1
|
Yamamoto T, Kurata M, Kaneko N, Masumoto J. Intestinal edema induced by LPS-induced endotoxemia is associated with an inflammasome adaptor ASC. PLoS One 2023; 18:e0281746. [PMID: 36800329 PMCID: PMC9937502 DOI: 10.1371/journal.pone.0281746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/31/2023] [Indexed: 02/18/2023] Open
Abstract
The apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC)/caspase-1/interleukin(IL)-1β axis, also known as the inflammasome pathway, is indispensable for IL-1β activation in response to various pathogens or own damages. Previously, we developed an NLRP3-inflammasome using a cell-free system and identified ASC targeting drugs; thus, examination of ASC-related histopathology in various diseases could help to provide indications for these drugs. Here, we generated mice deficient only in ASC-protein (ASC-deficient (AD) mice) using CRISPR/Cas9 technology, studied which tissues were most affected, and obtained histopathological images of lipopolysaccharide (LPS)-induced endotoxemia. C57BL/6 wild-type (WT) and (AD) mice were injected intraperitoneally with a lethal dose (50 μg/g) of LPS. Statistical analysis of the survival of C57BL/6 mice and AD mice was performed using the Kaplan-Meier method and the log-rank test. The histopathological findings of multiple tissues from these mice were compared. Acute inflammation (e.g., catarrhal inflammation), along with congestion was observed in the colon of WT mice but not in that of AD mice. Adhesion of neutrophils to capillaries, along with interstitial infiltration, were observed in multiple tissues from WT mice. In AD mice, neutrophil infiltration was less severe but remained evident in the stomach, small intestine, heart, liver, kidney, spleen, and brain. Notably, there was no difference between WT and AD mice with respect to alveolar neutrophil infiltration and interstitial edema. These findings suggest that even though ASC contributes to systemic inflammation, it is dependent on the tissue involved. Intestinal congestion and edema might be good candidates for anti-ASC-targeted therapy.
Collapse
Affiliation(s)
- Toshihiro Yamamoto
- Department of Pathology, Proteo-Science Center and Graduate School of Medicine, Ehime University, Toon, Ehime, Japan
| | - Mie Kurata
- Department of Pathology, Proteo-Science Center and Graduate School of Medicine, Ehime University, Toon, Ehime, Japan
| | - Naoe Kaneko
- Department of Pathology, Proteo-Science Center and Graduate School of Medicine, Ehime University, Toon, Ehime, Japan
| | - Junya Masumoto
- Department of Pathology, Proteo-Science Center and Graduate School of Medicine, Ehime University, Toon, Ehime, Japan
- * E-mail:
| |
Collapse
|
2
|
A comprehensive interaction study provides a potential domain interaction network of human death domain superfamily proteins. Cell Death Differ 2021; 28:2991-3008. [PMID: 33993194 PMCID: PMC8564539 DOI: 10.1038/s41418-021-00796-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 02/04/2023] Open
Abstract
Human death domain superfamily proteins (DDSPs) play important roles in many signaling pathways involved in cell death and inflammation. Disruption or constitutive activation of these DDSP interactions due to inherited gene mutations is closely related to immunodeficiency and/or autoinflammatory diseases; however, responsible gene mutations have not been found in phenotypical diagnosis of these diseases. In this study, we comprehensively investigated the interactions of death-fold domains to explore the signaling network mediated by human DDSPs. We obtained 116 domains of DDSPs and conducted a domain-domain interaction assay of 13,924 reactions in duplicate using amplified luminescent proximity homogeneous assay. The data were mostly consistent with previously reported interactions. We also found new possible interactions, including an interaction between the caspase recruitment domain (CARD) of CARD10 and the tandem CARD-CARD domain of NOD2, which was confirmed by reciprocal co-immunoprecipitation. This study enables prediction of the interaction network of human DDSPs, sheds light on pathogenic mechanisms, and will facilitate identification of drug targets for treatment of immunodeficiency and autoinflammatory diseases.
