging techniques approach images as the knowledge that can be processed, allowing for the collection of relevant knowledge in addition to the evaluation of enormous patient groups. This review presents the fundamental role of molecular imaging modalities in personalized medicine.
Collapse
|
8
|
Raval NR, Madsen CA, Shalgunov V, Nasser A, Battisti UM, Beaman EE, Juhl M, Jørgensen LM, Herth MM, Hansen HD, Plavén-Sigray P, Knudsen GM. Evaluation of the α-synuclein PET radiotracer (d 3)-[ 11C]MODAG-001 in pigs. Nucl Med Biol 2022; 114-115:42-48. [PMID: 36095921 DOI: 10.1016/j.nucmedbio.2022.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/08/2022] [Accepted: 08/08/2022] [Indexed: 12/27/2022]
Abstract
BACKGROUND A positron emission tomography (PET) radiotracer to neuroimage α-synuclein aggregates would be a crucial addition for early diagnosis and treatment development in disorders such as Parkinson's disease, where elevated aggregate levels are a histopathological hallmark. The radiotracer (d3)-[11C]MODAG-001 has recently shown promise for visualization of α-synuclein pre-formed fibrils (α-PFF) in rodents. We here test the radiotracer in a pig model where proteins are intracerebrally injected immediately before scanning. Four pigs were injected in one hemisphere with 150 μg α-PFF, and in the other hemisphere, either 75 μg α-PFF or human brain homogenate from either dementia with Lewy bodies (DLB) or Alzheimer's disease (AD) was injected. All pigs underwent one or two (d3)-[11C]MODAG-001 PET scans, quantified with the non-invasive Logan graphical analysis using the occipital cortex as a reference region. RESULTS The α-PFF and AD homogenate injected brain regions had high uptake of (d3)-[11C]MODAG-001 compared to the occipital cortex or cerebellum. BPND values in 150 μg α-PFF injected regions was 0.78, and in the AD homogenate injected regions was 0.73. By contrast, the DLB homogenate injected region did not differ in uptake and clearance compared to the reference regions. The time-activity curves and BPND values in the 150 μg and 75 μg injected regions of α-PFFs show a dose-dependent effect, and the PET signal could be blocked by pretreatment with unlabeled MODAG-001. CONCLUSION We find that both α-PFF and AD brain homogenates give rise to increased binding of (d3)-[11C]MODAG-001 when injected into the pig brain. Despite its limited specificity for cerebral α-synuclein pathology, (d3)-[11C]MODAG-001 shows promise as a lead tracer for future radiotracer development.
Collapse
Affiliation(s)
- Nakul Ravi Raval
- Neurobiology Research Unit, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Clara Aabye Madsen
- Neurobiology Research Unit, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Vladimir Shalgunov
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Clinical Physiology, Nuclear Medicine & PET, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | - Arafat Nasser
- Neurobiology Research Unit, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | - Umberto Maria Battisti
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Emily Eufaula Beaman
- Neurobiology Research Unit, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | - Morten Juhl
- Cardiology Stem Cell Centre, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | - Louise Møller Jørgensen
- Neurobiology Research Unit, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Copenhagen Spine Research Unit, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | - Matthias Manfred Herth
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Clinical Physiology, Nuclear Medicine & PET, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | - Hanne Demant Hansen
- Neurobiology Research Unit, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | - Pontus Plavén-Sigray
- Neurobiology Research Unit, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | - Gitte Moos Knudsen
- Neurobiology Research Unit, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
9
|
Duong MT, Wolk DA. Limbic-Predominant Age-Related TDP-43 Encephalopathy: LATE-Breaking Updates in Clinicopathologic Features and Biomarkers. Curr Neurol Neurosci Rep 2022; 22:689-698. [PMID: 36190653 PMCID: PMC9633415 DOI: 10.1007/s11910-022-01232-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2022] [Indexed: 01/27/2023]
Abstract
PURPOSE OF REVIEW Limbic-predominant age-related TDP-43 encephalopathy (LATE) is a recently defined neurodegenerative disease characterized by amnestic phenotype and pathological inclusions of TAR DNA-binding protein 43 (TDP-43). LATE is distinct from rarer forms of TDP-43 diseases such as frontotemporal lobar degeneration with TDP-43 but is also a common copathology with Alzheimer's disease (AD) and cerebrovascular disease and accelerates cognitive decline. LATE contributes to clinicopathologic heterogeneity in neurodegenerative diseases, so it is imperative to distinguish LATE from other etiologies. RECENT FINDINGS Novel biomarkers for LATE are being developed with magnetic resonance imaging (MRI) and positron emission tomography (PET). When cooccurring with AD, LATE exhibits identifiable patterns of limbic-predominant atrophy on MRI and hypometabolism on 18F-fluorodeoxyglucose PET that are greater than expected relative to levels of local AD pathology. Efforts are being made to develop TDP-43-specific radiotracers, molecularly specific biofluid measures, and genomic predictors of TDP-43. LATE is a highly prevalent neurodegenerative disease distinct from previously characterized cognitive disorders.
