1
|
Elahi R, Nazari M. An updated overview of radiomics-based artificial intelligence (AI) methods in breast cancer screening and diagnosis. Radiol Phys Technol 2024; 17:795-818. [PMID: 39285146 DOI: 10.1007/s12194-024-00842-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/25/2024] [Accepted: 08/27/2024] [Indexed: 11/21/2024]
Abstract
Current imaging methods for diagnosing breast cancer (BC) are associated with limited sensitivity and specificity and modest positive predictive power. The recent progress in image analysis using artificial intelligence (AI) has created great promise to improve BC diagnosis and subtype differentiation. In this case, novel quantitative computational methods, such as radiomics, have been developed to enhance the sensitivity and specificity of early BC diagnosis and classification. The potential of radiomics in improving the diagnostic efficacy of imaging studies has been shown in several studies. In this review article, we discuss the radiomics workflow and current handcrafted radiomics methods in the diagnosis and classification of BC based on the most recent studies on different imaging modalities, e.g., MRI, mammography, contrast-enhanced spectral mammography (CESM), ultrasound imaging, and digital breast tumosynthesis (DBT). We also discuss current challenges and potential strategies to improve the specificity and sensitivity of radiomics in breast cancer to help achieve a higher level of BC classification and diagnosis in the clinical setting. The growing field of AI incorporation with imaging information has opened a great opportunity to provide a higher level of care for BC patients.
Collapse
Affiliation(s)
- Reza Elahi
- Department of Radiology, Zanjan University of Medical Sciences, Zanjan, Iran.
| | - Mahdis Nazari
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
2
|
Petrillo A, Fusco R, Petrosino T, Vallone P, Granata V, Rubulotta MR, Pariante P, Raiano N, Scognamiglio G, Fanizzi A, Massafra R, Lafranceschina M, La Forgia D, Greco L, Ferranti FR, De Soccio V, Vidiri A, Botta F, Dominelli V, Cassano E, Sorgente E, Pecori B, Cerciello V, Boldrini L. A multicentric study of radiomics and artificial intelligence analysis on contrast-enhanced mammography to identify different histotypes of breast cancer. LA RADIOLOGIA MEDICA 2024; 129:864-878. [PMID: 38755477 DOI: 10.1007/s11547-024-01817-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 04/16/2024] [Indexed: 05/18/2024]
Abstract
OBJECTIVE To evaluate the performance of radiomic analysis on contrast-enhanced mammography images to identify different histotypes of breast cancer mainly in order to predict grading, to identify hormone receptors, to discriminate human epidermal growth factor receptor 2 (HER2) and to identify luminal histotype of the breast cancer. METHODS From four Italian centers were recruited 180 malignant lesions and 68 benign lesions. However, only the malignant lesions were considered for the analysis. All patients underwent contrast-enhanced mammography in cranium caudal (CC) and medium lateral oblique (MLO) view. Considering histological findings as the ground truth, four outcomes were considered: (1) G1 + G2 vs. G3; (2) HER2 + vs. HER2 - ; (3) HR + vs. HR - ; and (4) non-luminal vs. luminal A or HR + /HER2- and luminal B or HR + /HER2 + . For multivariate analysis feature selection, balancing techniques and patter recognition approaches were considered. RESULTS The univariate findings showed that the diagnostic performance is low for each outcome, while the results of the multivariate analysis showed that better performances can be obtained. In the HER2 + detection, the best performance (73% of accuracy and AUC = 0.77) was obtained using a linear regression model (LRM) with 12 features extracted by MLO view. In the HR + detection, the best performance (77% of accuracy and AUC = 0.80) was obtained using a LRM with 14 features extracted by MLO view. In grading classification, the best performance was obtained by a decision tree trained with three predictors extracted by MLO view reaching an accuracy of 82% on validation set. In the luminal versus non-luminal histotype classification, the best performance was obtained by a bagged tree trained with 15 predictors extracted by CC view reaching an accuracy of 94% on validation set. CONCLUSIONS The results suggest that radiomics analysis can be effectively applied to design a tool to support physician decision making in breast cancer classification. In particular, the classification of luminal versus non-luminal histotypes can be performed with high accuracy.
