1
|
Kalshetty A, Nazar A, Vimalnath KV, Chakravarty R, Chakraborty S, Basu S. [64Cu]Copper chloride PET-CT: a comparative evaluation of fasting and non-fasting states in patients of prostate carcinoma. Nucl Med Commun 2024:00006231-990000000-00320. [PMID: 39076002 DOI: 10.1097/mnm.0000000000001882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Altered copper metabolism in cancer has been linked to increased intracellular copper uptake mediated by human copper transporter 1, with [64Cu]Cu2+ as a potential biomarker for cancer theranostics. [64Cu]CuCl2 PET-CT though explored in various malignancies, a lack of standardized protocol exists, particularly regarding fasting status before imaging. This analysis aimed to evaluate the requirement of fasting for [64Cu]CuCl2 PET-CT along with temporal changes in physiological organ uptake in delayed scans. A total of 26 patients of prostate carcinoma who underwent [64Cu]CuCl2 PET-CT imaging were divided into two groups: (1) nonfasting (n = 12) and (2) fasting (n = 14). The nonfasting group received an average dose of 350 MBq, while the fasting group received 300 MBq of [64Cu]CuCl2, and PET-CT images acquired approximately 60-90 min (1 h image) and 3-3.5 h (delayed image) after intravenous injection of the tracer. An experienced nuclear medicine physician evaluated the images for qualitative assessment between the groups. Multiple spherical regions of interest were placed at sites of physiological organ uptake of the tracer and over the diseased lesions to measure the mean SUVmax. No significant difference was observed in the qualitative assessment of the images between the two groups (except for a slight predilection towards more hepatic tracer retention observed in the fasting group), including in the delayed images. The liver demonstrated the highest tracer uptake in all patients, with a mean SUVmax of 21.5 in the fasting group and 19.7 in the nonfasting group, showing no significant difference (P = 0.32). The kidneys, intestines, and salivary glands also showed similar trends of tracer uptake in both groups. The study illustrated that the fasting or nonfasting status did not affect image quality or semiquantitative measurements significantly in physiological organs and diseased lesions in patients with carcinoma prostate.
Collapse
Affiliation(s)
- Ashwini Kalshetty
- Radiation Medicine Centre, Bhabha Atomic Research Centre, Tata Memorial Centre Annexe, Parel
- Homi Bhabha National Institute
| | - Aamir Nazar
- Radiation Medicine Centre, Bhabha Atomic Research Centre, Tata Memorial Centre Annexe, Parel
- Homi Bhabha National Institute
| | - K V Vimalnath
- Homi Bhabha National Institute
- Radiopharmaceutical Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Rubel Chakravarty
- Homi Bhabha National Institute
- Radiopharmaceutical Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Sudipta Chakraborty
- Homi Bhabha National Institute
- Radiopharmaceutical Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Sandip Basu
- Radiation Medicine Centre, Bhabha Atomic Research Centre, Tata Memorial Centre Annexe, Parel
- Homi Bhabha National Institute
| |
Collapse
|
2
|
Shinada M, Takahashi M, Igarashi C, Matsumoto H, Hihara F, Tachibana T, Oikawa M, Suzuki H, Zhang MR, Higashi T, Kurihara H, Yoshii Y, Doi Y. 64Cu 2+ Complexes of Tripodal Amine Ligands' In Vivo Tumor and Liver Uptakes and Intracellular Cu Distribution in the Extrahepatic Bile Duct Carcinoma Cell Line TFK-1: A Basic Comparative Study. Pharmaceuticals (Basel) 2024; 17:820. [PMID: 39065671 PMCID: PMC11280065 DOI: 10.3390/ph17070820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 07/28/2024] Open
Abstract
Copper (Cu) is a critical element for cancer cell proliferation and considerably accumulates in the nucleus. 64Cu2+ is an anticancer radiopharmaceutical that targets the copper requirement of cancer cells. However, intravenously injected 64Cu2+ ions primarily accumulate in the liver. Ligand complexation of 64Cu2+ may be a promising method for increasing tumor delivery by reducing liver uptake. In this study, we used three tripodal amine ligands [tris(2-aminoethyl)amine (Tren), diethylenetriamine (Dien), and tris(2-pyridylmethyl)amine (TPMA)] to enclose 64Cu2+ ions and compared their in vivo tumor and liver uptakes using a tumor-bearing xenograft mouse model of the extrahepatic bile duct carcinoma cell line TFK-1. We examined intracellular Cu distribution using microparticle-induced X-ray emission (micro-PIXE) analysis of these compounds. 64Cu2+-Tren and 64Cu2+-Dien showed higher tumor uptake than 64Cu2+-TPMA and 64Cu2+ ions in TFK-1 tumors. Among the three 64Cu2+ complexes and 64Cu2+ ions, liver uptake was inversely correlated with tumor uptake. Micro-PIXE analysis showed that in vitro cellular uptake was similar to in vivo tumor uptake, and nuclear delivery was the highest for 64Cu2+-Tren. Conclusively, an inverse correlation between tumor and liver uptake was observed using three 64Cu2+ complexes of tripodal amine ligands and 64Cu2+ ions. These results provide useful information for the future development of anticancer 64Cu radiopharmaceuticals.
Collapse
Affiliation(s)
- Mitsuhiro Shinada
- Faculty of Science, Toho University, Funabashi 274-8510, Japan; (M.T.); (T.T.); (Y.D.)
- Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan; (C.I.); (H.M.); (F.H.); (M.O.); (H.S.); (M.-R.Z.); (T.H.)
- Department of Diagnostic Radiology, Kanagawa Cancer Center, Kanagawa 241-8515, Japan;
| | - Masashi Takahashi
- Faculty of Science, Toho University, Funabashi 274-8510, Japan; (M.T.); (T.T.); (Y.D.)
- Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan; (C.I.); (H.M.); (F.H.); (M.O.); (H.S.); (M.-R.Z.); (T.H.)
| | - Chika Igarashi
- Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan; (C.I.); (H.M.); (F.H.); (M.O.); (H.S.); (M.-R.Z.); (T.H.)
- Department of Diagnostic Radiology, Kanagawa Cancer Center, Kanagawa 241-8515, Japan;
| | - Hiroki Matsumoto
- Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan; (C.I.); (H.M.); (F.H.); (M.O.); (H.S.); (M.-R.Z.); (T.H.)
- Department of Diagnostic Radiology, Kanagawa Cancer Center, Kanagawa 241-8515, Japan;
| | - Fukiko Hihara
- Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan; (C.I.); (H.M.); (F.H.); (M.O.); (H.S.); (M.-R.Z.); (T.H.)
| | - Tomoko Tachibana
- Faculty of Science, Toho University, Funabashi 274-8510, Japan; (M.T.); (T.T.); (Y.D.)
- Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan; (C.I.); (H.M.); (F.H.); (M.O.); (H.S.); (M.-R.Z.); (T.H.)
| | - Masakazu Oikawa
- Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan; (C.I.); (H.M.); (F.H.); (M.O.); (H.S.); (M.-R.Z.); (T.H.)
| | - Hisashi Suzuki
- Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan; (C.I.); (H.M.); (F.H.); (M.O.); (H.S.); (M.-R.Z.); (T.H.)
| | - Ming-Rong Zhang
- Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan; (C.I.); (H.M.); (F.H.); (M.O.); (H.S.); (M.-R.Z.); (T.H.)
| | - Tatsuya Higashi
- Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan; (C.I.); (H.M.); (F.H.); (M.O.); (H.S.); (M.-R.Z.); (T.H.)
| | - Hiroaki Kurihara
- Department of Diagnostic Radiology, Kanagawa Cancer Center, Kanagawa 241-8515, Japan;
| | - Yukie Yoshii
- Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan; (C.I.); (H.M.); (F.H.); (M.O.); (H.S.); (M.-R.Z.); (T.H.)