Collapse
|
3
|
Mori W, Kaneko N, Nakanishi A, Zako T, Masumoto J. Insulin amyloid fibrils interact directly with the NLRP3, resulting in inflammasome activation and pyroptotic cell death. Int J Immunopathol Pharmacol 2021; 35:20587384211038357. [PMID: 34396831 PMCID: PMC8371720 DOI: 10.1177/20587384211038357] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION Nucleotide-binding oligomerization domain-like receptor family, pyrin domain containing 3 (NLRP3), an intracellular pattern recognition receptor, recognizes various pathogen-associated molecular pattern and/or damage-associated molecular pattern molecules to constitute inflammasome that act as an interleukin (IL)-1β processing platform. Injected insulin is reported to induce focal amyloidosis and the formation of subcutaneous lumps called insulin balls, but the formation of subcutaneous lumps and the underlying cytotoxic mechanism has not been elucidated. METHODS Amyloid formation was evaluated by thioflavin T spectroscopic assay and scanning electron microscopy. Binding between insulin amyloid fibrils and NLRP3 was evaluated by immunoprecipitation followed by native polyacrylamide gel electrophoresis. Inflammasome activation was evaluated by immunofluorescence speck formation called "ASC speck" and Western blotting. IL-1β secretion in culture supernatants of peripheral blood mononuclear cells was evaluated by enzyme-linked immunosorbent assay. Cytotoxicity was measured by lactate dehydrogenase release assay. RESULTS Insulin amyloid fibrils interact directly with NLRP3, resulting in NLRP3 inflammasome activation and pyroptotic cell death. CONCLUSION Insulin ball formation and cytotoxicity may be associated with NLRP3 inflammasome activation followed by pyroptotic cell death.
Collapse
Affiliation(s)
- Wakako Mori
- Department of Pathology, Ehime University Proteo-Science Center and Graduate School of Medicine, Toon, Ehime, Japan.,Department of Chemistry and Biology, Ehime University Graduate School of Science and Engineering, Matsuyama, Ehime, Japan
| | - Naoe Kaneko
- Department of Pathology, Ehime University Proteo-Science Center and Graduate School of Medicine, Toon, Ehime, Japan
| | - Ayaka Nakanishi
- Department of Chemistry and Biology, Ehime University Graduate School of Science and Engineering, Matsuyama, Ehime, Japan
| | - Tamotsu Zako
- Department of Chemistry and Biology, Ehime University Graduate School of Science and Engineering, Matsuyama, Ehime, Japan
| | - Junya Masumoto
- Department of Pathology, Ehime University Proteo-Science Center and Graduate School of Medicine, Toon, Ehime, Japan
| |
Collapse
|
4
|
Fernández-García V, González-Ramos S, Martín-Sanz P, Laparra JM, Boscá L. NOD1-Targeted Immunonutrition Approaches: On the Way from Disease to Health. Biomedicines 2021; 9:biomedicines9050519. [PMID: 34066406 PMCID: PMC8148154 DOI: 10.3390/biomedicines9050519] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/26/2021] [Accepted: 05/04/2021] [Indexed: 02/07/2023] Open
Abstract
Immunonutrition appears as a field with great potential in modern medicine. Since the immune system can trigger serious pathophysiological disorders, it is essential to study and implement a type of nutrition aimed at improving immune system functioning and reinforcing it individually for each patient. In this sense, the nucleotide-binding oligomerization domain-1 (NOD1), one of the members of the pattern recognition receptors (PRRs) family of innate immunity, has been related to numerous pathologies, such as cancer, diabetes, or cardiovascular diseases. NOD1, which is activated by bacterial-derived peptidoglycans, is known to be present in immune cells and to contribute to inflammation and other important pathways, such as fibrosis, upon recognition of its ligands. Since immunonutrition is a significant developing research area with much to discover, we propose NOD1 as a possible target to consider in this field. It is relevant to understand the cellular and molecular mechanisms that modulate the immune system and involve the activation of NOD1 in the context of immunonutrition and associated pathological conditions. Surgical or pharmacological treatments could clearly benefit from the synergy with specific and personalized nutrition that even considers the health status of each subject.
Collapse
Affiliation(s)
- Victoria Fernández-García
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain; (V.F.-G.); (P.M.-S.)
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Melchor Fernández Almagro 6, 28029 Madrid, Spain
| | - Silvia González-Ramos
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain; (V.F.-G.); (P.M.-S.)
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Melchor Fernández Almagro 6, 28029 Madrid, Spain
- Correspondence: (S.G.-R.); (L.B.); Tel.: +34-91-497-2747 (L.B.)
| | - Paloma Martín-Sanz
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain; (V.F.-G.); (P.M.-S.)
