1
|
Thacharodi A, Singh P, Meenatchi R, Tawfeeq Ahmed ZH, Kumar RRS, V N, Kavish S, Maqbool M, Hassan S. Revolutionizing healthcare and medicine: The impact of modern technologies for a healthier future-A comprehensive review. HEALTH CARE SCIENCE 2024; 3:329-349. [PMID: 39479277 PMCID: PMC11520245 DOI: 10.1002/hcs2.115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 07/25/2024] [Accepted: 08/01/2024] [Indexed: 11/02/2024]
Abstract
The increasing integration of new technologies is driving a fundamental revolution in the healthcare sector. Developments in artificial intelligence (AI), machine learning, and big data analytics have completely transformed the diagnosis, treatment, and care of patients. AI-powered solutions are enhancing the efficiency and accuracy of healthcare delivery by demonstrating exceptional skills in personalized medicine, early disease detection, and predictive analytics. Furthermore, telemedicine and remote patient monitoring systems have overcome geographical constraints, offering easy and accessible healthcare services, particularly in underserved areas. Wearable technology, the Internet of Medical Things, and sensor technologies have empowered individuals to take an active role in tracking and managing their health. These devices facilitate real-time data collection, enabling preventive and personalized care. Additionally, the development of 3D printing technology has revolutionized the medical field by enabling the production of customized prosthetics, implants, and anatomical models, significantly impacting surgical planning and treatment strategies. Accepting these advancements holds the potential to create a more patient-centered, efficient healthcare system that emphasizes individualized care, preventive care, and better overall health outcomes. This review's novelty lies in exploring how these technologies are radically transforming the healthcare industry, paving the way for a more personalized and effective healthcare for all. It highlights the capacity of modern technology to revolutionize healthcare delivery by addressing long-standing challenges and improving health outcomes. Although the approval and use of digital technology and advanced data analysis face scientific and regulatory obstacles, they have the potential for transforming translational research. as these technologies continue to evolve, they are poised to significantly alter the healthcare environment, offering a more sustainable, efficient, and accessible healthcare ecosystem for future generations. Innovation across multiple fronts will shape the future of advanced healthcare technology, revolutionizing the provision of healthcare, enhancing patient outcomes, and equipping both patients and healthcare professionals with the tools to make better decisions and receive personalized treatment. As these technologies continue to develop and become integrated into standard healthcare practices, the future of healthcare will probably be more accessible, effective, and efficient than ever before.
Collapse
Affiliation(s)
- Aswin Thacharodi
- Department of Research and DevelopmentDr. Thacharodi's LaboratoriesPuducherryIndia
| | - Prabhakar Singh
- Department of Biotechnology, School of Bio and Chemical EngineeringSathyabama Institute of Science and TechnologyChennaiTamilnaduIndia
| | - Ramu Meenatchi
- Department of Biotechnology, SRM Institute of Science and TechnologyFaculty of Science and Humanities, KattankulathurChengalpattuTamilnaduIndia
| | - Z. H. Tawfeeq Ahmed
- Department of Biotechnology, School of Bio and Chemical EngineeringSathyabama Institute of Science and TechnologyChennaiTamilnaduIndia
| | - Rejith R. S. Kumar
- Department of Biotechnology, School of Bio and Chemical EngineeringSathyabama Institute of Science and TechnologyChennaiTamilnaduIndia
| | - Neha V
- Department of Biotechnology, School of Bio and Chemical EngineeringSathyabama Institute of Science and TechnologyChennaiTamilnaduIndia
| | - Sanjana Kavish
- Department of Biotechnology, School of Bio and Chemical EngineeringSathyabama Institute of Science and TechnologyChennaiTamilnaduIndia
| | - Mohsin Maqbool
- Sidney Kimmel Cancer CenterJefferson Health Thomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
| | - Saqib Hassan
- Department of Biotechnology, School of Bio and Chemical EngineeringSathyabama Institute of Science and TechnologyChennaiTamilnaduIndia
- Future Leaders Mentoring FellowAmerican Society for MicrobiologyWashingtonUSA
| |
Collapse
|
2
|
Agarwal P, Kambala SR, Dubey SR, Bhoyar A, Jain R, Selukar MS, Tawade SU. A Case Report on Enhancing the Dexterity of Finger Prostheses Through the Use of a 3D-Printed Joint Emulator. Cureus 2024; 16:e69142. [PMID: 39398821 PMCID: PMC11469194 DOI: 10.7759/cureus.69142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 09/10/2024] [Indexed: 10/15/2024] Open
Abstract
After a traumatic amputation, losing all or part of a finger can be detrimental to one's physical and mental health. Benefits from an esthetically pleasing prosthesis might be psychological, practical, and restorative. Prerequisites for an optimal finger prosthesis include helping the user grasp, absorb, and transfer forces to the hand; the prosthesis should also seem natural and allow for gesture expression. This case study describes how a 3D-printed joint emulator simulates natural joint mobility, significantly enhancing the patient's functional capacity to perform fundamental everyday tasks.