Collapse
Affiliation(s)
- Antonella Petrillo
- Radiology Division, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131, Naples, Italy.
| | - Roberta Fusco
- Medical Oncology Division, Igea SpA, 80013, Naples, Italy
| | - Teresa Petrosino
- Radiology Division, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131, Naples, Italy
| | - Paolo Vallone
- Radiology Division, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131, Naples, Italy
| | - Vincenza Granata
- Radiology Division, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131, Naples, Italy
| | - Maria Rosaria Rubulotta
- Radiology Division, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131, Naples, Italy
| | - Paolo Pariante
- Radiology Division, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131, Naples, Italy
| | - Nicola Raiano
- Radiology Division, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131, Naples, Italy
| | - Giosuè Scognamiglio
- Pathology Division, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131, Naples, Italy
| | - Annarita Fanizzi
- Direzione Scientifica, IRCCS Istituto Tumori Giovanni Paolo II, Via Orazio Flacco 65, 70124, Bari, Italy
| | - Raffaella Massafra
- SSD Fisica Sanitaria, IRCCS Istituto Tumori Giovanni Paolo II, Via Orazio Flacco 65, 70124, Bari, Italy
| | - Miria Lafranceschina
- Struttura Semplice Dipartimentale Di Radiodiagnostica Senologica, IRCCS Istituto Tumori Giovanni Paolo II, Via Orazio Flacco 65, 70124, Bari, Italy
| | - Daniele La Forgia
- Struttura Semplice Dipartimentale Di Radiodiagnostica Senologica, IRCCS Istituto Tumori Giovanni Paolo II, Via Orazio Flacco 65, 70124, Bari, Italy
| | - Laura Greco
- Radiology and Diagnostic Imaging, Istituto Di Ricovero E Cura a Carattere Scientifico (IRCCS) Regina Elena National Cancer Institute, Rome, Italy
| | - Francesca Romana Ferranti
- Radiology and Diagnostic Imaging, Istituto Di Ricovero E Cura a Carattere Scientifico (IRCCS) Regina Elena National Cancer Institute, Rome, Italy
| | - Valeria De Soccio
- Radiology and Diagnostic Imaging, Istituto Di Ricovero E Cura a Carattere Scientifico (IRCCS) Regina Elena National Cancer Institute, Rome, Italy
| | - Antonello Vidiri
- Radiology and Diagnostic Imaging, Istituto Di Ricovero E Cura a Carattere Scientifico (IRCCS) Regina Elena National Cancer Institute, Rome, Italy
| | - Francesca Botta
- Breast Imaging Division, IEO Istituto Europeo Di Oncologia, 20141, Milan, Italy
| | - Valeria Dominelli
- Breast Imaging Division, IEO Istituto Europeo Di Oncologia, 20141, Milan, Italy
| | - Enrico Cassano
- Breast Imaging Division, IEO Istituto Europeo Di Oncologia, 20141, Milan, Italy
| | - Eugenio Sorgente
- Radiation Protection and Innovative Technology Division, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131, Naples, Italy
| | - Biagio Pecori
- Radiation Protection and Innovative Technology Division, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131, Naples, Italy
| | - Vincenzo Cerciello
- Medical Physics, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131, Naples, Italy
| | - Luca Boldrini
- Dipartimento Di Diagnostica Per Immagini, Radioterapia Oncologica Ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy
| |
Collapse
|
3
|
Petrillo A, Fusco R, Barretta ML, Granata V, Mattace Raso M, Porto A, Sorgente E, Fanizzi A, Massafra R, Lafranceschina M, La Forgia D, Trombadori CML, Belli P, Trecate G, Tenconi C, De Santis MC, Greco L, Ferranti FR, De Soccio V, Vidiri A, Botta F, Dominelli V, Cassano E, Boldrini L. Radiomics and artificial intelligence analysis by T2-weighted imaging and dynamic contrast-enhanced magnetic resonance imaging to predict Breast Cancer Histological Outcome. LA RADIOLOGIA MEDICA 2023; 128:1347-1371. [PMID: 37801198 DOI: 10.1007/s11547-023-01718-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/01/2023] [Indexed: 10/07/2023]