Collapse
Affiliation(s)
- Michael Tran Duong
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - David A Wolk
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Alzheimer's Disease Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Institute On Aging, Perelman School of Medicine, University of Pennsylvania, 3400 Spruce St, Philadelphia, PA, 19104, USA.
| |
Collapse
|
10
|
Differential Diagnosis of Alzheimer Disease vs. Mild Cognitive Impairment Based on Left Temporal Lateral Lobe Hypomethabolism on 18F-FDG PET/CT and Automated Classifiers. Diagnostics (Basel) 2022; 12:diagnostics12102425. [PMID: 36292114 PMCID: PMC9601187 DOI: 10.3390/diagnostics12102425] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/22/2022] [Accepted: 10/04/2022] [Indexed: 11/17/2022] Open
Abstract
Purpose: We evaluate the ability of Artificial Intelligence with automatic classification methods applied to semi-quantitative data from brain 18F-FDG PET/CT to improve the differential diagnosis between Alzheimer Disease (AD) and Mild Cognitive Impairment (MCI). Procedures: We retrospectively analyzed a total of 150 consecutive patients who underwent diagnostic evaluation for suspected AD (n = 67) or MCI (n = 83). All patients received brain 18F-FDG PET/CT according to the international guidelines, and images were analyzed both Qualitatively (QL) and Quantitatively (QN), the latter by a fully automated post-processing software that produced a z score metabolic map of 25 anatomically different cortical regions. A subset of n = 122 cases with a confirmed diagnosis of AD (n = 53) or MDI (n = 69) by 18–24-month clinical follow-up was finally included in the study. Univariate analysis and three automated classification models (classification tree –ClT-, ridge classifier –RC- and linear Support Vector Machine –lSVM-) were considered to estimate the ability of the z scores to discriminate between AD and MCI cases in. Results: The univariate analysis returned 14 areas where the z scores were significantly different between AD and MCI groups, and the classification accuracy ranged between 74.59% and 76.23%, with ClT and RC providing the best results. The best classification strategy consisted of one single split with a cut-off value of ≈ −2.0 on the z score from temporal lateral left area: cases below this threshold were classified as AD and those above the threshold as MCI. Conclusions: Our findings confirm the usefulness of brain 18F-FDG PET/CT QL and QN analyses in differentiating AD from MCI. Moreover, the combined use of automated classifications models can improve the diagnostic process since its use allows identification of a specific hypometabolic area involved in AD cases in respect to MCI. This data improves the traditional 18F-FDG PET/CT image interpretation and the diagnostic assessment of cognitive disorders.
Collapse
|
11
|
Zhou J, Benoit M, Sharoar MG. Recent advances in pre-clinical diagnosis of Alzheimer's disease. Metab Brain Dis 2022; 37:1703-1725. [PMID: 33900524 DOI: 10.1007/s11011-021-00733-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 04/05/2021] [Indexed: 11/26/2022]
Abstract
Alzheimer's disease (AD) is the most common dementia with currently no known cures or disease modifying treatments (DMTs), despite much time and effort from the field. Diagnosis and intervention of AD during the early pre-symptomatic phase of the disease is thought to be a more effective strategy. Therefore, the detection of biomarkers has emerged as a critical tool for monitoring the effect of new AD therapies, as well as identifying patients most likely to respond to treatment. The establishment of the amyloid/tau/neurodegeneration (A/T/N) framework in 2018 has codified the contexts of use of AD biomarkers in neuroimaging and bodily fluids for research and diagnostic purposes. Furthermore, a renewed drive for novel AD biomarkers and innovative methods of detection has emerged with the goals of adding additional insight to disease progression and discovery of new therapeutic targets. The use of biomarkers has accelerated the development of AD drugs and will bring new therapies to patients in need. This review highlights recent methods utilized to diagnose antemortem AD.