Collapse
Affiliation(s)
- Pragati Agarwal
- Department of Prosthodontics, Sharad Pawar Dental College and Hospital, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Seema R Kambala
- Department of Prosthodontics, Sharad Pawar Dental College and Hospital, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Surekha R Dubey
- Department of Prosthodontics, Sharad Pawar Dental College and Hospital, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Anjali Bhoyar
- Department of Prosthodontics, Sharad Pawar Dental College and Hospital, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Ritul Jain
- Department of Prosthodontics, Sharad Pawar Dental College and Hospital, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Madhavi S Selukar
- Department of Prosthodontics, Sharad Pawar Dental College and Hospital, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Shubham U Tawade
- Department of Prosthodontics, Sharad Pawar Dental College and Hospital, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
3
|
Noel OF, Dumbrava MG, Daoud D, Kammien AJ, Kauke-Navarro M, Pomahac B, Colen D. Vascularized Composite Allograft Versus Prosthetic for Reconstruction After Facial and Hand Trauma: Comparing Cost, Complications, and Long-term Outcome. Ann Plast Surg 2024; 92:100-105. [PMID: 37962243 DOI: 10.1097/sap.0000000000003731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
ABSTRACT In the past decade, vascularized composite allotransplantation (VCA) has become clinical reality for reconstruction after face and hand trauma. It offers patients the unique opportunity to regain form and function in a way that had only been achieved with traditional reconstruction or with the use of prostheses. On the other hand, prostheses for facial and hand reconstruction have continued to evolve over the years and, in many cases, represent the primary option for patients after hand and face trauma. We compared the cost, associated complications, and long-term outcomes of VCA with prostheses for reconstruction of the face and hand/upper extremity. Ultimately, VCA and prostheses represent 2 different reconstructive options with distinct benefit profiles and associated limitations and should ideally not be perceived as competing choices. Our work adds a valuable component to the general framework guiding the decision to offer VCA or prostheses for reconstruction after face and upper extremity trauma.
Collapse
Affiliation(s)
- Olivier F Noel
- From the Division of Plastic and Reconstructive Surgery, Yale-New Haven Hospital, Yale School of Medicine, New Haven, CT
| | | | - Deborah Daoud
- Department of Surgery, Rutgers New Jersey Medical School, Newark, NJ
| | - Alexander J Kammien
- From the Division of Plastic and Reconstructive Surgery, Yale-New Haven Hospital, Yale School of Medicine, New Haven, CT
| | - Martin Kauke-Navarro
- From the Division of Plastic and Reconstructive Surgery, Yale-New Haven Hospital, Yale School of Medicine, New Haven, CT
| | - Bohdan Pomahac
- From the Division of Plastic and Reconstructive Surgery, Yale-New Haven Hospital, Yale School of Medicine, New Haven, CT
| | - David Colen
- From the Division of Plastic and Reconstructive Surgery, Yale-New Haven Hospital, Yale School of Medicine, New Haven, CT
| |
Collapse
|
4
|
Vijayan A, Bhatia V, Arora S, Gupta S. Completely digitally fabricated custom functional finger prosthesis. J Indian Prosthodont Soc 2023; 23:198-202. [PMID: 37102547 PMCID: PMC10262102 DOI: 10.4103/jips.jips_372_21] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 03/31/2022] [Accepted: 03/31/2022] [Indexed: 04/28/2023] Open
Abstract
The loss of a finger in any capacity as a result of trauma has a significant influence on the patient's everyday life, as well as their psychological and physical health. Multiple conventional techniques have been reported in the literature, mostly offering psychological and cosmetic benefits to such individuals. However, there is a paucity of literature for functional finger prosthesis. This case report describes rehabilitation of an amputated index finger using an innovative digital workflow, thereby making it impression-free, cast-free, accurate, less time-consuming, and above all functionally viable. Digital technology was used for designing, and fabrication of this prosthesis was done using three-dimensional (3-D) printing. When compared to traditional prostheses, this 3-D-printed prosthesis was functional, allowing the patient to conduct everyday activities and providing the patient's confidence a psychological boost.