Abstract
OBJECTIVE The objective of the study was to evaluate the accuracy of radiomics features obtained by MR images to predict Breast Cancer Histological Outcome. METHODS A total of 217 patients with malignant lesions were analysed underwent MRI examinations. Considering histological findings as the ground truth, four different types of findings were used in both univariate and multivariate analyses: (1) G1 + G2 vs G3 classification; (2) presence of human epidermal growth factor receptor 2 (HER2 + vs HER2 -); (3) presence of the hormone receptor (HR + vs HR -); and (4) presence of luminal subtypes of breast cancer. RESULTS The best accuracy for discriminating HER2 + versus HER2 - breast cancers was obtained considering nine predictors by early phase T1-weighted subtraction images and a decision tree (accuracy of 88% on validation set). The best accuracy for discriminating HR + versus HR - breast cancers was obtained considering nine predictors by T2-weighted subtraction images and a decision tree (accuracy of 90% on validation set). The best accuracy for discriminating G1 + G2 versus G3 breast cancers was obtained considering 16 predictors by early phase T1-weighted subtraction images in a linear regression model with an accuracy of 75%. The best accuracy for discriminating luminal versus non-luminal breast cancers was obtained considering 27 predictors by early phase T1-weighted subtraction images and a decision tree (accuracy of 94% on validation set). CONCLUSIONS The combination of radiomics analysis and artificial intelligence techniques could be used to support physician decision-making in prediction of Breast Cancer Histological Outcome.
Collapse
Affiliation(s)
- Antonella Petrillo
- Radiology Division, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131, Naples, Italy.
| | - Roberta Fusco
- Medical Oncology Division, Igea SpA, 80013, Naples, Italy
| | - Maria Luisa Barretta
- Radiology Division, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131, Naples, Italy
| | - Vincenza Granata
- Radiology Division, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131, Naples, Italy
| | - Mauro Mattace Raso
- Radiology Division, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131, Naples, Italy
| | - Annamaria Porto
- Radiology Division, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131, Naples, Italy
| | - Eugenio Sorgente
- Radiology Division, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131, Naples, Italy
| | - Annarita Fanizzi
- Direzione Scientifica-IRCCS, Istituto Tumori Giovanni Paolo II-Via Orazio Flacco 65, 70124, Bari, Italy
| | - Raffaella Massafra
- SSD Fisica Sanitaria-IRCCS Istituto Tumori Giovanni Paolo II-Via Orazio Flacco 65, 70124, Bari, Italy
| | - Miria Lafranceschina
- Struttura Semplice Dipartimentale di Radiodiagnostica Senologica-IRCCS Istituto Tumori Giovanni Paolo II-Via Orazio Flacco 65, 70124, Bari, Italy
| | - Daniele La Forgia
- Struttura Semplice Dipartimentale di Radiodiagnostica Senologica-IRCCS Istituto Tumori Giovanni Paolo II-Via Orazio Flacco 65, 70124, Bari, Italy
| | | | - Paolo Belli
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy
| | - Giovanna Trecate
- Department of Radiodiagnostic and Magnetic Resonance, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133, Milan, Italy
| | - Chiara Tenconi
- Department of Medical Physics, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133, Milan, Italy