- Centro de Investigación Biomédica en Red en Enfermedades Hepáticas (CIBERehd), 28029 Madrid, Spain
| | - José M. Laparra
- Madrid Institute for Advanced studies in Food (IMDEA Food), Ctra. Cantoblanco 8, 28049 Madrid, Spain;
| | - Lisardo Boscá
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain; (V.F.-G.); (P.M.-S.)
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Melchor Fernández Almagro 6, 28029 Madrid, Spain
- Correspondence: (S.G.-R.); (L.B.); Tel.: +34-91-497-2747 (L.B.)
| |
Collapse
|
5
|
KN3014, a piperidine-containing small compound, inhibits auto-secretion of IL-1β from PBMCs in a patient with Muckle-Wells syndrome. Sci Rep 2020; 10:13562. [PMID: 32782316 PMCID: PMC7419506 DOI: 10.1038/s41598-020-70513-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 07/30/2020] [Indexed: 12/12/2022] Open
Abstract
NLRP3, an intracellular pattern recognition receptor, recognizes numerous pathogens and/or its own damage-associated molecules, and forms complexes with the adaptor protein ASC. These complexes constitute the NLRP3 inflammasome, a platform for processing interleukin (IL)-1β and/or IL-18. Several NLRP3 mutations result in constitutive activation of the NLRP3 inflammasome, causing cryopyrin-associated periodic syndrome (CAPS). To the best of our knowledge, small compounds that specifically inhibit inflammasome activation through the pyrin domain (PYD) have not yet been developed. This study describes an attempt to develop small compounds targeting the NLRP3 inflammasome. A core chemical library of 9,600 chemicals was screened against reconstituted NLRP3 inflammasome in a cell-free system with an amplified luminescence proximity homogeneous assay and a cell-based assay by human peripheral blood mononuclear cells (PBMCs). Inflammasome activation was evaluated by ASC-speck formation in human PBMCs, accompanied by IL-1β secretion and processing, and by using IL-1β-based dual operating luciferase (IDOL) mice. The activity of these compounds was evaluated clinically using PBMCs from a patient with Muckle–Wells syndrome (MWS), a type of CAPS, with an R260W mutation in NLRP3. Screening identified KN3014, a piperidine-containing compound targeting the interaction between NLRP3 and ASC through the PYD. KN3014 reduced ASC-speck formation in human PBMCs, luminescence from IDOL mice, and auto-secretion of IL-1β by PBMCs from the patient with MWS. These findings suggest that KN3014 may be an attractive candidate for treatment of MWS, as well as other NLRP3 inflammasomopathies.
Collapse
|
6
|
Thi Tran U, Kitami T. Niclosamide activates the NLRP3 inflammasome by intracellular acidification and mitochondrial inhibition. Commun Biol 2019; 2:2. [PMID: 30740538 PMCID: PMC6318214 DOI: 10.1038/s42003-018-0244-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 12/02/2018] [Indexed: 12/16/2022] Open
Abstract
The NLRP3 inflammasome is unique among pattern recognition receptors in using changes in cellular physiology as a mechanism for sensing host danger. To dissect the physiological network controlling inflammasome activation, we screened for small-molecule activators and suppressors of IL-1β release in macrophages. Here we identified niclosamide, a mitochondrial uncoupler, as an activator of NLRP3 inflammasome. We find that niclosamide inhibits mitochondria and induces intracellular acidification, both of which are necessary for inflammasome activation. Intracellular acidification, by inhibiting glycolysis, works together with mitochondrial inhibition to induce intracellular ATP loss, which compromises intracellular potassium maintenance, a key event to NLRP3 inflammasome activation. A modest decline in intracellular ATP or pH within an optimal range induces maximum IL-1β release while their excessive decline suppresses IL-1β release. Our work illustrates how energy metabolism converges upon intracellular potassium to activate NLRP3 inflammasome and highlights a biphasic relationship between cellular physiology and IL-1β release.