Collapse
Affiliation(s)
- John Zhou
- Department of Neuroscience, University of Connecticut Health, Farmington, CT, 06030, USA
- Molecular Medicine Program, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, 44195, USA
| | - Marc Benoit
- Department of Neuroscience, University of Connecticut Health, Farmington, CT, 06030, USA
| | - Md Golam Sharoar
- Department of Neuroscience, University of Connecticut Health, Farmington, CT, 06030, USA.
| |
Collapse
|
12
|
Ushizima D, Chen Y, Alegro M, Ovando D, Eser R, Lee W, Poon K, Shankar A, Kantamneni N, Satrawada S, Junior EA, Heinsen H, Tosun D, Grinberg LT. Deep learning for Alzheimer's disease: Mapping large-scale histological tau protein for neuroimaging biomarker validation. Neuroimage 2022; 248:118790. [PMID: 34933123 PMCID: PMC8983026 DOI: 10.1016/j.neuroimage.2021.118790] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 11/30/2021] [Accepted: 12/04/2021] [Indexed: 01/16/2023] Open
Abstract
Abnormal tau inclusions are hallmarks of Alzheimer's disease and predictors of clinical decline. Several tau PET tracers are available for neurodegenerative disease research, opening avenues for molecular diagnosis in vivo. However, few have been approved for clinical use. Understanding the neurobiological basis of PET signal validation remains problematic because it requires a large-scale, voxel-to-voxel correlation between PET and (immuno) histological signals. Large dimensionality of whole human brains, tissue deformation impacting co-registration, and computing requirements to process terabytes of information preclude proper validation. We developed a computational pipeline to identify and segment particles of interest in billion-pixel digital pathology images to generate quantitative, 3D density maps. The proposed convolutional neural network for immunohistochemistry samples, IHCNet, is at the pipeline's core. We have successfully processed and immunostained over 500 slides from two whole human brains with three phospho-tau antibodies (AT100, AT8, and MC1), spanning several terabytes of images. Our artificial neural network estimated tau inclusion from brain images, which performs with ROC AUC of 0.87, 0.85, and 0.91 for AT100, AT8, and MC1, respectively. Introspection studies further assessed the ability of our trained model to learn tau-related features. We present an end-to-end pipeline to create terabytes-large 3D tau inclusion density maps co-registered to MRI as a means to facilitate validation of PET tracers.
Collapse
Affiliation(s)
- Daniela Ushizima
- Bakar Institute for Computational Health Sciences, University of California San Francisco, CA, USA; Berkeley Institute for Data Science, University of California Berkeley, CA, USA; Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Yuheng Chen
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Maryana Alegro
- Bakar Institute for Computational Health Sciences, University of California San Francisco, CA, USA; Berkeley Institute for Data Science, University of California Berkeley, CA, USA; Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Dulce Ovando
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Rana Eser
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - WingHung Lee
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Kinson Poon
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Anubhav Shankar
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Namrata Kantamneni
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Shruti Satrawada
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | | | - Helmut Heinsen
- University of Sao Paulo Medical School, Sao Paulo, Brazil; Julius-Maximilians University Würzburg, Würzburg, Germany
| | - Duygu Tosun
- Department of Radiology, University of California San Francisco, San Francisco, CA, USA; Veterans Affairs San Francisco, CA, USA
| | - Lea T Grinberg
- Bakar Institute for Computational Health Sciences, University of California San Francisco, CA, USA; Department of Neurology, University of California San Francisco, San Francisco, CA, USA; University of Sao Paulo Medical School, Sao Paulo, Brazil; Department of Pathology, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
13
|
Masturzo L, Carra P, Erba PA, Morrocchi M, Pilleri A, Sportelli G, Belcari N. Monte Carlo Characterization of the Trimage Brain PET System. J Imaging 2022; 8:jimaging8020021. [PMID: 35200724 PMCID: PMC8878795 DOI: 10.3390/jimaging8020021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/13/2022] [Accepted: 01/20/2022] [Indexed: 11/16/2022] Open
Abstract
The TRIMAGE project aims to develop a brain-dedicated PET/MR/EEG (Positron Emission Tomography/Magnetic Resonance/Electroencephalogram) system that is able to perform simultaneous PET, MR and EEG acquisitions. The PET component consists of a full ring with 18 sectors. Each sector includes three square detector modules based on dual sstaggered LYSO:Ce matrices read out by SiPMs. Using Monte Carlo simulations and following NEMA (National Electrical Manufacturers Association) guidelines, image quality procedures have been applied to evaluate the performance of the PET component of the system. The performance are reported in terms of spatial resolution, uniformity, recovery coefficient, spill over ratio, noise equivalent count rate (NECR) and scatter fraction. The results show that the TRIMAGE system is at the top of the current brain PET technologies.
Collapse
Affiliation(s)
- Luigi Masturzo
- Department of Physics “E. Fermi”, University of Pisa, 56127 Pisa, Italy; (L.M.); (P.C.); (M.M.); (A.P.); (N.B.)
| | - Pietro Carra
- Department of Physics “E. Fermi”, University of Pisa, 56127 Pisa, Italy; (L.M.); (P.C.); (M.M.); (A.P.); (N.B.)