Collapse
Affiliation(s)
- Anuraj Vijayan
- Department of Prosthodontics, I.T.S. Dental College, Hospital and Research Centre, Greater Noida, Uttar Pradesh, India
| | | | - Saksham Arora
- Department of Prosthodontics, I.T.S. Dental College, Hospital and Research Centre, Greater Noida, Uttar Pradesh, India
| | - Shubham Gupta
- Department of Prosthodontics, I.T.S. Dental College, Hospital and Research Centre, Greater Noida, Uttar Pradesh, India
| |
Collapse
|
5
|
Clinical Applications of Three-Dimensional Printing in Upper Extremity Surgery: A Systematic Review. J Pers Med 2023; 13:jpm13020294. [PMID: 36836528 PMCID: PMC9961947 DOI: 10.3390/jpm13020294] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
Three-dimensional printing for medical applications in surgery of the upper extremity has gained in popularity as reflected by the increasing number of publications. This systematic review aims to provide an overview of the clinical use of 3D printing in upper extremity surgery. METHODS We searched the databases PubMed and Web of Science for clinical studies that described clinical application of 3D printing for upper extremity surgery including trauma and malformations. We evaluated study characteristics, clinical entity, type of clinical application, concerned anatomical structures, reported outcomes, and evidence level. RESULTS We finally included 51 publications with a total of 355 patients, of which 12 were clinical studies (evidence level II/III) and 39 case series (evidence level IV/V). The types of clinical applications were for intraoperative templates (33% of a total of 51 studies), body implants (29%), preoperative planning (27%), prostheses (15%), and orthoses (1%). Over two third of studies were linked to trauma-related injuries (67%). CONCLUSION The clinical application of 3D printing in upper extremity surgery offers great potential for personalized approaches to aid in individualized perioperative management, improvement of function, and ultimately help to benefit certain aspects in the quality of life.
Collapse
|
6
|
Ahmed W, Al-Marzouqi AH, Nazir MH, Rizvi TA, Zaneldin E, Khan M. Comparative Experimental Investigation of Biodegradable Antimicrobial Polymer-Based Composite Produced by 3D Printing Technology Enriched with Metallic Particles. Int J Mol Sci 2022; 23:11235. [PMID: 36232537 PMCID: PMC9570174 DOI: 10.3390/ijms231911235] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/01/2022] [Accepted: 09/08/2022] [Indexed: 11/24/2022] Open
Abstract
Due to the prevailing existence of the COVID-19 pandemic, novel and practical strategies to combat pathogens are on the rise worldwide. It is estimated that, globally, around 10% of hospital patients will acquire at least one healthcare-associated infection. One of the novel strategies that has been developed is incorporating metallic particles into polymeric materials that neutralize infectious agents. Considering the broad-spectrum antimicrobial potency of some materials, the incorporation of metallic particles into the intended hybrid composite material could inherently add significant value to the final product. Therefore, this research aimed to investigate an antimicrobial polymeric PLA-based composite material enhanced with different microparticles (copper, aluminum, stainless steel, and bronze) for the antimicrobial properties of the hybrid composite. The prepared composite material samples produced with fused filament fabrication (FFF) 3D printing technology were tested for different time intervals to establish their antimicrobial activities. The results presented here depict that the sample prepared with 90% copper and 10% PLA showed the best antibacterial activity (99.5%) after just 20 min against different types of bacteria as compared to the other samples. The metallic-enriched PLA-based antibacterial sheets were remarkably effective against Staphylococcus aureus and Escherichia coli; therefore, they can be a good candidate for future biomedical, food packaging, tissue engineering, prosthetic material, textile industry, and other science and technology applications. Thus, antimicrobial sheets made from PLA mixed with metallic particles offer sustainable solutions for a wide range of applications where touching surfaces is a big concern.
