1
|
Mayer S, Rolletschek H, Radchuk V, Wagner S, Ortleb S, Gündel A, Dehmer KJ, Gutjahr FT, Jakob PM, Borisjuk L. Metabolic imaging in living plants: A promising field for chemical exchange saturation transfer (CEST) MRI. SCIENCE ADVANCES 2024; 10:eadq4424. [PMID: 39292788 PMCID: PMC11409970 DOI: 10.1126/sciadv.adq4424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/15/2024] [Indexed: 09/20/2024]
Abstract
Magnetic resonance imaging (MRI) is a versatile technique in the biomedical field, but its application to the study of plant metabolism in vivo remains challenging because of magnetic susceptibility problems. In this study, we report the establishment of chemical exchange saturation transfer (CEST) for plant MRI. This method enables noninvasive access to the metabolism of sugars and amino acids in complex sink organs (seeds, fruits, taproots, and tubers) of major crops (maize, barley, pea, potato, sugar beet, and sugarcane). Because of its high signal detection sensitivity and low susceptibility to magnetic field inhomogeneities, CEST analyzes heterogeneous botanical samples inaccessible to conventional magnetic resonance spectroscopy. The approach provides unprecedented insight into the dynamics and distribution of sugars and amino acids in intact, living plant tissue. The method is validated by chemical shift imaging, infrared microscopy, chromatography, and mass spectrometry. CEST is a versatile and promising tool for studying plant metabolism in vivo, with many applications in plant science and crop improvement.
Collapse
Affiliation(s)
- Simon Mayer
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Seeland-Gatersleben, Germany
- Institute of Experimental Physics 5, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Hardy Rolletschek
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Seeland-Gatersleben, Germany
| | - Volodymyr Radchuk
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Seeland-Gatersleben, Germany
| | - Steffen Wagner
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Seeland-Gatersleben, Germany
| | - Stefan Ortleb
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Seeland-Gatersleben, Germany
| | - Andre Gündel
- Department of Ecology, Environment and Plant Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Klaus J. Dehmer
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Seeland-Gatersleben, Germany
| | - Fabian T. Gutjahr
- Institute of Experimental Physics 5, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Peter M. Jakob
- Institute of Experimental Physics 5, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Ljudmilla Borisjuk
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Seeland-Gatersleben, Germany
| |
Collapse
|
2
|
Kojima S, Ito T, Hayashi T. Denoising Using Noise2Void for Low-Field Magnetic Resonance Imaging: A Phantom Study. J Med Phys 2022; 47:387-393. [PMID: 36908491 PMCID: PMC9997543 DOI: 10.4103/jmp.jmp_71_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/14/2022] [Accepted: 09/26/2022] [Indexed: 01/11/2023] Open
Abstract
To reduce noise for low-field magnetic resonance imaging (MRI) using Noise2Void (N2V) and to demonstrate the N2V validity. N2V is one of the denoising convolutional neural network methods that allows the training of a model without a noiseless clean image. In this study, a kiwi fruit was scanned using a 0.35 Tesla MRI system, and the image qualities at pre- and postdenoising were evaluated. Structural similarity (SSIM), signal-to-noise ratio (SNR), and contrast ratio (CR) were measured, and visual assessment of noise and sharpness was observed. Both SSIM and SNR were significantly improved using N2V (P < 0.05). CR was unchanged between pre- and postdenoising images. The results of visual assessment for noise revealed higher scores in postdenoising images than that in predenoising images. The sharpness scores of postdenoising images were high when SNR was low. N2V provides effective noise reduction and is a useful denoising technique in low-field MRI.