| | - Maria Carmen De Santis
- De Santis Radiation Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133, Milan, Italy
| | - Laura Greco
- Radiology and Diagnostic Imaging, Istituto di Ricovero E Cura a Carattere Scientifico (IRCCS) Regina Elena National Cancer Institute, Rome, Italy
| | - Francesca Romana Ferranti
- Radiology and Diagnostic Imaging, Istituto di Ricovero E Cura a Carattere Scientifico (IRCCS) Regina Elena National Cancer Institute, Rome, Italy
| | - Valeria De Soccio
- Radiology and Diagnostic Imaging, Istituto di Ricovero E Cura a Carattere Scientifico (IRCCS) Regina Elena National Cancer Institute, Rome, Italy
| | - Antonello Vidiri
- Radiology and Diagnostic Imaging, Istituto di Ricovero E Cura a Carattere Scientifico (IRCCS) Regina Elena National Cancer Institute, Rome, Italy
| | - Francesca Botta
- Breast Imaging Division, IEO Istituto Europeo di Oncologia, 20141, Milan, Italy
| | - Valeria Dominelli
- Breast Imaging Division, IEO Istituto Europeo di Oncologia, 20141, Milan, Italy
| | - Enrico Cassano
- Breast Imaging Division, IEO Istituto Europeo di Oncologia, 20141, Milan, Italy
| | - Luca Boldrini
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy
| |
Collapse
|
4
|
Panthi B, Mohamed RM, Adrada BE, Boge M, Candelaria RP, Chen H, Hunt KK, Huo L, Hwang KP, Korkut A, Lane DL, Le-Petross HC, Leung JWT, Litton JK, Pashapoor S, Perez F, Son JB, Sun J, Thompson A, Tripathy D, Valero V, Wei P, White J, Xu Z, Yang W, Zhou Z, Yam C, Rauch GM, Ma J. Longitudinal dynamic contrast-enhanced MRI radiomic models for early prediction of response to neoadjuvant systemic therapy in triple-negative breast cancer. Front Oncol 2023; 13:1264259. [PMID: 37941561 PMCID: PMC10628525 DOI: 10.3389/fonc.2023.1264259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/09/2023] [Indexed: 11/10/2023] Open
Abstract
Early prediction of neoadjuvant systemic therapy (NAST) response for triple-negative breast cancer (TNBC) patients could help oncologists select individualized treatment and avoid toxic effects associated with ineffective therapy in patients unlikely to achieve pathologic complete response (pCR). The objective of this study is to evaluate the performance of radiomic features of the peritumoral and tumoral regions from dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) acquired at different time points of NAST for early treatment response prediction in TNBC. This study included 163 Stage I-III patients with TNBC undergoing NAST as part of a prospective clinical trial (NCT02276443). Peritumoral and tumoral regions of interest were segmented on DCE images at baseline (BL) and after two (C2) and four (C4) cycles of NAST. Ten first-order (FO) radiomic features and 300 gray-level-co-occurrence matrix (GLCM) features were calculated. Area under the receiver operating characteristic curve (AUC) and Wilcoxon rank sum test were used to determine the most predictive features. Multivariate logistic regression models were used for performance assessment. Pearson correlation was used to assess intrareader and interreader variability. Seventy-eight patients (48%) had pCR (52 training, 26 testing), and 85 (52%) had non-pCR (57 training, 28 testing). Forty-six radiomic features had AUC at least 0.70, and 13 multivariate models had AUC at least 0.75 for training and testing sets. The Pearson correlation showed significant correlation between readers. In conclusion, Radiomic features from DCE-MRI are useful for differentiating pCR and non-pCR. Similarly, predictive radiomic models based on these features can improve early noninvasive treatment response prediction in TNBC patients undergoing NAST.