Collapse
Affiliation(s)
- Uyen Thi Tran
- YCI Laboratory for Cellular Bioenergetic Network, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045 Japan
| | - Toshimori Kitami
- YCI Laboratory for Cellular Bioenergetic Network, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045 Japan
| |
Collapse
|
7
|
Morikawa S, Kaneko N, Okumura C, Taguchi H, Kurata M, Yamamoto T, Osawa H, Nakanishi A, Zako T, Masumoto J. IAPP/amylin deposition, which is correlated with expressions of ASC and IL-1β in β-cells of Langerhans' islets, directly initiates NLRP3 inflammasome activation. Int J Immunopathol Pharmacol 2018; 32:2058738418788749. [PMID: 30014749 PMCID: PMC6050799 DOI: 10.1177/2058738418788749] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Recent findings revealed that type 2 diabetes mellitus (T2D) is a chronic inflammatory disease and an islet amyloid polypeptide (IAPP)/amylin, is deposited within pancreatic islets. IAPP/amylin has been reported to activate NACHT, LRR, and PYD domains-containing protein 3 (NLRP3) inflammasome in infiltrated macrophages. NLRP3, an intracellular pattern recognition receptor, has been shown to recognize pathogens and/or metabolites and complexes with the adopter protein apoptosis-associated speck-like protein containing a caspase-recruitment domain ASC to form a huge complex, called an inflammasome, an interleukin (IL)-1β-processing platform. Although reactive oxygen species (ROS) were reported to be involved in activation of NLRP3 inflammasome, we were hypothesized that IAPP could directly activate NLRP3 inflammasome, leading to islets β-cell death. We analyzed expression of the inflammasome components ASC, NLRP3, caspase-1, IL-1β, IAPP/amylin, and insulin immunohistochemically in Langerhans' islets of autopsy cases. The initial event of NLRP3 inflammasome activation was assessed using a cell-free system consisting of NLRP3 and ASC with the amplified luminescent proximity homogeneous assay. IAPP/amylin deposition in Langerhans' islets was detected and significantly correlated with expressions of IL-1β and ASC. IAPP/amylin directly interacted with NLRP3 and initiated an interaction between NLRP3 and ASC in a cell-free system. The deposition of IAPP/amylin in β-cells of Langerhans' islets may act together with the expression level of an inflammasome component, ASC, to regulate IL-1β processing, and directly lead to the dysfunction of β-cells. The interaction between IAPP/amylin and NLRP3 could be an attractive drug target to avoid both inflammation and β-cell death for T2D therapy.
Collapse
Affiliation(s)
- Shinnosuke Morikawa
- 1 Department of Pathology, Proteo-Science Center and Graduate School of Medicine, Ehime University, Toon, Japan
| | - Naoe Kaneko
- 1 Department of Pathology, Proteo-Science Center and Graduate School of Medicine, Ehime University, Toon, Japan
| | - Chikara Okumura
- 1 Department of Pathology, Proteo-Science Center and Graduate School of Medicine, Ehime University, Toon, Japan
| | - Haruka Taguchi
- 1 Department of Pathology, Proteo-Science Center and Graduate School of Medicine, Ehime University, Toon, Japan
| | - Mie Kurata
- 1 Department of Pathology, Proteo-Science Center and Graduate School of Medicine, Ehime University, Toon, Japan
| | - Toshihiro Yamamoto
- 1 Department of Pathology, Proteo-Science Center and Graduate School of Medicine, Ehime University, Toon, Japan
| | - Haruhiko Osawa
- 2 Department of Diabetes and Molecular Genetics, Graduate School of Medicine, Ehime University, Toon, Japan
| | - Ayaka Nakanishi
- 3 Department of Chemistry and Biology, Graduate School of Science and Engineering, Ehime University, Matsuyama, Japan
| | - Tamotsu Zako
- 3 Department of Chemistry and Biology, Graduate School of Science and Engineering, Ehime University, Matsuyama, Japan
| | - Junya Masumoto
- 1 Department of Pathology, Proteo-Science Center and Graduate School of Medicine, Ehime University, Toon, Japan
| |
Collapse
|
8
|
Nakanishi A, Kaneko N, Takeda H, Sawasaki T, Morikawa S, Zhou W, Kurata M, Yamamoto T, Akbar SMF, Zako T, Masumoto J. Amyloid β directly interacts with NLRP3 to initiate inflammasome activation: identification of an intrinsic NLRP3 ligand in a cell-free system. Inflamm Regen 2018; 38:27. [PMID: 30459926 PMCID: PMC6231249 DOI: 10.1186/s41232-018-0085-6] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 09/03/2018] [Indexed: 12/20/2022] Open