Collapse
Affiliation(s)
- Waleed Ahmed
- Engineering Requirements Unit, College of Engineering, UAE University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Ali H. Al-Marzouqi
- Department of Chemical and Petroleum Engineering, College of Engineering, UAE University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Muhammad Hamza Nazir
- Department of Chemical and Petroleum Engineering, College of Engineering, UAE University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Tahir A. Rizvi
- Department of Medical Microbiology & Immunology, College of Medicine, UAE University, Al Ain P.O. Box 15551, United Arab Emirates
- Zayed Center for Health Sciences, UAE University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Essam Zaneldin
- Department of Civil and Environmental Engineering, College of Engineering, UAE University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Mushtaq Khan
- Department of Medical Microbiology & Immunology, College of Medicine, UAE University, Al Ain P.O. Box 15551, United Arab Emirates
- Zayed Center for Health Sciences, UAE University, Al Ain P.O. Box 15551, United Arab Emirates
| |
Collapse
|
7
|
Lee MY, Lee SH, Leigh JH, Nam HS, Hwang EY, Lee JY, Han S, Lee G. Functional improvement by body-powered 3D-printed prosthesis in patients with finger amputation: Two case reports. Medicine (Baltimore) 2022; 101:e29182. [PMID: 35758347 PMCID: PMC9276309 DOI: 10.1097/md.0000000000029182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/08/2022] [Indexed: 11/26/2022] Open
Abstract
RATIONALE The most common upper limb amputations are finger amputations, resulting in functional limitations that lead to problems with activities of daily living or job loss. For many years, prosthetic options for finger amputations have been limited to passive prostheses. In many countries including South Korea, body-powered finger prostheses have rarely been prescribed due to high cost, lack of experience of physicians and prosthetists, low interest and no coverage by insurance benefits. We report 2 cases of work-related finger amputations in patients who received body-powered 3D-printed finger prostheses. PATIENT CONCERNS AND DIAGNOSIS Patient 1 was a 25-year-old woman with second and third finger amputations at the proximal interphalangeal level. Patient 2 was a 26-year-old man who sustained a second finger amputation at proximal interphalangeal level. INTERVENTIONS We created body-powered 3D-printed finger prostheses that mimicked distal interphalangeal joint motion through patient-driven metacarpophalangeal joint motion using a string connected to a wrist strap and a linkage system. The source code "Knick Finger" was downloaded from e-NABLE. OUTCOMES After 1 month of prosthesis training, both patients were satisfied with the prostheses and showed improved performance in patient-derived goals of cooking (patient 1) and typing on a computer (patient 2). LESSONS Over the past decade, significant advances have been made in 3D-printed prosthetics owing to their light weight, low cost, on-site fabrication, and easy customization. Although there are still several limitations in the general application of 3D-printed finger prostheses, our study suggests that for patients with finger amputations, body-powered 3D-printed finger prostheses have high potential as an additional prosthetic option to the existing passive cosmetic prostheses.
Collapse
Affiliation(s)
- Min-Yong Lee
- Department of Rehabilitation Medicine, Seoul National University Hospital, Seoul, Korea
- Rehabilitation Center, Incheon Workers’ Compensation Hospital, Incheon, Korea
| | - Seung Hak Lee
- Department of Rehabilitation Medicine, Asan Medical Center, Seoul, Korea
| | - Ja-Ho Leigh
- Department of Rehabilitation Medicine, Seoul National University Hospital, Seoul, Korea
- Department of Rehabilitation Medicine, National Traffic Injury Rehabilitation Hospital, Yangpyeong, Korea
| | - Hyung Seok Nam
- Department of Rehabilitation Medicine, Seoul National University Hospital, Seoul, Korea
- Department of Rehabilitation Medicine, UAE Sheikh Khalifa Specialty Hospital, RAK City, UAE
| | - Eun Young Hwang
- Rehabilitation Center, Incheon Workers’ Compensation Hospital, Incheon, Korea
| | - Jung Yeon Lee
- Rehabilitation Center, Incheon Workers’ Compensation Hospital, Incheon, Korea
| | - Sol Han
- Department of Rehabilitation Medicine, Seoul National University Hospital, Seoul, Korea
| | - Gangpyo Lee
- Rehabilitation Center, Incheon Workers’ Compensation Hospital, Incheon, Korea
- Rehabilitation Medicine Research Center, Incheon Workers’ Compensation Hospital, Incheon, Korea
| |
Collapse
|
8
|