- National Institute of Nuclear Physics (INFN), Pisa Section, 56127 Pisa, Italy
| | - Paola Anna Erba
- Department of Translational Research and New Technology in Medicine and Surgery, Regional Center of Nuclear Medicine, Azienda Ospedaliero Universitaria Pisana, University of Pisa, 56126 Pisa, Italy;
| | - Matteo Morrocchi
- Department of Physics “E. Fermi”, University of Pisa, 56127 Pisa, Italy; (L.M.); (P.C.); (M.M.); (A.P.); (N.B.)
- National Institute of Nuclear Physics (INFN), Pisa Section, 56127 Pisa, Italy
| | - Alessandro Pilleri
- Department of Physics “E. Fermi”, University of Pisa, 56127 Pisa, Italy; (L.M.); (P.C.); (M.M.); (A.P.); (N.B.)
| | - Giancarlo Sportelli
- Department of Physics “E. Fermi”, University of Pisa, 56127 Pisa, Italy; (L.M.); (P.C.); (M.M.); (A.P.); (N.B.)
- National Institute of Nuclear Physics (INFN), Pisa Section, 56127 Pisa, Italy
- Correspondence:
| | - Nicola Belcari
- Department of Physics “E. Fermi”, University of Pisa, 56127 Pisa, Italy; (L.M.); (P.C.); (M.M.); (A.P.); (N.B.)
- National Institute of Nuclear Physics (INFN), Pisa Section, 56127 Pisa, Italy
| |
Collapse
|
14
|
Modemann DJ, Maharadhika A, Yamoune S, Kreyenschmidt AK, Maaß F, Kremers S, Breunig C, Sahlmann CO, Bucerius JA, Stalke D, Wiltfang J, Bouter Y, Müller CE, Bouter C, Meller B. Development of high-affinity fluorinated ligands for cannabinoid subtype 2 receptor, and in vitro evaluation of a radioactive tracer for imaging. Eur J Med Chem 2022; 232:114138. [DOI: 10.1016/j.ejmech.2022.114138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 11/04/2022]
|
15
|
Imidazo[1,2-b]pyridazine as privileged scaffold in medicinal chemistry: An extensive review. Eur J Med Chem 2021; 226:113867. [PMID: 34607244 DOI: 10.1016/j.ejmech.2021.113867] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/09/2021] [Accepted: 09/20/2021] [Indexed: 01/03/2023]
Abstract
Imidazo[1,2-b]pyridazine scaffold represents an important class of heterocyclic nucleus which provides various bioactives molecules. Among them, the successful kinase inhibitor ponatinib led to a resurgence of interest in exploring new imidazo[1,2-b]pyridazine-containing derivatives for their putative therapeutic applications in medicine. This present review intends to provide a state-of-the-art of this framework in medicinal chemistry from 1966 to nowadays, unveiling different aspects of its structure-activity relationships (SAR). This extensive literature surveil may guide medicinal chemists for the quest of novel imidazo[1,2-b]pyridazine compounds with enhanced pharmacokinetics profile and efficiency.
Collapse
|
16
|
Cimenser A, Hempel E, Travers T, Strozewski N, Martin K, Malchano Z, Hajós M. Sensory-Evoked 40-Hz Gamma Oscillation Improves Sleep and Daily Living Activities in Alzheimer's Disease Patients. Front Syst Neurosci 2021; 15:746859. [PMID: 34630050 PMCID: PMC8500065 DOI: 10.3389/fnsys.2021.746859] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 08/30/2021] [Indexed: 01/18/2023] Open
Abstract
Pathological proteins contributing to Alzheimer’s disease (AD) are known to disrupt normal neuronal functions in the brain, leading to unbalanced neuronal excitatory-inhibitory tone, distorted neuronal synchrony, and network oscillations. However, it has been proposed that abnormalities in neuronal activity directly contribute to the pathogenesis of the disease, and in fact it has been demonstrated that induction of synchronized 40 Hz gamma oscillation of neuronal networks by sensory stimulation reverses AD-related pathological markers in transgenic mice carrying AD-related human pathological genes. Based on these findings, the current study evaluated whether non-invasive sensory stimulation inducing cortical 40 Hz gamma oscillation is clinically beneficial for AD patients. Patients with mild to moderate AD (n = 22) were randomized to active treatment group (n = 14; gamma sensory stimulation therapy) or to sham group (n = 8). Participants in the active treatment group received precisely timed, 40 Hz visual and auditory stimulations during eye-closed condition to induce cortical 40 Hz steady-state oscillations in 1-h daily sessions over a 6-month period. Participants in the sham group were exposed to similar sensory stimulation designed to not evoke cortical 40 Hz steady-state oscillations that are observed in the active treatment patients. During the trial, nighttime activities of the patients were monitored with continuous actigraphy recordings, and their functional abilities were measured by Alzheimer’s Disease Cooperative Study – Activities of Daily Living (ADCS-ADL) scale. Results of this study demonstrated that 1-h daily therapy was well tolerated throughout the 6-month treatment period by all subjects. Patients receiving gamma sensory stimulation showed significantly reduced nighttime active periods, in contrast, to deterioration in sleep quality in sham group patients. Patients in the sham group also showed the expected, significant decline in ADCS-ADL scores, whereas patients in the gamma sensory stimulation group fully maintained their functional abilities over the 6-month period. These findings confirm the safe application of 40 Hz sensory stimulation in AD patients and demonstrate a high adherence to daily treatment. Furthermore, this is the first time that beneficial clinical effects of the therapy are reported, justifying expanded and longer trials to explore additional clinical benefits and disease-modifying properties of gamma sensory stimulation therapy. Clinical Trial Registration:clinicaltrials.gov, identifier: NCT03556280.