- Department of Diagnostic Radiology, Kanagawa Cancer Center, Kanagawa 241-8515, Japan;
| | - Yoshihiro Doi
- Faculty of Science, Toho University, Funabashi 274-8510, Japan; (M.T.); (T.T.); (Y.D.)
| |
Collapse
|
3
|
Kirk FT, Munk DE, Swenson ES, Quicquaro AM, Vendelbo MH, Schilsky ML, Ott P, Sandahl TD. Effects of trientine and penicillamine on intestinal copper uptake: A mechanistic 64 Cu PET/CT study in healthy humans. Hepatology 2024; 79:1065-1074. [PMID: 38088886 PMCID: PMC11019997 DOI: 10.1097/hep.0000000000000708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 11/17/2023] [Indexed: 02/24/2024]
Abstract
BACKGROUND AND AIMS Trientine (TRI) and D-penicillamine (PEN) are used to treat copper overload in Wilson disease. Their main mode of action is thought to be through the facilitation of urinary copper excretion. In a recent study, TRI was noninferior to PEN despite lower 24-hour urinary copper excretion than PEN. We tested whether TRI and/or PEN also inhibit intestinal copper absorption. APPROACH AND RESULTS Sixteen healthy volunteers were examined with positron emission tomography (PET)/CT 1 and 15 hours after an oral Copper-64 ( 64 Cu) dose. They then received 7 days of either PEN or TRI (trientine tetrahydrochloride), after which the 64 Cu PET/CT scans were repeated. Venous blood samples were also collected. Pretreatment to posttreatment changes of the hepatic 64 Cu uptake reflect the effect of drugs on intestinal absorption. 64 Cu activity was normalized to dose and body weight and expressed as the mean standard uptake value. TRI (n=8) reduced hepatic 64 Cu activity 1 hour after 64 Cu dose from 6.17 (4.73) to 1.47 (2.97) standard uptake value, p <0.02, and after 15 hours from 14.24 (3.09) to 6.19 (3.43), p <0.02, indicating strong inhibition of intestinal 64 Cu absorption. PEN (n=8) slightly reduced hepatic standard uptake value at 15 hours, from 16.30 (5.63) to 12.17 (1.44), p <0.04. CONCLUSIONS In this mechanistic study, we show that TRI inhibits intestinal copper absorption, in addition to its cupriuretic effect. In contrast, PEN has modest effects on the intestinal copper absorption. This may explain why TRI and PEN are equally effective although urinary copper excretion is lower with TRI. The study questions whether the same therapeutic targets for 24-hour urinary excretion apply to both drugs.
Collapse
Affiliation(s)
- Frederik Teicher Kirk
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| | - Ditte Emilie Munk
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| | | | | | - Mikkel Holm Vendelbo
- Department of Nuclear Medicine & PET-center, Aarhus University Hospital, Aarhus, Denmark
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Michael L. Schilsky
- Department of Medicine, Section of Digestive Diseases, Yale School of Medicine, New Haven, Connecticut, USA
- Department of Surgery, Section of Transplant and Immunology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Peter Ott
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| | | |
Collapse
|
4
|
Kirk FT, Munk DE, Swenson ES, Quicquaro AM, Vendelbo MH, Larsen A, Schilsky ML, Ott P, Sandahl TD. Effects of tetrathiomolybdate on copper metabolism in healthy volunteers and in patients with Wilson disease. J Hepatol 2024; 80:586-595. [PMID: 38081365 DOI: 10.1016/j.jhep.2023.11.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/08/2023] [Accepted: 11/23/2023] [Indexed: 01/19/2024]
Abstract
BACKGROUND & AIMS In Wilson disease (WD), copper accumulates in the liver and brain causing disease. Bis-choline tetrathiomolybdate (TTM) is a potent copper chelator that may be associated with a lower risk of inducing paradoxical neurological worsening than conventional therapy for neurologic WD. To better understand the mode of action of TTM, we investigated its effects on copper absorption and biliary excretion. METHODS In a double-blind randomized setting, hepatic 64Cu activity was examined after orally administered 64Cu by PET/CT in 16 healthy volunteers before and after seven days of TTM treatment (15 mg/d) or placebo. Oral 64Cu was administered one hour after the final TTM dose. Changes in hepatic 64Cu activity reflected changes in intestinal 64Cu uptake. Additionally, in four patients with WD, the distribution of 64Cu in venous blood, liver, gallbladder, kidney, and brain was followed after i.v. 64Cu dosing for up to 68 hours before and after seven days of TTM (15 mg/day), using PET/MRI. Increased gallbladder 64Cu activity was taken as evidence of increased biliary 64Cu excretion. RESULTS In healthy volunteers, TTM reduced intestinal 64Cu uptake by 82% 15 hours after the oral 64Cu dose. In patients with WD, gallbladder 64Cu activity was negligible before and after TTM, while TTM effectively retained 64Cu in the blood, significantly reduced hepatic 64Cu activity at all time-points and significantly reduced cerebral 64Cu activity two hours after the intravenous 64Cu dose. CONCLUSIONS While we did not show an increase in biliary excretion of 64Cu following TTM administration, we demonstrated that TTM effectively inhibited most intestinal 64Cu uptake and retained 64Cu in the blood stream, limiting the exposure of organs like the liver and brain to 64Cu. IMPACT AND IMPLICATIONS Bis-choline tetrathiomolybdate (TTM) is an investigational copper chelator being developed for the treatment of Wilson disease. In animal models of Wilson disease, TTM has been shown to facilitate biliary copper excretion. In the present human study, TTM surprisingly did not facilitate biliary copper excretion but instead reduced intestinal copper uptake to a clinically significant degree. Our study builds on our understanding of human copper metabolism and the mechanism of action of TTM.
Collapse
Affiliation(s)
- Frederik Teicher Kirk
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark.
| | - Ditte Emilie Munk
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| | | | | | - Mikkel Holm Vendelbo
- Department of Nuclear Medicine & PET-center, Aarhus University Hospital, Aarhus, Denmark; Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Agnete Larsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Michael L Schilsky
- Department of Medicine, Section of Digestive Diseases, and Department of Surgery, Section of Transplant and Immunology, Yale School of Medicine, New Haven, CT, USA
| | - Peter Ott
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| | | |
Collapse
|
5
|
Baberwal P, Sonavane S, Vimalnath KV, Chakravarty R, Chakraborty S, Basu S. Normal physiological distribution and tumor localization of 64 CuCl 2 in different human malignancies along with semiquantitative scoring: a comparative evaluation with 18 Fluorodeoxyglucose ( 18 FDG) PET-CT. Nucl Med Commun 2024; 45:211-220. [PMID: 38165163 DOI: 10.1097/mnm.0000000000001804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
OBJECTIVE This study aimed to explore 64-Copper-Chloride ( 64 CuCl 2 ) PET-CT in various malignancies and demonstrate a head-to-head comparison of uptake on 64 CuCl 2 PET/computed tomography (CT) and 18 fluorodeoxyglucose ( 18 FDG)-PET/CT scans for different malignancies, with an emphasis on 18 FDG nonavid malignancies. METHODS Fifty-three patients diagnosed with various biopsy-proven malignancies (except prostate cancer) were recruited in this prospective study. All the patients underwent both 64 CuCl 2 PET/CT and 18 FDG-PET/CT. 64 CuCl 2 PET/CT was acquired at 1, 3 and 24 h time points. We studied the physiological biodistribution of 64 CuCl 2 in the various organs, corroborated the uptake of 64 CuCl 2 with various types of malignancies and comparison of their uptake with 18 FDG-PET/CT and their correlation with each other in various lesions. RESULTS The biodistribution study showed that the liver concentrated 64 CuCl 2 the most out of all the organs, followed by the pancreas and large intestine. Liver and intestinal activity increased subsequently with delayed imaging, and the washout of 64 CuCl 2 was noted in the pancreas in delayed images and followed a hepatobiliary excretion of tracer over a period of time. In lesion-wise analysis, it was noted that the primary neuroendocrine tumor, melanoma and renal/urothelial malignancy group showed more uptake of 64 CuCl 2 , than that in metastasis and vice-versa was noted in lung and soft tissue malignancies. Comparing it with 18 FDG, it was seen that FDG showed more uptake in lesions and showed no significant correlation (Kappa value: 0.089) with the uptake of 64 CuCl 2 in the lesion-wise comparison. CONCLUSION 64 CuCl 2 PET/CT did not show any added advantage over 18 FDG-PET/CT in the evaluation of the studied malignancies, both primary and their metastasis. Biodistribution studies showed the liver as the organ with maximum uptake, which implies it may hinder the detection of abdominal or hepatic involvement of the disease.