Home intervention for children and adolescents with unilateral trans-radial and partial carpal reduction deficiencies. Sci Rep 2022; 12:7447. [PMID: 35523915 PMCID: PMC9076824 DOI: 10.1038/s41598-022-11470-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 04/25/2022] [Indexed: 11/16/2022] Open
Abstract
Current training interventions assessing pediatric functional motor skills do not account for children and adolescents with upper limb reductions who utilize a prosthesis. Prosthesis rejection showed that 1 out of 5 prosthesis users will reject their prosthesis due to lack of durability, lack of function, not meeting the participant’s needs, perceived lack of need, and medical restrictions indicating that prosthetic users believed they were more functional without the device. It was hypothesized that an 8-week Home Intervention program will result in significant improvements in gross manual dexterity, bimanual coordination, and the functional activities performed during the program. It was also hypothesized that the novel Prosthesis Measurement of Independent Function (PMIF) score will reflect the Home Intervention performance improvements. Five pediatric participants (ages 5–19 years) with congenital upper limb reductions were fitted with a 3D printed upper extremity prosthesis for their affected limb. Participants then completed the 8-week Home Intervention which included Training activities completed 2×/week for 8 weeks and Non-Training activities completed only at week 1 and week 8. Participant’s times were recorded along with each participant receiving a PMIF score ranging from 0 = unable to complete activity, to 7 = complete independence with activity completion. Results showed a decrease in overall averaged activity times amongst all activities. For all activities performed, individual averaged time decreased with the exception of Ball Play which increased over the 8-week intervention period. There was significant interaction for Home Intervention performance with F = 2.904 (p = 0.003). All participants increased their PMIF scores to 7 (complete independence) at the end of the 8 week intervention period. Decreases in time averages and increases in PMIF scores indicate that learning and functional use of the prostheses have occurred amongst the pediatric participants.
Collapse
|
9
|
Kiel A, Kaltschmidt BP, Asghari E, Hütten A, Kaltschmidt B, Kaltschmidt C. Bacterial Biofilm Formation on Nano-Copper Added PLA Suited for 3D Printed Face Masks. Microorganisms 2022; 10:439. [PMID: 35208893 PMCID: PMC8875673 DOI: 10.3390/microorganisms10020439] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/10/2022] [Accepted: 02/13/2022] [Indexed: 02/06/2023] Open
Abstract
The COVID-19 Pandemic leads to an increased worldwide demand for personal protection equipment in the medical field, such as face masks. New approaches to satisfy this demand have been developed, and one example is the use of 3D printing face masks. The reusable 3D printed mask may also have a positive effect on the environment due to decreased littering. However, the microbial load on the 3D printed objects is often disregarded. Here we analyze the biofilm formation of Pseudomonas aeruginosa, Staphylococcus aureus, and Escherichia coli on suspected antimicrobial Plactive™ PLA 3D printing filaments and non-antimicrobial Giantarm™ PLA. To characterize the biofilm-forming potential scanning electron microscopy (SEM), Confocal scanning electron microscopy (CLSM) and colony-forming unit assays (CFU) were performed. Attached cells could be observed on all tested 3D printing materials. Gram-negative strains P. aeruginosa and E. coli reveal a strong uniform growth independent of the tested 3D filament (for P. aeruginosa even with stressed induced growth reaction by Plactive™). Only Gram-positive S. aureus shows strong growth reduction on Plactive™. These results suggest that the postulated antimicrobial Plactive™ PLA does not affect Gram-negative bacteria species. These results indicate that reusable masks, while better for our environment, may pose another health risk.
Collapse
Affiliation(s)
- Annika Kiel
- Department of Cell Biology, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany; (A.K.); (E.A.); (B.K.)
| | - Bernhard Peter Kaltschmidt
- Department of Thin Films and Physics of Nanostructures, Center of Spinelectronic Materials and Devices, Faculty of Physics, Bielefeld University, 33615 Bielefeld, Germany; (B.P.K.); (A.H.)
| | - Ehsan Asghari
- Department of Cell Biology, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany; (A.K.); (E.A.); (B.K.)
| | - Andreas Hütten
- Department of Thin Films and Physics of Nanostructures, Center of Spinelectronic Materials and Devices, Faculty of Physics, Bielefeld University, 33615 Bielefeld, Germany; (B.P.K.); (A.H.)