Collapse
Affiliation(s)
- Shinya Kojima
- Department of Radiological Technology, Faculty of Medical Technology, Teikyo University, Itabashi-ku, Tokyo, Japan
| | - Toshimune Ito
- Department of Radiological Technology, Faculty of Medical Technology, Teikyo University, Itabashi-ku, Tokyo, Japan
| | - Tatsuya Hayashi
- Department of Radiological Technology, Faculty of Medical Technology, Teikyo University, Itabashi-ku, Tokyo, Japan
| |
Collapse
|
3
|
Hayashi T, Yano S, Kojima S, Ito T. Variability in contrast and apparent diffusion coefficient of kiwifruit used as prostate MRI phantom: 1-week validation. Radiol Phys Technol 2022; 15:424-429. [PMID: 36065048 DOI: 10.1007/s12194-022-00677-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/26/2022] [Accepted: 08/27/2022] [Indexed: 11/29/2022]
Abstract
Kiwifruit has been proposed as a phantom for prostate magnetic resonance imaging (MRI) to adjust multiparametric MRI factors. This study evaluated the variability in contrasts and apparent diffusion coefficients (ADCs) via repeated scans of kiwifruits for 1 week. All scans were performed using a 3T MRI system. Six kiwifruits were prepared as phantoms. Each kiwifruit was scanned consecutively for 1 week, and T2-weighted and diffusion-weighted images were acquired. Contrasts between the peripheral placenta (PP) and central placenta (CP), and between the outer pericarp (OP) and CP were calculated. The ADCs of the PP, OP, and CP were also determined. The Friedman test with Scheffé's post hoc comparison was used to assess contrast and ADC variability over 1 week; no significant differences between the contrasts or ADCs were found. Thus, each kiwifruit phantom exhibited low variability when used as a prostate MRI phantom.
Collapse
Affiliation(s)
- Tatsuya Hayashi
- Department of Radiological Technology, Faculty of Medical Technology, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo, 173-8605, Japan.
| | - Shimpei Yano
- Central Radiology Division, Teikyo University Hospital, 2-11-1 Kaga, Itabashi-ku, Tokyo, 173-8606, Japan
| | - Shinya Kojima
- Department of Radiological Technology, Faculty of Medical Technology, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo, 173-8605, Japan
| | - Toshimune Ito
- Department of Radiological Technology, Faculty of Medical Technology, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo, 173-8605, Japan
| |
Collapse
|
4
|
Ullrich T, Kohli MD, Ohliger MA, Magudia K, Arora SS, Barrett T, Bittencourt LK, Margolis DJ, Schimmöller L, Turkbey B, Westphalen AC. Quality Comparison of 3 Tesla multiparametric MRI of the prostate using a flexible surface receiver coil versus conventional surface coil plus endorectal coil setup. Abdom Radiol (NY) 2020; 45:4260-4270. [PMID: 32696213 PMCID: PMC7716937 DOI: 10.1007/s00261-020-02641-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 06/21/2020] [Accepted: 07/04/2020] [Indexed: 11/29/2022]
Abstract
PURPOSE To subjectively and quantitatively compare the quality of 3 Tesla magnetic resonance imaging of the prostate acquired with a novel flexible surface coil (FSC) and with a conventional endorectal coil (ERC). METHODS Six radiologists independently reviewed 200 pairs of axial, high-resolution T2-weighted and diffusion-weighted image data sets, each containing one examination acquired with the FSC and one with the ERC, respectively. Readers selected their preferred examination from each pair and assessed every single examination using six quality criteria on 4-point scales. Signal-to-noise ratios were measured and compared. RESULTS Two readers preferred FSC acquisition (36.5-45%) over ERC acquisition (13.5-15%) for both sequences combined, and four readers preferred ERC acquisition (41-46%). Analysis of pooled responses for both sequences from all readers shows no significant preference for FSC or ERC. Analysis of the individual sequences revealed a pooled preference for the FSC in T2WI (38.7% vs 17.8%) and for the ERC in DWI (50.9% vs 19.6%). Patients' weight was the only weak predictor of a preference for the ERC acquisition (p = 0.04). SNR and CNR were significantly higher in the ERC acquisitions (p<0.001) except CNR differentiating tumor lesions from benign prostate (p=0.1). CONCLUSION Although readers have strong individual preferences, comparable subjective image quality can be obtained for prostate MRI with an ERC and the novel FSC. ERC imaging might be particularly valuable for sequences with inherently lower SNR as DWI and larger patients whereas the FSC is generally preferred in T2WI. FSC imaging generates a lower SNR than with an ERC.
Collapse
Affiliation(s)
- T Ullrich
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA.
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Dusseldorf, 40225, Dusseldorf, Germany.
| | - M D Kohli
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - M A Ohliger
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - K Magudia
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - S S Arora
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - T Barrett
- Department of Radiology, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
- CamPARI Prostate Cancer Group, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - L K Bittencourt
- DASA Company, São Paulo, Brazil
- Department of Radiology, Fluminense Federal University (UFF), Niterói, Rio De Janeiro, Brazil
| | - D J Margolis
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - L Schimmöller
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Dusseldorf, 40225, Dusseldorf, Germany
| | - B Turkbey
- Molecular Imaging Program, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - A C Westphalen
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
- Department of Urology, University of California, San Francisco, CA, USA
| |
Collapse
|