Collapse
Affiliation(s)
- Parth Baberwal
- Radiation Medicine Centre, Bhabha Atomic Research Centre, Tata Memorial Centre Annexe, Mumbai
- Homi Bhabha National Institute, Mumbai, India
| | - Sunita Sonavane
- Radiation Medicine Centre, Bhabha Atomic Research Centre, Tata Memorial Centre Annexe, Mumbai
- Homi Bhabha National Institute, Mumbai, India
| | - K V Vimalnath
- Homi Bhabha National Institute, Mumbai, India
- Radiopharmaceutical Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra, India
| | - Rubel Chakravarty
- Homi Bhabha National Institute, Mumbai, India
- Radiopharmaceutical Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra, India
| | - Sudipta Chakraborty
- Homi Bhabha National Institute, Mumbai, India
- Radiopharmaceutical Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra, India
| | - Sandip Basu
- Radiation Medicine Centre, Bhabha Atomic Research Centre, Tata Memorial Centre Annexe, Mumbai
- Homi Bhabha National Institute, Mumbai, India
| |
Collapse
|
6
|
Zhu L, Wang Q, Guo M, Fang H, Li T, Zhu Y, Jiang H, Xiao P, Hu M. Mesenchymal Stem Cell-Derived Exosomes in Various Chronic Liver Diseases: Hype or Hope? J Inflamm Res 2024; 17:171-189. [PMID: 38223423 PMCID: PMC10788055 DOI: 10.2147/jir.s439974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 12/27/2023] [Indexed: 01/16/2024] Open
Abstract
Chronic liver conditions are associated with high mortality rates and have a large adverse effect on human well-being as well as a significant financial burden. Currently, the only effective treatment available for the effects of liver failure and cirrhosis resulting from the progression of several chronic liver diseases is liver transplantation carried out at the original location. This implies that developing novel and effective treatments is imperative. Regenerative medicine has long been associated with stem cell therapy. Mesenchymal stem cells (MSCs), a type of cell with great differentiation potential, have become the preferred source for stem cell therapy. According to recent studies, MSCs' paracrine products-rather than their capacity for differentiation-play a significant therapeutic effect. MSC exosomes, a type of extracellular vesicle (MSC-EV), came into view as the paracrine substances of MSCs. According to research, MSC exosomes can maintain tissue homeostasis, which is necessary for healthy tissue function. All tissues contain them, and they take part in a variety of biological activities that support cellular activity and tissue regeneration in order to preserve tissue homeostasis. The outcomes support the use of MSCs and the exosomes they produce as a therapeutic option for a range of diseases. This review provides a brief overview of the source of MSC-EVs and outlines their physiological roles and biochemical capabilities. The elucidation of the role of MSC-EVs in the recovery and repair of hepatic tissues, as well as their contribution to maintaining tissue homeostasis, is discussed in relation to different chronic liver diseases. This review aims to provide new insights into the unique roles that MSC-EVs play in the treatment of chronic liver diseases.
Collapse
Affiliation(s)
- Lujian Zhu
- Department of Infectious Diseases, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, People’s Republic of China
| | - Qin Wang
- Department of Infectious Diseases, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, People’s Republic of China
| | - Maodong Guo
- Department of Gastroenterology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, People’s Republic of China
| | - Hao Fang
- Department of Traumatology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, People’s Republic of China
| | - Ting Li
- Department of Emergency Medicine, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Yin Zhu
- Department of Infectious Diseases, Taizhou Enze Medical Center (Group), Enze Hospital, Taizhou, People’s Republic of China
| | - Huimian Jiang
- Department of Infectious Diseases, the First Affiliated Hospital of Ningbo University, Ningbo, People’s Republic of China
| | - Peiguang Xiao
- Department of Gastroenterology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, People’s Republic of China
| | - Minli Hu
- Department of Gastroenterology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, People’s Republic of China
| |
Collapse
|
7
|
Aguila-Rosas J, García-Martínez BA, Ríos C, Diaz-Ruiz A, Obeso JL, Quirino-Barreda CT, Ibarra IA, Guzmán-Vargas A, Lima E. Copper release by MOF-74(Cu): a novel pharmacological alternative to diseases with deficiency of a vital oligoelement. RSC Adv 2024; 14:855-862. [PMID: 38174271 PMCID: PMC10759266 DOI: 10.1039/d3ra07109j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/11/2023] [Indexed: 01/05/2024] Open
Abstract
Copper deficiency can trigger various diseases such as Amyotrophic Lateral Sclerosis (ALS), Parkinson's disease (PD) and even compromise the development of living beings, as manifested in Menkes disease (MS). Thus, the regulated administration (controlled release) of copper represents an alternative to reduce neuronal deterioration and prevent disease progression. Therefore, we present, to the best of our knowledge, the first experimental in vitro investigation for the kinetics of copper release from MOF-74(Cu) and its distribution in vivo after oral administration in male Wistar rats. Taking advantage of the abundance and high periodicity of copper within the crystalline-nanostructured metal-organic framework material (MOF-74(Cu)), it was possible to control the release of copper due to the partial degradation of the material. Thus, we simultaneously corroborated a low accumulation of copper in the liver (the main detoxification organ) and a slight increase of copper in the brain (striatum and midbrain), demonstrating that MOF-74(Cu) is a promising pharmacological alternative (controlled copper source) to these diseases.