Collapse
Affiliation(s)
- Aylin Cimenser
- Cognito Therapeutics, Inc., Cambridge, MA, United States
| | - Evan Hempel
- Cognito Therapeutics, Inc., Cambridge, MA, United States
| | - Taylor Travers
- Cognito Therapeutics, Inc., Cambridge, MA, United States
| | | | - Karen Martin
- Cognito Therapeutics, Inc., Cambridge, MA, United States
| | - Zach Malchano
- Cognito Therapeutics, Inc., Cambridge, MA, United States
| | - Mihály Hajós
- Cognito Therapeutics, Inc., Cambridge, MA, United States.,Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
17
|
Soni N, Ora M, Bathla G, Nagaraj C, Boles Ponto LL, Graham MM, Saini J, Menda Y. Multiparametric magnetic resonance imaging and positron emission tomography findings in neurodegenerative diseases: Current status and future directions. Neuroradiol J 2021; 34:263-288. [PMID: 33666110 PMCID: PMC8447818 DOI: 10.1177/1971400921998968] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Neurodegenerative diseases (NDDs) are characterized by progressive neuronal loss, leading to dementia and movement disorders. NDDs broadly include Alzheimer's disease, frontotemporal lobar degeneration, parkinsonian syndromes, and prion diseases. There is an ever-increasing prevalence of mild cognitive impairment and dementia, with an accompanying immense economic impact, prompting efforts aimed at early identification and effective interventions. Neuroimaging is an essential tool for the early diagnosis of NDDs in both clinical and research settings. Structural, functional, and metabolic imaging modalities, including magnetic resonance imaging (MRI) and positron emission tomography (PET), are widely available. They show encouraging results for diagnosis, monitoring, and treatment response evaluation. The current review focuses on the complementary role of various imaging modalities in relation to NDDs, the qualitative and quantitative utility of newer MRI techniques, novel radiopharmaceuticals, and integrated PET/MRI in the setting of NDDs.
Collapse
Affiliation(s)
- Neetu Soni
- University of Iowa Hospitals and Clinics, USA
| | - Manish Ora
- Department of Nuclear Medicine, SGPGIMS, India
| | - Girish Bathla
- Neuroradiology Department, University of Iowa Hospitals and
Clinics, USA
| | - Chandana Nagaraj
- Department of Neuro Imaging and Interventional Radiology,
NIMHANS, India
| | | | - Michael M Graham
- Division of Nuclear Medicine, University of Iowa Hospitals and
Clinics, USA
| | - Jitender Saini
- Department of Neuro Imaging and Interventional Radiology,
NIMHANS, India
| | - Yusuf Menda
- University of Iowa Hospitals and Clinics, USA
| |
Collapse
|
18
|
Seiffert AP, Gómez-Grande A, Villarejo-Galende A, González-Sánchez M, Bueno H, Gómez EJ, Sánchez-González P. High Correlation of Static First-Minute-Frame (FMF) PET Imaging after 18F-Labeled Amyloid Tracer Injection with [ 18F]FDG PET Imaging. SENSORS (BASEL, SWITZERLAND) 2021; 21:5182. [PMID: 34372416 PMCID: PMC8348394 DOI: 10.3390/s21155182] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/26/2021] [Accepted: 07/28/2021] [Indexed: 01/17/2023]
Abstract
Dynamic early-phase PET images acquired with radiotracers binding to fibrillar amyloid-beta (Aβ) have shown to correlate with [18F]fluorodeoxyglucose (FDG) PET images and provide perfusion-like information. Perfusion information of static PET scans acquired during the first minute after radiotracer injection (FMF, first-minute-frame) is compared to [18F]FDG PET images. FMFs of 60 patients acquired with [18F]florbetapir (FBP), [18F]flutemetamol (FMM), and [18F]florbetaben (FBB) are compared to [18F]FDG PET images. Regional standardized uptake value ratios (SUVR) are directly compared and intrapatient Pearson's correlation coefficients are calculated to evaluate the correlation of FMFs to their corresponding [18F]FDG PET images. Additionally, regional interpatient correlations are calculated. The intensity profiles of mean SUVRs among the study cohort (r = 0.98, p < 0.001) and intrapatient analyses show strong correlations between FMFs and [18F]FDG PET images (r = 0.93 ± 0.05). Regional VOI-based analyses also result in high correlation coefficients. The FMF shows similar information to the cerebral metabolic patterns obtained by [18F]FDG PET imaging. Therefore, it could be an alternative to the dynamic imaging of early phase amyloid PET and be used as an additional neurodegeneration biomarker in amyloid PET studies in routine clinical practice while being acquired at the same time as amyloid PET images.