Collapse
Affiliation(s)
- Bikash Panthi
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Rania M. Mohamed
- Department of Breast Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Beatriz E. Adrada
- Department of Breast Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Medine Boge
- Department of Breast Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Koc University Hospital, Istanbul, Türkiye
| | - Rosalind P. Candelaria
- Department of Breast Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Huiqin Chen
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Kelly K. Hunt
- Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Lei Huo
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Ken-Pin Hwang
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Anil Korkut
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Deanna L. Lane
- Department of Breast Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Huong C. Le-Petross
- Department of Breast Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jessica W. T. Leung
- Department of Breast Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jennifer K. Litton
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Sanaz Pashapoor
- Department of Breast Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Frances Perez
- Department of Breast Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jong Bum Son
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jia Sun
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Alastair Thompson
- Department of Surgery, Baylor College of Medicine, Houston, TX, United States
| | - Debu Tripathy
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Vicente Valero
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Peng Wei
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jason White
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Zhan Xu
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Wei Yang
- Department of Breast Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Zijian Zhou
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Clinton Yam
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Gaiane M. Rauch
- Department of Breast Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Department of Abdominal Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jingfei Ma
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
5
|
De Muzio F, Pellegrino F, Fusco R, Tafuto S, Scaglione M, Ottaiano A, Petrillo A, Izzo F, Granata V. Prognostic Assessment of Gastropancreatic Neuroendocrine Neoplasm: Prospects and Limits of Radiomics. Diagnostics (Basel) 2023; 13:2877. [PMID: 37761243 PMCID: PMC10529975 DOI: 10.3390/diagnostics13182877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/28/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
Neuroendocrine neoplasms (NENs) are a group of lesions originating from cells of the diffuse neuroendocrine system. NENs may involve different sites, including the gastrointestinal tract (GEP-NENs). The incidence and prevalence of GEP-NENs has been constantly rising thanks to the increased diagnostic power of imaging and immuno-histochemistry. Despite the plethora of biochemical markers and imaging techniques, the prognosis and therapeutic choice in GEP-NENs still represents a challenge, mainly due to the great heterogeneity in terms of tumor lesions and clinical behavior. The concept that biomedical images contain information about tissue heterogeneity and pathological processes invisible to the human eye is now well established. From this substrate comes the idea of radiomics. Computational analysis has achieved promising results in several oncological settings, and the use of radiomics in different types of GEP-NENs is growing in the field of research, yet with conflicting results. The aim of this narrative review is to provide a comprehensive update on the role of radiomics on GEP-NEN management, focusing on the main clinical aspects analyzed by most existing reports: predicting tumor grade, distinguishing NET from other tumors, and prognosis assessment.
Collapse
Affiliation(s)
- Federica De Muzio
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy;
| | | | - Roberta Fusco
- Medical Oncology Division, Igea SpA, 80013 Napoli, Italy;
| | - Salvatore Tafuto
- Unit of Sarcomi e Tumori Rari, Istituto Nazionale Tumori, IRCCS, Fondazione G. Pascale, 80131 Naples, Italy;
| | - Mariano Scaglione
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, 07100 Sassari, Italy
| | - Alessandro Ottaiano