Collapse
Affiliation(s)
- Javier Aguila-Rosas
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México Circuito Exterior s/n, CU, Del. Coyoacán 04510 Ciudad de México Mexico
- Laboratorio de Farmacia Molecular y Liberación Controlada, Universidad Autónoma Metropolitana-Xochimilco Calzada del Hueso 1100, Col. Villa Quietud, C.P. 04960 CDMX Mexico
| | - Betzabeth A García-Martínez
- Laboratorio de Neurofarmacología Molecular, Universidad Autónoma Metropolitana-Xochimilco Calzada del Hueso 1100, Col. Villa Quietud, C.P. 04960 CDMX Mexico
- Neurociencias Básica, Instituto Nacional de Rehabilitación Calz. México Xochimilco 289, Col. Arenal de Guadalupe, C.P. 14389 CDMX Mexico
| | - Camilo Ríos
- Laboratorio de Neurofarmacología Molecular, Universidad Autónoma Metropolitana-Xochimilco Calzada del Hueso 1100, Col. Villa Quietud, C.P. 04960 CDMX Mexico
- Neurociencias Básica, Instituto Nacional de Rehabilitación Calz. México Xochimilco 289, Col. Arenal de Guadalupe, C.P. 14389 CDMX Mexico
| | - Araceli Diaz-Ruiz
- Dirección de Investigación, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez Insurgentes Sur 3877, La Fama, Tlalpan CP14269 CDMX Mexico
| | - Juan L Obeso
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México Circuito Exterior s/n, CU, Del. Coyoacán 04510 Ciudad de México Mexico
- Laboratorio Nacional de Ciencia, Tecnología y Gestión Integrada del Agua (LNAgua), Instituto Politécnico Nacional, CICATA U. Legaria Legaria 694 Irrigación, Miguel Hidalgo CDMX Mexico
| | - Carlos T Quirino-Barreda
- Laboratorio de Farmacia Molecular y Liberación Controlada, Universidad Autónoma Metropolitana-Xochimilco Calzada del Hueso 1100, Col. Villa Quietud, C.P. 04960 CDMX Mexico
| | - Ilich A Ibarra
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México Circuito Exterior s/n, CU, Del. Coyoacán 04510 Ciudad de México Mexico
| | - Ariel Guzmán-Vargas
- Laboratorio de Investigación en Materiales Porosos, Catálisis Ambiental y Química Fina, Instituto Politécnico Nacional, ESIQIE-SEPI-DIQI UPALM Edif. 7 P.B. Zacatenco, GAM 07738 CDMX Mexico
| | - Enrique Lima
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México Circuito Exterior s/n, CU, Del. Coyoacán 04510 Ciudad de México Mexico
| |
Collapse
|
8
|
Nazar AK, Kalshetty A, Chakravarty R, Chakraborty S, Basu S. Exploratory analysis of 64 CuCl 2 PET-CT imaging in carcinoma prostate and its comparison with 68 Ga-PSMA-11 and 18 F-FDG PET-CT. Nucl Med Commun 2023; 44:910-923. [PMID: 37578310 DOI: 10.1097/mnm.0000000000001744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
AIM Exploratory analysis of 64 CuCl 2 PET-CT imaging in patients of carcinoma prostate and its head-to-head comparison with 68 Ga-PSMA-11 and 18 F-FDG PET-CT. METHODS In this prospective study, 50 patients of biopsy-proven carcinoma prostate belonging to the entire spectrum of disease were evaluated, out of which 21 patients were for initial staging and 29 were for restaging/response evaluation. Both 64 CuCl 2 (early and delayed) and 68 Ga-PSMA-11 PET-CT were undertaken in all patients and 18 F-FDG PET-CT was done in patients whenever possible. All scans were done within a period of 2 weeks, without any interim therapeutic intervention. 64 CuCl 2 PET-CT was acquired at 1 and 3 h. We evaluated the physiological uptake of 64 CuCl 2 , correlated the uptake in primary with disease parameters like Gleason score and serum PSA levels, and compared the detection rates for primary and metastatic disease with 68 Ga-PSMA-11 and 18 F-FDG PET-CT. RESULTS The detection rates of primary disease were same for both 64 CuCl 2 and 68 Ga-PSMA-11 PET-CT and both agents performed similarly in detecting extra-prostatic disease. There was no statistically significant correlation observed between the uptake of 64 CuCl 2 in the primary lesion with disease parameters. With regard to the evaluation of metastatic disease, the detection rate of 64 CuCl 2 PET-CT was 86% for lymph nodes, 77.3% for skeletal metastases and 80.6% for soft tissue metastases while 68 Ga-PSMA-11 PET-CT performed better with detection rates were 98%, 99% and 85.4%, respectively. In 17 patients where 18 F-FDG PET-CT was available, 64 CuCl 2 PET-CT detected more metastatic disease than 18 F-FDG PET-CT. CONCLUSION 64 CuCl 2 PET-CT did not show any additional advantage over 68 Ga-PSMA-11 PET-CT in evaluation of local disease or for the assessment of metastatic disease. When compared to 68 Ga-PSMA-11 PET-CT, the absence of urinary bladder and ureteric activity allows better contrast for evaluating local disease, but it does not translate into increased disease detection.
Collapse
Affiliation(s)
- Aamir K Nazar
- Radiation Medicine Centre, Bhabha Atomic Research Centre, Tata Memorial Centre Annexe
- Homi Bhabha National Institute
| | - Ashwini Kalshetty
- Radiation Medicine Centre, Bhabha Atomic Research Centre, Tata Memorial Centre Annexe
- Homi Bhabha National Institute
| | - Rubel Chakravarty
- Homi Bhabha National Institute
- Radiopharmaceutical Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Sudipta Chakraborty
- Homi Bhabha National Institute
- Radiopharmaceutical Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Sandip Basu
- Radiation Medicine Centre, Bhabha Atomic Research Centre, Tata Memorial Centre Annexe
- Homi Bhabha National Institute
| |
Collapse
|
9
|
Affiliation(s)
- Eve A Roberts
- From the Departments of Paediatrics, Medicine, and Pharmacology and Toxicology, University of Toronto, and the Hospital for Sick Children Research Institute - both in Toronto; and the History of Science and Technology Programme, University of King's College, Halifax, NS, Canada (E.A.R.); and the Departments of Medicine and Surgery, Yale University School of Medicine, New Haven, CT (M.L.S.)
| | - Michael L Schilsky
- From the Departments of Paediatrics, Medicine, and Pharmacology and Toxicology, University of Toronto, and the Hospital for Sick Children Research Institute - both in Toronto; and the History of Science and Technology Programme, University of King's College, Halifax, NS, Canada (E.A.R.); and the Departments of Medicine and Surgery, Yale University School of Medicine, New Haven, CT (M.L.S.)
| |
Collapse
|
10
|
Ryan A, Twomey PJ, Cook P. Wilson's disease: best practice. J Clin Pathol 2023:jcp-2022-208551. [PMID: 37045587 DOI: 10.1136/jcp-2022-208551] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 03/29/2023] [Indexed: 04/14/2023]
Abstract
Wilson's disease is an autosomal recessive disorder arising from pathogenic variants in the Atp7b gene on chromosome 13. The defective translated ATPase copper (Cu) transport protein produced leads to Cu accumulation, initially affecting the liver but eventually affecting other cells. It is just over 20 years since the last Best Practice on this topic in this journal. This review is an update on this, covering new disease biomarkers, pathogenesis, assumptions around clinical features and developments in therapy.
Collapse
Affiliation(s)
- Aidan Ryan
- Chemical Pathology, Cork University Hospital, Cork, Ireland, Cork University Hospital Biochemistry Laboratory, Cork, Ireland
- Pathology, School of Medicine, University College Cork College of Medicine and Health, Cork, Ireland
| | - Patrick J Twomey
- Clinical Chemistry, St Vincent's University Hospital, Dublin, Ireland
- University College Dublin School of Medicine and Medical Science, Dublin, Ireland
| | - Paul Cook
- Laboratory Medicine, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| |
Collapse
|
11
|
Maisonial-Besset A, Witkowski T, Quintana M, Besse S, Gaumet V, Cordonnier A, Alliot C, Vidal A, Denevault-Sabourin C, Tarrit S, Levesque S, Miot-Noirault E, Chezal JM. Synthesis and In Vitro Comparison of DOTA, NODAGA and 15-5 Macrocycles as Chelators for the 64Cu-Labelling of Immunoconjugates. Molecules 2022; 28:molecules28010075. [PMID: 36615280 PMCID: PMC9822305 DOI: 10.3390/molecules28010075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/12/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022] Open
Abstract
The development of 64Cu-based immuno-PET radiotracers requires the use of copper-specific bifunctional chelators (BFCs) that contain functional groups allowing both convenient bioconjugation and stable copper complexes to limit in vivo bioreduction, transmetallation and/or transchelation. The excellent in vivo kinetic inertness of the pentaazamacrocyclic [64Cu]Cu-15-5 complex prompted us to investigate its potential for the 64Cu-labelling of monoclonal antibodies (mAbs), compared with the well-known NODAGA and DOTA chelators. To this end, three NODAGA, DOTA and 15-5-derived BFCs, containing a pendant azadibenzocyclooctyne moiety, were synthesised and a robust methodology was determined to form covalent bonds between them and azide-functionalised trastuzumab, an anti-HER2 mAb, using strain-promoted azide-alkyne cycloaddition. Unlike the DOTA derivative, the NODAGA- and 15-5-mAb conjugates were radiolabelled with 64Cu, obtaining excellent radiochemical yields, under mild conditions. Although all the radioimmunoconjugates showed excellent stability in PBS or mouse serum, [64Cu]Cu-15-5- and [64Cu]Cu-NODAGA-trastuzumab presented higher resistance to transchelation when challenged by EDTA. Finally, the immunoreactive fraction of the radioimmunoconjugates (88-94%) was determined in HER-2 positive BT474 human breast cancer cells, confirming that the bioconjugation and radiolabelling processes implemented had no significant impact on antigen recognition.