| | - Barbara Kaltschmidt
- Department of Cell Biology, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany; (A.K.); (E.A.); (B.K.)
| | - Christian Kaltschmidt
- Department of Cell Biology, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany; (A.K.); (E.A.); (B.K.)
| |
Collapse
|
10
|
Borrell JA, Copeland C, Lukaszek JL, Fraser K, Zuniga JM. Use-Dependent Prosthesis Training Strengthens Contralateral Hemodynamic Brain Responses in a Young Adult With Upper Limb Reduction Deficiency: A Case Report. Front Neurosci 2021; 15:693138. [PMID: 34177460 PMCID: PMC8226211 DOI: 10.3389/fnins.2021.693138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 05/17/2021] [Indexed: 11/26/2022] Open
Abstract
The purpose of the current case study was to determine the influence of an 8-week home intervention training utilizing a partial hand prosthesis on hemodynamic responses of the brain and gross dexterity in a case participant with congenital unilateral upper-limb reduction deficiency (ULD). The case participant (female, 19 years of age) performed a gross manual dexterity task (Box and Block Test) while measuring brain activity (functional near-infrared spectroscopy; fNIRS) before and after an 8-weeks home intervention training. During baseline, there was a broad cortical activation in the ipsilateral sensorimotor cortex and a non-focalized cortical activation in the contralateral hemisphere, which was non-focalized, while performing a gross manual dexterity task using a prosthesis. After the 8-week home intervention training, however, cortical activation shifted to the contralateral motor cortex while cortical activation was diminished in the ipsilateral hemisphere. Specifically, the oxygenated hemodynamics (HbO) responses increased in the medial aspects of the contralateral primary motor and somatosensory cortices. Thus, these results suggest that an 8-week prosthetic home intervention was able to strengthen contralateral connections in this young adult with congenital partial hand reduction. This was supported by the case participant showing after training an increased flexor tone, increased range of motion of the wrist, and decreased times to complete various gross dexterity tasks. Changes in HbO responses due to the home intervention training follow the mechanisms of use-dependent plasticity and further guide the use of prostheses as a rehabilitation strategy for individuals with ULD.
Collapse
Affiliation(s)
- Jordan A Borrell
- Department of Biomechanics, University of Nebraska at Omaha, Omaha, NE, United States.,Center for Biomedical Rehabilitation and Manufacturing, University of Nebraska at Omaha, Omaha, NE, United States
| | - Christopher Copeland
- Department of Biomechanics, University of Nebraska at Omaha, Omaha, NE, United States
| | - Jessica L Lukaszek
- School of Pharmacy and Health Professions, Creighton University, Omaha, NE, United States
| | - Kaitlin Fraser
- Department of Biomechanics, University of Nebraska at Omaha, Omaha, NE, United States
| | - Jorge M Zuniga
- Department of Biomechanics, University of Nebraska at Omaha, Omaha, NE, United States.,Center for Biomedical Rehabilitation and Manufacturing, University of Nebraska at Omaha, Omaha, NE, United States
| |
Collapse
|
11
|
Ahmed W, Siraj S, Al-Marzouqi AH. Embracing Additive Manufacturing Technology through Fused Filament Fabrication for Antimicrobial with Enhanced Formulated Materials. Polymers (Basel) 2021; 13:1523. [PMID: 34065137 PMCID: PMC8125968 DOI: 10.3390/polym13091523] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 04/29/2021] [Accepted: 05/03/2021] [Indexed: 12/13/2022] Open
Abstract
Antimicrobial materials produced by 3D Printing technology are very beneficial, especially for biomedical applications. Antimicrobial surfaces specifically with enhanced antibacterial property have been prepared using several quaternary salt-based agents, such as quaternary ammonium salts and metallic nanoparticles (NPs), such as copper and zinc, which are incorporated into a polymeric matrix mainly through copolymerization grafting and ionic exchange. This review compared different materials for their effectiveness in providing antimicrobial properties on surfaces. This study will help researchers choose the most suitable method of developing antimicrobial surfaces with the highest efficiency, which can be applied to develop products compatible with 3D Printing Technology.