- Unit for Innovative Therapies of Abdominal Metastastes, Istituto Nazionale Tumori, IRCCS, Fondazione G. Pascale, 80131 Naples, Italy;
| | - Antonella Petrillo
- Division of Radiology, Istituto Nazionale Tumori, IRCCS, Fondazione G. Pascale, 80131 Naples, Italy;
| | - Francesco Izzo
- Division of Hepatobiliary Surgery, Istituto Nazionale Tumori, IRCCS, Fondazione G. Pascale, 80131 Naples, Italy
| | - Vincenza Granata
- Division of Radiology, Istituto Nazionale Tumori, IRCCS, Fondazione G. Pascale, 80131 Naples, Italy;
| |
Collapse
|
6
|
Bagher-Ebadian H, Brown SL, Ghassemi MM, Nagaraja TN, Movsas B, Ewing JR, Chetty IJ. Radiomics characterization of tissues in an animal brain tumor model imaged using dynamic contrast enhanced (DCE) MRI. Sci Rep 2023; 13:10693. [PMID: 37394559 DOI: 10.1038/s41598-023-37723-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 06/27/2023] [Indexed: 07/04/2023] Open
Abstract
Here, we investigate radiomics-based characterization of tumor vascular and microenvironmental properties in an orthotopic rat brain tumor model measured using dynamic-contrast-enhanced (DCE) MRI. Thirty-two immune compromised-RNU rats implanted with human U-251N cancer cells were imaged using DCE-MRI (7Tesla, Dual-Gradient-Echo). The aim was to perform pharmacokinetic analysis using a nested model (NM) selection technique to classify brain regions according to vasculature properties considered as the source of truth. A two-dimensional convolutional-based radiomics analysis was performed on the raw-DCE-MRI of the rat brains to generate dynamic radiomics maps. The raw-DCE-MRI and respective radiomics maps were used to build 28 unsupervised Kohonen self-organizing-maps (K-SOMs). A Silhouette-Coefficient (SC), k-fold Nested-Cross-Validation (k-fold-NCV), and feature engineering analyses were performed on the K-SOMs' feature spaces to quantify the distinction power of radiomics features compared to raw-DCE-MRI for classification of different Nested Models. Results showed that eight radiomics features outperformed respective raw-DCE-MRI in prediction of the three nested models. The average percent difference in SCs between radiomics features and raw-DCE-MRI was: 29.875% ± 12.922%, p < 0.001. This work establishes an important first step toward spatiotemporal characterization of brain regions using radiomics signatures, which is fundamental toward staging of tumors and evaluation of tumor response to different treatments.
Collapse
Affiliation(s)
- Hassan Bagher-Ebadian
- Department of Radiation Oncology, Henry Ford Health, Detroit, MI, 48202, USA.
- Department of Radiology, Michigan State University, East Lansing, MI, 48824, USA.
- Department of Osteopathic Medicine, Michigan State University, East Lansing, MI, 48824, USA.
- Department of Physics, Oakland University, Rochester, MI, 48309, USA.
| | - Stephen L Brown
- Department of Radiation Oncology, Henry Ford Health, Detroit, MI, 48202, USA
- Department of Radiology, Michigan State University, East Lansing, MI, 48824, USA
- Department of Radiation Oncology, Wayne State University, Detroit, MI, 48202, USA
| | - Mohammad M Ghassemi
- Department of Computer Science and Engineering, Michigan State University, East Lansing, MI, 48824, USA
| | - Tavarekere N Nagaraja
- Department of Radiology, Michigan State University, East Lansing, MI, 48824, USA
- Department of Neurosurgery, Henry Ford Health, Detroit, MI, 48202, USA
| | - Benjamin Movsas
- Department of Radiation Oncology, Henry Ford Health, Detroit, MI, 48202, USA
- Department of Radiology, Michigan State University, East Lansing, MI, 48824, USA
- Department of Radiation Oncology, Wayne State University, Detroit, MI, 48202, USA
| | - James R Ewing
- Department of Radiology, Michigan State University, East Lansing, MI, 48824, USA
- Department of Physics, Oakland University, Rochester, MI, 48309, USA
- Department of Neurosurgery, Henry Ford Health, Detroit, MI, 48202, USA
- Department of Neurology, Henry Ford Health, Detroit, MI, 48202, USA
- Department of Neurology, Wayne State University, Detroit, MI, 48202, USA
| | - Indrin J Chetty
- Department of Radiation Oncology, Henry Ford Health, Detroit, MI, 48202, USA
- Department of Physics, Oakland University, Rochester, MI, 48309, USA
- Department of Radiation Oncology, Wayne State University, Detroit, MI, 48202, USA
| |
Collapse
|
7
|