Collapse
Affiliation(s)
- Alexander P. Seiffert
- Biomedical Engineering and Telemedicine Centre, ETSI Telecomunicación, Center for Biomedical Technology, Universidad Politécnica de Madrid, 28040 Madrid, Spain;
| | - Adolfo Gómez-Grande
- Department of Nuclear Medicine, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain;
- Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain; (A.V.-G.); (H.B.)
| | - Alberto Villarejo-Galende
- Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain; (A.V.-G.); (H.B.)
- Department of Neurology, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain;
- Group of Neurodegenerative Diseases, Hospital 12 de Octubre Research Institute (imas12), 28041 Madrid, Spain
- Biomedical Research Networking Center in Neurodegenerative Diseases (CIBERNED), 28029 Madrid, Spain
| | - Marta González-Sánchez
- Department of Neurology, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain;
- Group of Neurodegenerative Diseases, Hospital 12 de Octubre Research Institute (imas12), 28041 Madrid, Spain
- Biomedical Research Networking Center in Neurodegenerative Diseases (CIBERNED), 28029 Madrid, Spain
| | - Héctor Bueno
- Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain; (A.V.-G.); (H.B.)
- Department of Cardiology and Instituto de Investigación Sanitaria (imas12), Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - Enrique J. Gómez
- Biomedical Engineering and Telemedicine Centre, ETSI Telecomunicación, Center for Biomedical Technology, Universidad Politécnica de Madrid, 28040 Madrid, Spain;
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
| | - Patricia Sánchez-González
- Biomedical Engineering and Telemedicine Centre, ETSI Telecomunicación, Center for Biomedical Technology, Universidad Politécnica de Madrid, 28040 Madrid, Spain;
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
| |
Collapse
|
19
|
Oldan JD, Jewells VL, Pieper B, Wong TZ. Complete Evaluation of Dementia: PET and MRI Correlation and Diagnosis for the Neuroradiologist. AJNR Am J Neuroradiol 2021; 42:998-1007. [PMID: 33926896 DOI: 10.3174/ajnr.a7079] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 11/14/2020] [Indexed: 12/12/2022]
Abstract
This article will familiarize neuroradiologists with the pathophysiology, clinical findings, and standard MR imaging and PET imaging features of multiple forms of dementia as well as new emerging techniques. Cases were compiled from multiple institutions with the goal of improved diagnostic accuracy and improved patient care as well as information about biomarkers on the horizon. Dementia topics addressed include the following: Alzheimer disease, frontotemporal dementia, cerebral amyloid angiopathy, Lewy body dementia, Parkinson disease and Parkinson disease variants, amyotrophic lateral sclerosis, multisystem atrophy, Huntington disease vascular dementia, and Creutzfeldt-Jakob disease.