Collapse
Affiliation(s)
- Aurélie Maisonial-Besset
- Université Clermont Auvergne, Inserm, Imagerie Moléculaire et Stratégies Théranostiques, UMR 1240, F-63000 Clermont-Ferrand, France
| | - Tiffany Witkowski
- Université Clermont Auvergne, Inserm, Imagerie Moléculaire et Stratégies Théranostiques, UMR 1240, F-63000 Clermont-Ferrand, France
| | - Mercedes Quintana
- Université Clermont Auvergne, Inserm, Imagerie Moléculaire et Stratégies Théranostiques, UMR 1240, F-63000 Clermont-Ferrand, France
| | - Sophie Besse
- Université Clermont Auvergne, Inserm, Imagerie Moléculaire et Stratégies Théranostiques, UMR 1240, F-63000 Clermont-Ferrand, France
| | - Vincent Gaumet
- Université Clermont Auvergne, Inserm, Imagerie Moléculaire et Stratégies Théranostiques, UMR 1240, F-63000 Clermont-Ferrand, France
| | - Axel Cordonnier
- Université Clermont Auvergne, Inserm, Imagerie Moléculaire et Stratégies Théranostiques, UMR 1240, F-63000 Clermont-Ferrand, France
| | | | | | - Caroline Denevault-Sabourin
- GICC EA7501, Team IMT, Université de Tours, UFR de Médecine, Bâtiment Vialle, 10 Boulevard Tonnellé, BP 3223, CEDEX 01, 37032 Tours, France
| | - Sébastien Tarrit
- Université Clermont Auvergne, Inserm, Imagerie Moléculaire et Stratégies Théranostiques, UMR 1240, F-63000 Clermont-Ferrand, France
| | - Sophie Levesque
- Department of Nuclear Medicine, Jean Perrin Comprehensive Cancer Centre, F-63011 Clermont-Ferrand, France
| | - Elisabeth Miot-Noirault
- Université Clermont Auvergne, Inserm, Imagerie Moléculaire et Stratégies Théranostiques, UMR 1240, F-63000 Clermont-Ferrand, France
| | - Jean-Michel Chezal
- Université Clermont Auvergne, Inserm, Imagerie Moléculaire et Stratégies Théranostiques, UMR 1240, F-63000 Clermont-Ferrand, France
- Correspondence:
| |
Collapse
|
12
|
Houson HA, Tekin V, Lin W, Aluicio-Sarduy E, Engle JW, Lapi SE. PET Imaging of the Neurotensin Targeting Peptide NOTA-NT-20.3 Using Cobalt-55, Copper-64 and Gallium-68. Pharmaceutics 2022; 14:pharmaceutics14122724. [PMID: 36559218 PMCID: PMC9781609 DOI: 10.3390/pharmaceutics14122724] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/18/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
Introduction: Neurotensin receptor 1 (NTSR1) is an emerging target for imaging and therapy of many types of cancer. Nuclear imaging of NTSR1 allows for noninvasive assessment of the receptor levels of NTSR1 on the primary tumor, as well as potential metastases. This work focuses on a the neurotensin peptide analogue NT-20.3 conjugated to the chelator NOTA for radiolabeling for use in noninvasive positron emission tomography (PET). NOTA-NT-20.3 was radiolabeled with gallium-68, copper-64, and cobalt-55 to determine the effect that modification of the radiometal has on imaging and potential therapeutic properties of NOTA-NT-20.3. Methods: In vitro assays investigating cell uptake and subcellular localization of the radiolabeled peptides were performed using human colorectal adenocarcinoma HT29 cells. In vivo PET/CT imaging was used to determine the distribution and clearance of the peptide in mice bearing NTSR1 expressing HT29 tumors. Results: Cell uptake studies showed that the highest uptake was obtained with [55Co] Co-NOTA-NT-20.3 (18.70 ± 1.30%ID/mg), followed by [64Cu] Cu-NOTA-NT-20.3 (15.46 ± 0.91%ID/mg), and lastly [68Ga] Ga-NOTA-NT-20.3 (10.94 ± 0.46%ID/mg) (p < 0.001). Subcellular distribution was similar across the three constructs, with the membranous fraction containing the highest amount of radioactivity. In vivo PET/CT imaging of the three constructs revealed similar distribution and tumor uptake at the 1 h imaging timepoint. Tumor uptake was receptor-specific and blockable by co-injection of non-radiolabeled NOTA-NT-20.3. SUV ratios of tumor to heart at the 24 h imaging timepoint show that [55Co] Co-NOTA-NT-20.3 (20.28 ± 3.04) outperformed [64Cu] Cu-NOTA-NT-20.3 (6.52 ± 1.97). In conclusion, our studies show that enhanced cell uptake and increasing tumor to blood ratios over time displayed the superiority of [55Co] Co-NOTA-NT-20.3 over [68Ga] Ga-NOTA-NT-20.3 and [64Cu] Cu-NOTA-NT-20.3 for the targeting of NTSR1.
Collapse
Affiliation(s)
- Hailey A. Houson
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Volkan Tekin
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Wilson Lin
- Department of Medical Physics, University of Wisconsin, 1111 Highland Avenue, Madison, WI 53705, USA
| | - Eduardo Aluicio-Sarduy
- Department of Medical Physics, University of Wisconsin, 1111 Highland Avenue, Madison, WI 53705, USA
| | - Jonathan W. Engle
- Department of Medical Physics, University of Wisconsin, 1111 Highland Avenue, Madison, WI 53705, USA
- Department of Radiology, University of Wisconsin, 1111 Highland Avenue, Madison, WI 53705, USA
| | - Suzanne E. Lapi
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Correspondence:
| |
Collapse
|
13
|
Murillo O, Collantes M, Gazquez C, Moreno D, Hernandez-Alcoceba R, Barberia M, Ecay M, Tamarit B, Douar A, Ferrer V, Combal JP, Peñuelas I, Bénichou B, Gonzalez-Aseguinolaza G. High value of 64Cu as a tool to evaluate the restoration of physiological copper excretion after gene therapy in Wilson's disease. Mol Ther Methods Clin Dev 2022; 26:98-106. [PMID: 35795774 PMCID: PMC9234538 DOI: 10.1016/j.omtm.2022.06.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 06/03/2022] [Indexed: 11/28/2022]
Abstract
Wilson’s disease (WD) is an inherited disorder of copper metabolism associated with mutations in ATP7B gene. We have shown that the administration of an adeno-associated vector (AAV) encoding a mini version of human ATP7B (VTX-801) provides long-term correction of copper metabolism in a murine WD model. In preparation of a future clinical trial, we have evaluated by positron emission tomography (PET) the value of 64Cu biodistribution, excretion pattern, and blood kinetics as pharmacodynamic biomarkers of VTX-801 effects. Six-week-old WD mice were injected intravenously with increasing doses of VTX-801 and 3 weeks or 3 months later with [64Cu]CuCl2. Untreated WD and wild-type (WT) mice were included as controls. Control WD mice showed increased hepatic 64Cu retention, reduced fecal excretion of the radiotracer, and altered 64Cu blood kinetics (BK) compared with WT mice. VTX-801 treatment in WD mice resulted in a significant reduction of hepatic 64Cu accumulation, the restoration of fecal 64Cu excretion, and the correction of 64Cu BK. This study showed that VTX-801 restores physiological copper metabolism in WD mice, confirming the mechanism of action of VTX-801, and demonstrated the translational potential of [64Cu]CuCl2-PET to explore VTX-801 pharmacodynamics in a minimally invasive and sensitive manner in WD patients.