Collapse
Affiliation(s)
- Waleed Ahmed
- Engineering Requirements Unit, College of Engineering, United Arab Emirates University, Al Ain 15551, United Arab Emirates
| | - Sidra Siraj
- Chemical Engineering Department, COE, United Arab Emirates University, Al Ain 15551, United Arab Emirates; (S.S.); (A.H.A.-M.)
| | - Ali H. Al-Marzouqi
- Chemical Engineering Department, COE, United Arab Emirates University, Al Ain 15551, United Arab Emirates; (S.S.); (A.H.A.-M.)
| |
Collapse
|
12
|
Zuniga JM, Pierce JE, Copeland C, Cortes-Reyes C, Salazar D, Wang Y, Arun KM, Huppert T. Brain lateralization in children with upper-limb reduction deficiency. J Neuroeng Rehabil 2021; 18:24. [PMID: 33536034 PMCID: PMC7860186 DOI: 10.1186/s12984-020-00803-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 12/25/2020] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND The purpose of the current study was to determine the influence of upper-limb prostheses on brain activity and gross dexterity in children with congenital unilateral upper-limb reduction deficiencies (ULD) compared to typically developing children (TD). METHODS Five children with ULD (3 boys, 2 girls, 8.76 ± 3.37 years of age) and five age- and sex-matched TD children (3 boys, 2 girls, 8.96 ± 3.23 years of age) performed a gross manual dexterity task (Box and Block Test) while measuring brain activity (functional near-infrared spectroscopy; fNIRS). RESULTS There were no significant differences (p = 0.948) in gross dexterity performance between the ULD group with prosthesis (7.23 ± 3.37 blocks per minute) and TD group with the prosthetic simulator (7.63 ± 5.61 blocks per minute). However, there was a significant (p = 0.001) difference in Laterality Index (LI) between the ULD group with prosthesis (LI = - 0.2888 ± 0.0205) and TD group with simulator (LI = 0.0504 ± 0.0296) showing in a significant ipsilateral control for the ULD group. Thus, the major finding of the present investigation was that children with ULD, unlike the control group, showed significant activation in the ipsilateral motor cortex on the non-preferred side using a prosthesis during a gross manual dexterity task. CONCLUSIONS This ipsilateral response may be a compensation strategy in which the existing cortical representations of the non-affected (preferred) side are been used by the affected (non-preferred) side to operate the prosthesis. This study is the first to report altered lateralization in children with ULD while using a prosthesis. Trial registration The clinical trial (ClinicalTrial.gov ID: NCT04110730 and unique protocol ID: IRB # 614-16-FB) was registered on October 1, 2019 ( https://clinicaltrials.gov/ct2/show/NCT04110730 ) and posted on October 1, 2019. The study start date was January 10, 2020. The first participant was enrolled on January 14, 2020, and the trial is scheduled to be completed by August 23, 2023. The trial was updated January 18, 2020 and is currently recruiting.
Collapse
Affiliation(s)
- Jorge M Zuniga
- Department of Biomechanics, University of Nebraska at Omaha, Omaha, NE, 68182, USA.
| | - James E Pierce
- Department of Biomechanics, University of Nebraska at Omaha, Omaha, NE, 68182, USA
| | - Christopher Copeland
- Department of Biomechanics, University of Nebraska at Omaha, Omaha, NE, 68182, USA
| | - Claudia Cortes-Reyes
- Department of Biomechanics, University of Nebraska at Omaha, Omaha, NE, 68182, USA
| | - David Salazar
- Department of Biomechanics, University of Nebraska at Omaha, Omaha, NE, 68182, USA
| | - YingYing Wang
- Department of Special Education and Communication Disorders (SECD), University of Nebraska-Lincoln, Lincoln, NE, 68182, USA
| | - K M Arun
- Department of Imaging Sciences and Interventional Radiology, Sree Chitra Tirunal Institute for Medical Science and Technology, Thiruvananthapuram, India
| | - Theodore Huppert
- Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, PA, 16148, USA
| |
Collapse
|
13
|
Abudula T, Qurban RO, Bolarinwa SO, Mirza AA, Pasovic M, Memic A. 3D Printing of Metal/Metal Oxide Incorporated Thermoplastic Nanocomposites With Antimicrobial Properties. Front Bioeng Biotechnol 2020; 8:568186. [PMID: 33042969 PMCID: PMC7523645 DOI: 10.3389/fbioe.2020.568186] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 08/13/2020] [Indexed: 12/19/2022] Open
Abstract
Three-dimensional (3D) printing has experienced a steady increase in popularity for direct manufacturing, where complex geometric items can be produced without the aid of templating tools, and manufacturing waste can be remarkably reduced. While customized medical devices and daily life items can be made by 3D printing of thermoplastics, microbial contamination has been a serious obstacle during their usage. A very clever approaches to overcome this challenge is to incorporate antimicrobial metal or metal oxide (M/MO) nanoparticles within the thermoplastics during or prior to 3D printing. Many M/MO nanoparticles can prevent contamination from a wide range of microorganism, including antibiotic-resistant bacteria via various antimicrobial mechanisms. Additionally, they can be easily printed with thermoplastic without losing their integrity and functionality. In this mini review, we summarize recent advancements and discuss future trends related to the development of 3D printed antimicrobial thermoplastic nanocomposites by addition of M/MO nanoparticles.