Collapse
Affiliation(s)
- J D Oldan
- From the Department of Radiology (J.D.O., V.L.J), University of North Carolina, Chapel Hill, North Carolina
| | - V L Jewells
- From the Department of Radiology (J.D.O., V.L.J), University of North Carolina, Chapel Hill, North Carolina
| | - B Pieper
- Department of Radiology (B.P.), Richard L. Roudebush VA Medical Center, Indianapolis, Indiana
| | - T Z Wong
- Department of Radiology (T.Z.W.), Duke University Hospital, Durham, North Carolina
| |
Collapse
|
20
|
Abstract
This article presents an overview of imaging agents for PET that have been applied for research and diagnostic purposes in patients affected by dementia. Classified by the target which the agents visualize, seven groups of tracers can be distinguished, namely radiopharmaceuticals for: (1) Misfolded proteins (ß-amyloid, tau, α-synuclein), (2) Neuroinflammation (overexpression of translocator protein), (3) Elements of the cholinergic system, (4) Elements of monoamine neurotransmitter systems, (5) Synaptic density, (6) Cerebral energy metabolism (glucose transport/ hexokinase), and (7) Various other proteins. This last category contains proteins involved in mechanisms underlying neuroinflammation or cognitive impairment, which may also be potential therapeutic targets. Many receptors belong to this category: AMPA, cannabinoid, colony stimulating factor 1, metabotropic glutamate receptor 1 and 5 (mGluR1, mGluR5), opioid (kappa, mu), purinergic (P2X7, P2Y12), sigma-1, sigma-2, receptor for advanced glycation endproducts, and triggering receptor expressed on myeloid cells-1, besides several enzymes: cyclooxygenase-1 and 2 (COX-1, COX-2), phosphodiesterase-5 and 10 (PDE5, PDE10), and tropomyosin receptor kinase. Significant advances in neuroimaging have been made in the last 15 years. The use of 2-[18F]-fluoro-2-deoxy-D-glucose (FDG) for quantification of regional cerebral glucose metabolism is well-established. Three tracers for ß-amyloid plaques have been approved by the Food and Drug Administration and European Medicines Agency. Several tracers for tau neurofibrillary tangles are already applied in clinical research. Since many novel agents are in the preclinical or experimental stage of development, further advances in nuclear medicine imaging can be expected in the near future. PET studies with established tracers and tracers for novel targets may result in early diagnosis and better classification of neurodegenerative disorders and in accurate monitoring of therapy trials which involve these targets. PET data have prognostic value and may be used to assess the response of the human brain to interventions, or to select the appropriate treatment strategy for an individual patient.
Collapse
Affiliation(s)
- Aren van Waarde
- University of Groningen, University Medical Center Groningen, Department of Nuclear Medicine and Molecular Imaging, Groningen, the Netherlands.
| | - Sofia Marcolini
- University of Groningen, University Medical Center Groningen, Department of Neurology, Groningen, the Netherlands
| | - Peter Paul de Deyn
- University of Groningen, University Medical Center Groningen, Department of Neurology, Groningen, the Netherlands; University of Antwerp, Born-Bunge Institute, Neurochemistry and Behavior, Campus Drie Eiken, Wilrijk, Belgium
| | - Rudi A J O Dierckx
- University of Groningen, University Medical Center Groningen, Department of Nuclear Medicine and Molecular Imaging, Groningen, the Netherlands; Ghent University, Ghent, Belgium
| |
Collapse
|
21
|
Wang Y, Shi M, Hong Z, Kang J, Pan H, Yan C. MiR-130a-3p Has Protective Effects in Alzheimer's Disease via Targeting DAPK1. Am J Alzheimers Dis Other Demen 2021; 36:15333175211020572. [PMID: 34128388 PMCID: PMC10581145 DOI: 10.1177/15333175211020572] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The present study investigated the role and potential mechanisms of miR-130a-3p in AD. SH-SY5Y cells were treated with Aβ 1-42 to construct AD cell models. APP/PS1 mice were used for the animal experiments. MiR-130a-3p was downregulated in Aβ-induced SH-SY5Y cells. Overexpression of miR-130a-3p attenuates Aβ induced SH-SY5Y cell apoptosis. Low miR-130a-3p expression was detected in the hippocampus tissues of AD mice. The Morris water maze (MWM) results indicated that miR-130a-3p upregulation reduced the escape latency time and increased the time of AD mice spent in the target quadrant. DAPK1 was the target gene of miR-130a-3p. High DAPK1 mRNA level was detected in Aβ treated PC 12 cells and in the hippocampus tissues of AD mice. It was concluded that overexpression of miR-130a-3p may attenuate Aβ-induced neurotoxicity and improve the cognitive function of AD mice via targeting DAPK1.