Abstract
Background Alzheimer’s disease is a neurodegenerative disease characterized by the interstitial deposition of amyloid β (Aβ) plaque, which is thought to be related to chronic neuroinflammation. Aβ is known to make fibrils via oligomers from monomers. Aβ has been reported to activate the NLRP3 inflammasome in infiltrated macrophages. NLRP3, an intracellular pattern recognition receptor, has been reported to recognize numerous pathogens and/or metabolites and form complexes with adopter protein ASC to make the inflammasome, an interleukin (IL)-1β-processing platform. Although reactive oxygen species from mitochondria have been reported to be involved in the activation of the NLRP3 inflammasome in microglial cells upon the deposition of Aβ, whether Aβ directly or indirectly activates the NLRP3 inflammasome remains unclear. Methods We prepared monomers, oligomers, and fibrils of Aβ, which promoted the interaction between NLRP3 and each form of Aβ and analyzed the interaction between NLRP3 and ASC induced by each form of Aβ in a cell-free system with the amplified luminescent proximity homogeneous assay. We also confirmed the physiological relevance in a cell-based assay using human embryonic kidney 293T cells and human peripheral mononuclear cells. Results Monomers, oligomers, and fibrils of Aβ were successfully prepared. Aβ oligomers and fibrils interacted with NLRP3. Aβ oligomers and fibrils induced the interaction between NLRP3 and ASC. However, Aβ monomers did not interact with NLRP3 or induce interaction between NLRP3 and ASC in the cell-free system, and IL-1β was not secreted according to the cell-based assay. Conclusion Oligomerized Aβ originating from non-toxic Aβ monomers directly interacted with NLRP3, leading to the activation of the NLRP3 inflammasome. This may be an attractive target for the treatment of Alzheimer’s disease. Electronic supplementary material The online version of this article (10.1186/s41232-018-0085-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ayaka Nakanishi
- 1Department of Pathology, Ehime University Graduate School of Medicine and Proteo-Science Centre, Shitsukawa 454, Toon, Ehime 791-0295 Japan.,2Department of Chemistry and Biology, Ehime University Graduate School of Science and Engineering, Bunkyocho 2-5, Matsuyama, Ehime 790-8577 Japan
| | - Naoe Kaneko
- 1Department of Pathology, Ehime University Graduate School of Medicine and Proteo-Science Centre, Shitsukawa 454, Toon, Ehime 791-0295 Japan
| | - Hiroyuki Takeda
- 3Divison of Proteo-Drug-Discovery Sciences, Ehime University Proteo-Science Center, Bunkyocho 3, Matsuyama, Ehime 790-8577 Japan
| | - Tatsuya Sawasaki
- 4Division of Cell-free Sciences, Ehime University Proteo-Science Center, Bunkyocho 3, Matsuyama, Ehime 790-8577 Japan
| | - Shinnosuke Morikawa
- 1Department of Pathology, Ehime University Graduate School of Medicine and Proteo-Science Centre, Shitsukawa 454, Toon, Ehime 791-0295 Japan
| | - Wei Zhou
- 1Department of Pathology, Ehime University Graduate School of Medicine and Proteo-Science Centre, Shitsukawa 454, Toon, Ehime 791-0295 Japan
| | - Mie Kurata
- 1Department of Pathology, Ehime University Graduate School of Medicine and Proteo-Science Centre, Shitsukawa 454, Toon, Ehime 791-0295 Japan
| | - Toshihiro Yamamoto
- 1Department of Pathology, Ehime University Graduate School of Medicine and Proteo-Science Centre, Shitsukawa 454, Toon, Ehime 791-0295 Japan
| | - Sheikh Mohammad Fazle Akbar
- 1Department of Pathology, Ehime University Graduate School of Medicine and Proteo-Science Centre, Shitsukawa 454, Toon, Ehime 791-0295 Japan
| | - Tamotsu Zako
- 2Department of Chemistry and Biology, Ehime University Graduate School of Science and Engineering, Bunkyocho 2-5, Matsuyama, Ehime 790-8577 Japan
| | - Junya Masumoto
- 1Department of Pathology, Ehime University Graduate School of Medicine and Proteo-Science Centre, Shitsukawa 454, Toon, Ehime 791-0295 Japan
| |
Collapse
|