Collapse
Affiliation(s)
| | - Rayyan O Qurban
- Center of Nanotechnology, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sherifdeen O Bolarinwa
- Center of Nanotechnology, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ahmed A Mirza
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mirza Pasovic
- Department of Electrical and Computer Engineering, Faculty of Engineering, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Adnan Memic
- Center of Nanotechnology, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
14
|
Ghilan A, Chiriac AP, Nita LE, Rusu AG, Neamtu I, Chiriac VM. Trends in 3D Printing Processes for Biomedical Field: Opportunities and Challenges. JOURNAL OF POLYMERS AND THE ENVIRONMENT 2020; 28:1345-1367. [PMID: 32435165 PMCID: PMC7224028 DOI: 10.1007/s10924-020-01722-x] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Affiliation(s)
- Alina Ghilan
- “Petru Poni” Institute of Macromolecular Chemistry, Laboratory of Inorganic Polymers, 41-A Grigore Ghica Voda Alley, Iasi, 700487 Romania
| | - Aurica P. Chiriac
- “Petru Poni” Institute of Macromolecular Chemistry, Laboratory of Inorganic Polymers, 41-A Grigore Ghica Voda Alley, Iasi, 700487 Romania
| | - Loredana E. Nita
- “Petru Poni” Institute of Macromolecular Chemistry, Laboratory of Inorganic Polymers, 41-A Grigore Ghica Voda Alley, Iasi, 700487 Romania
| | - Alina G. Rusu
- “Petru Poni” Institute of Macromolecular Chemistry, Laboratory of Inorganic Polymers, 41-A Grigore Ghica Voda Alley, Iasi, 700487 Romania
| | - Iordana Neamtu
- “Petru Poni” Institute of Macromolecular Chemistry, Laboratory of Inorganic Polymers, 41-A Grigore Ghica Voda Alley, Iasi, 700487 Romania
| | - Vlad Mihai Chiriac
- “Gh. Asachi” Technical University, Faculty of Electronics, Telecommunications and Information Technology, Bd. Carol I, 11A, Iasi, 700506 Romania
| |
Collapse
|
15
|
Zolfagharian A, Gregory TM, Bodaghi M, Gharaie S, Fay P. Patient-specific 3D-printed Splint for Mallet Finger Injury. Int J Bioprint 2020; 6:259. [PMID: 32782989 PMCID: PMC7415868 DOI: 10.18063/ijb.v6i2.259] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 02/28/2020] [Indexed: 11/23/2022] Open
Abstract
Despite the frequency of mallet finger injuries, treatment options can often be costly, time-consuming, and ill-fitted. Three-dimensional (3D) printing allows for the production of highly customized and inexpensive splints, which suggests potential efficacy in the prescription of casts for musculoskeletal injuries. This study explores how the use of engineering concepts such as 3D printing and topology optimization (TO) can improve outcomes for patients. 3D printing enables the direct fabrication of the patient-specific complex shapes while utilizing finite element analysis and TO in the design of the splint allowed for the most efficient distribution of material to achieve mechanical requirements while reducing the amount of material used. The reduction in used material leads to significant improvements in weight reduction and heat dissipation, which would improve breathability and less sweating for the patient, greatly increasing comfort for the duration of their recovery.
Collapse
Affiliation(s)
- Ali Zolfagharian
- School of Engineering, Deakin University, Geelong 3216, Australia
| | | | - Mahdi Bodaghi
- Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK
| | - Saleh Gharaie
- School of Engineering, Deakin University, Geelong 3216, Australia
| | - Pearse Fay
- School of Health and Social Development, Deakin University, Geelong 3220, Australia
| |
Collapse
|