Collapse
Affiliation(s)
- Oihana Murillo
- Gene Therapy and Regulation of Gene Expression Program, Centro de Investigacion Medica Aplicada (CIMA), FIMA, Navarra Institute for Health Research (IdisNA), University of Navarra, Avda Pio XII 55, 31008 Pamplona, Spain
| | - Maria Collantes
- Department of Nuclear Medicine, IdisNA, Clinica Universidad de Navarra, 31008 Pamplona, Spain.,Translational Molecular Imaging Unit, IdisNA, Clinica Universidad de Navarra, 31008 Pamplona, Spain
| | - Cristina Gazquez
- Gene Therapy and Regulation of Gene Expression Program, Centro de Investigacion Medica Aplicada (CIMA), FIMA, Navarra Institute for Health Research (IdisNA), University of Navarra, Avda Pio XII 55, 31008 Pamplona, Spain
| | - Daniel Moreno
- Gene Therapy and Regulation of Gene Expression Program, Centro de Investigacion Medica Aplicada (CIMA), FIMA, Navarra Institute for Health Research (IdisNA), University of Navarra, Avda Pio XII 55, 31008 Pamplona, Spain
| | - Ruben Hernandez-Alcoceba
- Gene Therapy and Regulation of Gene Expression Program, Centro de Investigacion Medica Aplicada (CIMA), FIMA, Navarra Institute for Health Research (IdisNA), University of Navarra, Avda Pio XII 55, 31008 Pamplona, Spain
| | - Miren Barberia
- Gene Therapy and Regulation of Gene Expression Program, Centro de Investigacion Medica Aplicada (CIMA), FIMA, Navarra Institute for Health Research (IdisNA), University of Navarra, Avda Pio XII 55, 31008 Pamplona, Spain
| | - Margarita Ecay
- Translational Molecular Imaging Unit, IdisNA, Clinica Universidad de Navarra, 31008 Pamplona, Spain
| | | | | | | | | | - Ivan Peñuelas
- Department of Nuclear Medicine, IdisNA, Clinica Universidad de Navarra, 31008 Pamplona, Spain.,Translational Molecular Imaging Unit, IdisNA, Clinica Universidad de Navarra, 31008 Pamplona, Spain
| | | | - Gloria Gonzalez-Aseguinolaza
- Gene Therapy and Regulation of Gene Expression Program, Centro de Investigacion Medica Aplicada (CIMA), FIMA, Navarra Institute for Health Research (IdisNA), University of Navarra, Avda Pio XII 55, 31008 Pamplona, Spain.,Vivet Therapeutics S.L., Pamplona, Spain
| |
Collapse
|
14
|
Munk DE, Lund Laursen T, Teicher Kirk F, Vilstrup H, Ala A, Gormsen LC, Ott P, Damgaard Sandahl T. Effect of oral zinc regimens on human hepatic copper content: a randomized intervention study. Sci Rep 2022; 12:14714. [PMID: 36038585 PMCID: PMC9424214 DOI: 10.1038/s41598-022-18872-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 08/22/2022] [Indexed: 11/26/2022] Open
Abstract
Zinc inhibits intestinal copper uptake, an effect utilized for treating Wilson’s disease (WD). We used copper-64 (64Cu) PET/CT to examine how much four weeks of treatment with different zinc regimens reduced the hepatic 64Cu content after oral 64Cu administration and test if alternative regimens were noninferior to the standard regimen of zinc acetate 50 mg × 3 daily. Forty healthy persons were randomized to four different zinc protocols. The WD standard treatment zinc acetate 50 mg × 3 reduced the hepatic 64Cu content from 26.9 ± 7.5% to 13.3 ± 5.6% of the administered 64Cu. Zinc gluconate 50 mg × 3 was noninferior (P = 0.02) (35.8 ± 9.0% to 17.4 ± 7.5%). Zinc acetate 150 mg × 1 (33.1 ± 9.9% to 17.4 ± 7.5%) and zinc gluconate 150 mg × 1 (28.1 ± 6.7% to 22.0 ± 6.7%) were less effective. These effects were intra- and inter-individually highly variable, and 14% had no effect of any zinc regimen, which may explain disparities in zinc treatment efficacy in WD patients.
Collapse
Affiliation(s)
- Ditte Emilie Munk
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, Aarhus N, Denmark.
| | - Tea Lund Laursen
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, Aarhus N, Denmark
| | - Frederik Teicher Kirk
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, Aarhus N, Denmark
| | - Hendrik Vilstrup
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, Aarhus N, Denmark
| | - Aftab Ala
- Institute of Liver Studies, King's College Hospital NHS Foundation Trust, Denmark Hill, London, UK
| | - Lars Christian Gormsen
- Department of Nuclear Medicine and PET Centre, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, Aarhus, Denmark
| | - Peter Ott
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, Aarhus N, Denmark
| | - Thomas Damgaard Sandahl
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, Aarhus N, Denmark
| |
Collapse
|
15
|
Latgé A, Boisson F, Ouadi A, Averous G, Thomas L, Imperiale A, Brasse D. 64CuCl 2 PET Imaging of 4T1-Related Allograft of Triple-Negative Breast Cancer in Mice. Molecules 2022; 27:4869. [PMID: 35956819 PMCID: PMC9369569 DOI: 10.3390/molecules27154869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 11/29/2022] Open
Abstract
64CuCl2 is an economic radiotracer for oncologic PET investigations. In the present study, we characterized the uptake of 64CuCl2 in vivo by µPET/CT in an allograft 4T1-related mouse model (BALB/c) of advanced breast cancer. 18F-FDG was used as a comparator. Twenty-two animals were imaged 7-9 days following 4T1-cell implantation inside mammary glands. Dynamic 64CuCl2 µPET/CT acquisition or iterative static images up to 8 h p.i. were performed. Animal biodistribution and tumor uptake were first evaluated in vivo by µPET analysis and then assessed on tissue specimens. Concerning 18F-FDG µPET, a static acquisition was performed at 15 min and 60 min p.i. Tumor 64CuCl2 accumulation increased from 5 min to 4 h p.i., reaching a maximum value of 5.0 ± 0.20 %ID/g. Liver, brain, and muscle 64CuCl2 accumulation was stable over time. The tumor-to-muscle ratio remained stable from 1 to 8 h p.i., ranging from 3.0 to 3.7. Ex vivo data were consistent with in vivo estimations. The 18F-FDG tumor accumulation was 8.82 ± 1.03 %ID/g, and the tumor-to-muscle ratio was 4.54 ± 1.11. 64CuCl2 PET/CT provides good characterization of the 4T1-related breast cancer model and allows for exploration of non-glycolytic cellular pathways potentially of interest for theragnostic strategies.
Collapse
Affiliation(s)
- Adrien Latgé
- Nuclear Medicine and Molecular Imaging Department, Institut de Cancérologie de Strasbourg Europe (ICANS), 17 Rue Albert Calmette, 67200 Strasbourg, France;
| | - Frédéric Boisson
- Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, 23 Rue du Loess, 67037 Strasbourg, France; (F.B.); (A.O.); (L.T.); (D.B.)
- CNRS, UMR7178, 23 Rue du Loess, 67037 Strasbourg, France
| | - Ali Ouadi
- Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, 23 Rue du Loess, 67037 Strasbourg, France; (F.B.); (A.O.); (L.T.); (D.B.)
- CNRS, UMR7178, 23 Rue du Loess, 67037 Strasbourg, France
| | - Gerlinde Averous
- Department of Pathology, Hôpitaux Universitaires de Strasbourg, 1 Avenue Molière, 67200 Strasbourg, France;
| | - Lionel Thomas
- Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, 23 Rue du Loess, 67037 Strasbourg, France; (F.B.); (A.O.); (L.T.); (D.B.)
- CNRS, UMR7178, 23 Rue du Loess, 67037 Strasbourg, France
| | - Alessio Imperiale
- Nuclear Medicine and Molecular Imaging Department, Institut de Cancérologie de Strasbourg Europe (ICANS), 17 Rue Albert Calmette, 67200 Strasbourg, France;
- Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, 23 Rue du Loess, 67037 Strasbourg, France; (F.B.); (A.O.); (L.T.); (D.B.)