Collapse
Affiliation(s)
- Yanbo Wang
- Department of Neurology, The Third Affiliated Hospital of Zhejiang Chinese Medicine University, Zhejiang, China
| | - Min Shi
- Department of Neurology, The Third Affiliated Hospital of Zhejiang Chinese Medicine University, Zhejiang, China
| | - Zhenmei Hong
- Department of Neurology, The Third Affiliated Hospital of Zhejiang Chinese Medicine University, Zhejiang, China
| | - Junling Kang
- Department of Neurology, The Third Affiliated Hospital of Zhejiang Chinese Medicine University, Zhejiang, China
| | - Haiyan Pan
- Department of Neurology, The Third Affiliated Hospital of Zhejiang Chinese Medicine University, Zhejiang, China
| | - Ci Yan
- Affiliated Mental Health Center, Zhejiang University School of Medicine, Zhejiang, China
| |
Collapse
|
22
|
Pipal RW, Stout KT, Musacchio PZ, Ren S, Graham TJA, Verhoog S, Gantert L, Lohith TG, Schmitz A, Lee HS, Hesk D, Hostetler ED, Davies IW, MacMillan DWC. Metallaphotoredox aryl and alkyl radiomethylation for PET ligand discovery. Nature 2020; 589:542-547. [PMID: 33238289 PMCID: PMC7856055 DOI: 10.1038/s41586-020-3015-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 11/18/2020] [Indexed: 11/09/2022]
Abstract
Positron emission tomography (PET) radioligands (radioactively labelled tracer compounds) are extremely useful for in vivo characterization of central nervous system drug candidates, neurodegenerative diseases and numerous oncology targets1. Both tritium and carbon-11 radioisotopologues are generally necessary for in vitro and in vivo characterization of radioligands2, yet there exist few radiolabelling protocols for the synthesis of either, inhibiting the development of PET radioligands. The synthesis of such radioligands also needs to be very rapid owing to the short half-life of carbon-11. Here we report a versatile and rapid metallaphotoredox-catalysed method for late-stage installation of both tritium and carbon-11 into the desired compounds via methylation of pharmaceutical precursors bearing aryl and alkyl bromides. Methyl groups are among the most prevalent structural elements found in bioactive molecules, and so this synthetic approach simplifies the discovery of radioligands. To demonstrate the breadth of applicability of this technique, we perform rapid synthesis of 20 tritiated and 10 carbon-11-labelled complex pharmaceuticals and PET radioligands, including a one-step radiosynthesis of the clinically used compounds [11C]UCB-J and [11C]PHNO. We further outline the direct utility of this protocol for preclinical PET imaging and its translation to automated radiosynthesis for routine radiotracer production in human clinical imaging. We also demonstrate this protocol for the installation of other diverse and pharmaceutically useful isotopes, including carbon-14, carbon-13 and deuterium.
Collapse
Affiliation(s)
- Robert W Pipal
- Merck Center for Catalysis at Princeton University, Princeton, NJ, USA
| | - Kenneth T Stout
- Merck Center for Catalysis at Princeton University, Princeton, NJ, USA
| | | | - Sumei Ren
- Labeled Compound Synthesis Group, Department of Process R&D, MRL, Merck & Co., Rahway, NJ, USA
| | - Thomas J A Graham
- Cyclotron Facility, Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | | | - Alexander Schmitz
- Cyclotron Facility, Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Hsiaoju S Lee
- Cyclotron Facility, Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - David Hesk
- Labeled Compound Synthesis Group, Department of Process R&D, MRL, Merck & Co., Rahway, NJ, USA.,Department of Isotopic Chemistry, RTI International, Durham, NC, USA
| | | | - Ian W Davies
- Merck Center for Catalysis at Princeton University, Princeton, NJ, USA
| | | |
Collapse
|
23
|
Dalton RM, Krishnan HS, Parker VS, Catanese MC, Hooker JM. Coevolution of Atomic Resolution and Whole-Brain Imaging for Tau Neurofibrillary Tangles. ACS Chem Neurosci 2020; 11:2513-2522. [PMID: 32786315 DOI: 10.1021/acschemneuro.0c00426] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Neurofibrillary tangle (NFT) imaging methods at the distinct scales of atomic and whole-brain resolutions have coevolved rapidly. Linking these two areas of research provides insight into how and why certain tau radiotracers, using positron emission tomography (PET), bind selectively to certain morphological forms of the NFT fibril. In this Review, a brief history and background for each research area is presented leading to a summary of the current state of knowledge, with a synopsis of PET NFT radiotracers and an outlook for near-term research efforts. The continued integration of information provided at the level of each of these scales of resolution will catalyze the next generation of clinical imaging technique development and enhance our interpretations of them.
Collapse
Affiliation(s)
- Raeann M. Dalton
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts 02129, United States
| | - Hema S. Krishnan
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts 02129, United States
- Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Victoria S. Parker
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts 02129, United States
- Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Mary C. Catanese
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts 02129, United States
- Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Jacob M. Hooker
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts 02129, United States
- Harvard Medical School, Charlestown, Massachusetts 02129, United States
| |
Collapse
|