- CNRS, UMR7178, 23 Rue du Loess, 67037 Strasbourg, France
| | - David Brasse
- Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, 23 Rue du Loess, 67037 Strasbourg, France; (F.B.); (A.O.); (L.T.); (D.B.)
- CNRS, UMR7178, 23 Rue du Loess, 67037 Strasbourg, France
| |
Collapse
|
16
|
Sandahl TD, Gormsen LC, Kjærgaard K, Vendelbo MH, Munk DE, Munk OL, Bender D, Keiding S, Vase KH, Frisch K, Vilstrup H, Ott P. The pathophysiology of Wilson's disease visualized: A human 64 Cu PET study. Hepatology 2022; 75:1461-1470. [PMID: 34773664 PMCID: PMC9305563 DOI: 10.1002/hep.32238] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 11/08/2021] [Accepted: 11/08/2021] [Indexed: 12/08/2022]
Abstract
BACKGROUND AND AIMS Wilson's disease (WD) is a genetic disease with systemic accumulation of copper that leads to symptoms from the liver and brain. However, the underlying defects in copper transport kinetics are only partly understood. We sought to quantify hepatic copper turnover in patients with WD compared with heterozygote and control subjects using PET with copper-64 (64 Cu) as a tracer. Furthermore, we assessed the diagnostic potential of the method. APPROACH AND RESULTS Nine patients with WD, 5 healthy heterozygote subjects, and 8 healthy controls were injected with an i.v. bolus of 64 Cu followed by a 90-min dynamic PET scan of the liver and static whole-body PET/CT scans after 1.5, 6, and 20 h. Blood 64 Cu concentrations were measured in parallel. Hepatic copper retention and redistribution were evaluated by standardized uptake values (SUVs). At 90 min, hepatic SUVs were similar in the three groups. In contrast, at 20 h postinjection, the SUV in WD patients (mean ± SEM, 31 ± 4) was higher than in heterozygotes (24 ± 3) and controls (21 ± 4; p < 0.001). An SUV-ratio of hepatic 64 Cu concentration at 20 and 1.5 h completely discriminated between WD patients and control groups (p < 0.0001; ANOVA). By Patlak analysis of the initial 90 min of the PET scan, the steady-state hepatic clearance of 64 Cu was estimated to be slightly lower in patients with WD than in controls (p = 0.04). CONCLUSIONS 64 Cu PET imaging enables visualization and quantification of the hepatic copper retention characteristic for WD patients. This method represents a valuable tool for future studies of WD pathophysiology, and may assist the development of therapies, and accurate diagnosis.
Collapse
Affiliation(s)
| | - Lars C. Gormsen
- Department of Nuclear Medicine and PET‐CentreAarhus University HospitalAarhusDenmark
| | - Kristoffer Kjærgaard
- Department of Hepatology and GastroenterologyAarhus University HospitalAarhusDenmark
- Department of Nuclear Medicine and PET‐CentreAarhus University HospitalAarhusDenmark
| | - Mikkel Holm Vendelbo
- Department of Nuclear Medicine and PET‐CentreAarhus University HospitalAarhusDenmark
| | - Ditte Emilie Munk
- Department of Hepatology and GastroenterologyAarhus University HospitalAarhusDenmark
| | - Ole Lajord Munk
- Department of Nuclear Medicine and PET‐CentreAarhus University HospitalAarhusDenmark
| | - Dirk Bender
- Department of Nuclear Medicine and PET‐CentreAarhus University HospitalAarhusDenmark
| | - Susanne Keiding
- Department of Hepatology and GastroenterologyAarhus University HospitalAarhusDenmark
- Department of Nuclear Medicine and PET‐CentreAarhus University HospitalAarhusDenmark
| | - Karina H. Vase
- Department of Nuclear Medicine and PET‐CentreAarhus University HospitalAarhusDenmark
| | - Kim Frisch
- Department of Nuclear Medicine and PET‐CentreAarhus University HospitalAarhusDenmark
| | - Hendrik Vilstrup
- Department of Hepatology and GastroenterologyAarhus University HospitalAarhusDenmark
| | - Peter Ott
- Department of Hepatology and GastroenterologyAarhus University HospitalAarhusDenmark
| |
Collapse
|
17
|
Su Y, Zhang X, Li S, Xie W, Guo J. Emerging roles of the copper-CTR1 axis in tumorigenesis. Mol Cancer Res 2022; 20:1339-1353. [PMID: 35604085 DOI: 10.1158/1541-7786.mcr-22-0056] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/09/2022] [Accepted: 05/17/2022] [Indexed: 11/16/2022]
Abstract
Physiological roles of copper in metabolic homeostasis have been well established, however, whether and how copper is dysregulated in tumors and contributes to tumorigenesis are not recapitulated. Here, we comprehensively summarize the potential origins of copper accumulation in diseases especially in cancers by dysregulating copper transporter 1 (CTR1) or ATPase copper transporting alpha/beta (ATP7A/B) and further demonstrate the underlying mechanism of copper contributing to tumorigenesis. Specifically, in addition to modulating reactive oxygen species (ROS), angiogenesis, immune response, and metabolic homeostasis, copper recently has drawn more attention by directly binding to oncoproteins such as MEK, ULK, Memo, and PDK1 to activate distinct oncogenic signals and account for tumorigenesis. In the end, we disclose the emerging applications of copper in cancer diagnosis and highlight the promising strategies to target the copper-CTR1 axis for cancer therapies.
Collapse
Affiliation(s)
- Yaqing Su
- First Affiliated Hospital of Sun Yat-sen University, guangzhou, guangdong, China
| | - Xiaomei Zhang
- First Affiliated Hospital of Sun Yat-sen University, China
| | - Shaoqiang Li
- The First Affiliatd Hospital of Sun Yat-sen University, Guangzhou, China
| | - Wei Xie
- First Affiliated Hospital of Sun Yat-sen University, China
| | - Jianping Guo
- First Affiliated Hospital of Sun Yat-sen University, guangzhou, guangdong, China
| |
Collapse
|
18
|
Firth G, Blower JE, Bartnicka JJ, Mishra A, Michaels AM, Rigby A, Darwesh A, Al-Salemee F, Blower PJ. Non-invasive radionuclide imaging of trace metal trafficking in health and disease: "PET metallomics". RSC Chem Biol 2022; 3:495-518. [PMID: 35656481 PMCID: PMC9092424 DOI: 10.1039/d2cb00033d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 04/07/2022] [Indexed: 12/05/2022] Open
Abstract
Several specific metallic elements must be present in the human body to maintain health and function. Maintaining the correct quantity (from trace to bulk) and location at the cell and tissue level is essential. The study of the biological role of metals has become known as metallomics. While quantities of metals in cells and tissues can be readily measured in biopsy and autopsy samples by destructive analytical techniques, their trafficking and its role in health and disease are poorly understood. Molecular imaging with radionuclides - positron emission tomography (PET) and single photon emission computed tomography (SPECT) - is emerging as a means to non-invasively study the acute trafficking of essential metals between organs, non-invasively and in real time, in health and disease. PET scanners are increasingly widely available in hospitals, and methods for producing radionuclides of some of the key essential metals are developing fast. This review summarises recent developments in radionuclide imaging technology that permit such investigations, describes the radiological and physicochemical properties of key radioisotopes of essential trace metals and useful analogues, and introduces current and potential future applications in preclinical and clinical investigations to study the biology of essential trace metals in health and disease.
Collapse
Affiliation(s)
- George Firth
- School of Biomedical Engineering & Imaging Sciences, King's College London, St. Thomas' Hospital London UK
| | - Julia E Blower
- School of Biomedical Engineering & Imaging Sciences, King's College London, St. Thomas' Hospital London UK
| | - Joanna J Bartnicka
- School of Biomedical Engineering & Imaging Sciences, King's College London, St. Thomas' Hospital London UK
| | - Aishwarya Mishra
- School of Biomedical Engineering & Imaging Sciences, King's College London, St. Thomas' Hospital London UK
| | - Aidan M Michaels
- School of Biomedical Engineering & Imaging Sciences, King's College London, St. Thomas' Hospital London UK
| | - Alex Rigby
- School of Biomedical Engineering & Imaging Sciences, King's College London, St. Thomas' Hospital London UK
| | - Afnan Darwesh
- School of Biomedical Engineering & Imaging Sciences, King's College London, St. Thomas' Hospital London UK
| | - Fahad Al-Salemee
- School of Biomedical Engineering & Imaging Sciences, King's College London, St. Thomas' Hospital London UK
| | - Philip J Blower
- School of Biomedical Engineering & Imaging Sciences, King's College London, St. Thomas' Hospital London UK
| |
Collapse
|
19
|
Recent Advances in Cancer Imaging with 64CuCl2 PET/CT. Nucl Med Mol Imaging 2022; 56:80-85. [PMID: 35464672 PMCID: PMC8976861 DOI: 10.1007/s13139-022-00738-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 01/23/2022] [Accepted: 01/28/2022] [Indexed: 10/19/2022] Open
Abstract
Copper is required for cancer cell proliferation and tumor angiogenesis. Radioactive copper-64 chloride (64CuCl2) is a useful radiotracer for cancer imaging with position emission tomography (PET) based on increased cellular uptake of copper mediated by human copper transporter 1 (hCtr1) expressed on cancer cell membrane. Significant progress has been made in research of using 64CuCl2 as a radiotracer for cancer imaging with PET. Radiation dosimetry study in humans demonstrated radiation safety of 64CuCl2. Recently, 64CuCl2 was successfully used for PET imaging of prostate cancer, bladder cancer, glioblastoma multiforme (GBM), and non-small cell lung carcinoma in humans. Based on the findings from the preclinical research studies, 64CuCl2 PET/CT also holds potential for diagnostic imaging of human hepatocellular carcinoma (HCC), malignant melanoma, and detection of intracranial metastasis of copper-avid tumors based on low physiological background of radioactive copper uptake in the brain. Copper-64 radionuclide emits both β+ and β- particles, suggesting therapeutic potential of 64CuCl2 for radionuclide cancer therapy of copper-avid tumors. Recent progress in production of therapeutic copper-67 radionuclide invites clinical research in use of theranostic pair of 64CuCl2 and 67CuCl2 for cancer imaging and radionuclide therapy.
Collapse
|
20
|
Hansen SB, Bender D. Advancement in production of radiotracers. Semin Nucl Med 2021; 52:266-275. [PMID: 34836618 DOI: 10.1053/j.semnuclmed.2021.10.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 10/19/2021] [Indexed: 11/11/2022]
Abstract
After introduction of the first commercial combined PET and/or CT technology in 2001, this diagnostic tool quickly became a clinical success and was considered the fastest growing diagnostic imaging technology ever. However, this technique is very dependent on the availability of positron emitting isotopes and radiochemistry to incorporate the radioactive isotopes into larger molecules of physiological interest. Within this review article a historical overview starting with the first applications of positron emitting isotopes in the 1930's is presented. Afterwards a more detailed presentation summarizing the physical basis and advancements in cyclotron technology is given. Radiochemical and/or pharmaceutical advancements are presented systematically for the most significant isotopes like 15O, 13N, 11C, 18F and 68Ga Besides these major PET isotopes, advancements of other radio-metals and future perspectives regarding application of new radionuclides will be discussed. Finally, very interesting new and compact accelerator technology and microfluidic chemical reaction approaches will be discussed. Especially, new compact accelerator technology might be new quantum leap within this radiodiagnostic technology and might result in even further prevalence, ultimately envisioned by the dose-on-demand concept that will be briefly discussed.
Collapse
Affiliation(s)
- Søren Baarsgaard Hansen
- Department of Nuclear Medicine and PET Center, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
| | - Dirk Bender
- Department of Nuclear Medicine and PET Center, Aarhus University Hospital, Aarhus, Denmark; Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
21
|
Al-Qahtani M, Behe M, Bormans G, Carlucci G, Dasilva J, Decristoforo C, Elsinga PH, Kopka K, Li XG, Mach R, Middel O, Passchier J, Patt M, Penuelas I, Rey A, Scott PJH, Todde S, Toyohara J, Vugts D. Highlight selection of radiochemistry and radiopharmacy developments by editorial board (January-June 2020). EJNMMI Radiopharm Chem 2021; 6:5. [PMID: 33507426 PMCID: PMC7843736 DOI: 10.1186/s41181-020-00118-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 12/26/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The Editorial Board of EJNMMI Radiopharmacy and Chemistry releases a biyearly highlight commentary to describe trends in the field. RESULTS This commentary of highlights has resulted in 19 different topics selected by each member of the Editorial Board addressing a variety of aspects ranging from novel radiochemistry to first in man application of novel radiopharmaceuticals. CONCLUSION Trends in radiochemistry and radiopharmacy are highlighted demonstrating the progress in the research field being the scope of EJNMMI Radiopharmacy and Chemistry.
Collapse
Affiliation(s)
| | - Martin Behe
- Paul Scherrer Institute, Villigen, Switzerland
| | - Guy Bormans
- Katholieke Universiteit Leuven, Leuven, Belgium
| | - Giuseppe Carlucci
- UCLA Molecular and Medical Pharmacology Department, Los Angeles, USA
| | | | | | - Philip H. Elsinga
- Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713GZ Groningen, The Netherlands
| | - Klaus Kopka
- Helmholtz Zentrum Dresden Rossendorf, Dresden, Germany
| | | | - Robert Mach
- University of Pennsylvania, Philadelphia, USA
| | - Oskar Middel
- St Olavs Hospital and Norges teknisk-naturvitenskapelige universitet (NTNU), Trondheim, Norway
| | | | | | | | - Ana Rey
- Universidad de la Republica, Montevideo, Uruguay
| | | | - Sergio Todde
- Tecnomed Foundation, University of Milano - Bicocca, Milan, Italy
| | - Jun Toyohara
- Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | | |
Collapse
|
22
|
Bolzati C, Duatti A. The emerging value of 64Cu for molecular imaging and therapy. THE QUARTERLY JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING : OFFICIAL PUBLICATION OF THE ITALIAN ASSOCIATION OF NUCLEAR MEDICINE (AIMN) [AND] THE INTERNATIONAL ASSOCIATION OF RADIOPHARMACOLOGY (IAR), [AND] SECTION OF THE SOCIETY OF RADIOPHARMACEUTICAL CHEMISTRY AND BIOLOGY 2020; 64:329-337. [PMID: 33026210 DOI: 10.23736/s1824-4785.20.03292-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Along with other novel metallic radionuclides, copper-64 (64Cu) is currently being investigated as an alternative option to the gallium-68 (68Ga) and lutetium-177 (177Lu) radiopharmaceuticals widely used for targeting somatostatin receptors, expressed by neuroendocrine tumors (NETs), and recently prostate specific membrane antigen (PSMA), expressed by prostate cancer cells. This interest is mostly driven by the peculiar nuclear properties of 64Cu that make it an almost ideal example of theranostic radionuclide. In fact, 64Cu emits both low-energy positrons, β- particles and a swarm of Auger electrons. This combination of different emissions may allow to collect high-resolution PET images, but also to use the same radiopharmaceutical for eliciting a therapeutic effect. Another unique behavior of 64Cu originates from the fundamental biological role played in organisms by the ionic forms of the copper element, which is naturally involved in a multitude of cellular processes including cell replication. These intrinsic biological characteristics has led to the discovery that 64Cu, under its simplest dicationic form Cu2+, is able to specifically target a variety of cancerous cells and to detect the onset of a metastatic process in its initial stage. This short review reports an outline of the status of 64Cu radiopharmaceuticals and of the most relevant results that are constantly disclosed by preclinical and investigational clinical studies.
Collapse
Affiliation(s)
| | - Adriano Duatti
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Ferrara, Italy -
| |
Collapse
|