Sansone M, Fusco R, Grassi F, Gatta G, Belfiore MP, Angelone F, Ricciardi C, Ponsiglione AM, Amato F, Galdiero R, Grassi R, Granata V, Grassi R. Machine Learning Approaches with Textural Features to Calculate Breast Density on Mammography. Curr Oncol 2023; 30:839-853. [PMID: 36661713 PMCID: PMC9858566 DOI: 10.3390/curroncol30010064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/31/2022] [Accepted: 01/06/2023] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND breast cancer (BC) is the world's most prevalent cancer in the female population, with 2.3 million new cases diagnosed worldwide in 2020. The great efforts made to set screening campaigns, early detection programs, and increasingly targeted treatments led to significant improvement in patients' survival. The Full-Field Digital Mammograph (FFDM) is considered the gold standard method for the early diagnosis of BC. From several previous studies, it has emerged that breast density (BD) is a risk factor in the development of BC, affecting the periodicity of screening plans present today at an international level. OBJECTIVE in this study, the focus is the development of mammographic image processing techniques that allow the extraction of indicators derived from textural patterns of the mammary parenchyma indicative of BD risk factors. METHODS a total of 168 patients were enrolled in the internal training and test set while a total of 51 patients were enrolled to compose the external validation cohort. Different Machine Learning (ML) techniques have been employed to classify breasts based on the values of the tissue density. Textural features were extracted only from breast parenchyma with which to train classifiers, thanks to the aid of ML algorithms. RESULTS the accuracy of different tested classifiers varied between 74.15% and 93.55%. The best results were reached by a Support Vector Machine (accuracy of 93.55% and a percentage of true positives and negatives equal to TPP = 94.44% and TNP = 92.31%). The best accuracy was not influenced by the choice of the features selection approach. Considering the external validation cohort, the SVM, as the best classifier with the 7 features selected by a wrapper method, showed an accuracy of 0.95, a sensitivity of 0.96, and a specificity of 0.90. CONCLUSIONS our preliminary results showed that the Radiomics analysis and ML approach allow us to objectively identify BD.
Collapse
Affiliation(s)
- Mario Sansone
- Department of Electrical Engineering Information Technology, University of Naples Federico II, 80125 Naples, Italy
| | - Roberta Fusco
- Medical Oncology Division, Igea SpA, 80013 Napoli, Italy
| | - Francesca Grassi
- Department of Precision Medicine, Division of Radiology, University of Campania Luigi Vanvitelli, 80127 Naples, Italy
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, 20122 Milan, Italy
| | - Gianluca Gatta
- Department of Precision Medicine, Division of Radiology, University of Campania Luigi Vanvitelli, 80127 Naples, Italy
| | - Maria Paola Belfiore
- Department of Precision Medicine, Division of Radiology, University of Campania Luigi Vanvitelli, 80127 Naples, Italy
| | - Francesca Angelone
- Department of Electrical Engineering Information Technology, University of Naples Federico II, 80125 Naples, Italy
| | - Carlo Ricciardi
- Department of Electrical Engineering Information Technology, University of Naples Federico II, 80125 Naples, Italy
| | - Alfonso Maria Ponsiglione
- Department of Electrical Engineering Information Technology, University of Naples Federico II, 80125 Naples, Italy
| | - Francesco Amato
- Department of Electrical Engineering Information Technology, University of Naples Federico II, 80125 Naples, Italy
| | - Roberta Galdiero
- Division of Radiology, Istituto Nazionale Tumori IRCCS Fondazione Pascale—IRCCS di Napoli, 80131 Naples, Italy
| | - Roberta Grassi
- Department of Precision Medicine, Division of Radiology, University of Campania Luigi Vanvitelli, 80127 Naples, Italy
| | - Vincenza Granata
- Division of Radiology, Istituto Nazionale Tumori IRCCS Fondazione Pascale—IRCCS di Napoli, 80131 Naples, Italy
| | - Roberto Grassi
- Department of Precision Medicine, Division of Radiology, University of Campania Luigi Vanvitelli, 80127 Naples, Italy
| |
Collapse
|
8
|
Ghezzo S, Bezzi C, Neri I, Mapelli P, Presotto L, Gajate AMS, Bettinardi V, Garibotto V, De Cobelli F, Scifo P, Picchio M. Radiomics and artificial intelligence. CLINICAL PET/MRI 2023:365-401. [DOI: 10.1016/b978-0-323-88537-9.00002-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
9
|
A Hybrid Workflow of Residual Convolutional Transformer Encoder for Breast Cancer Classification Using Digital X-ray Mammograms. Biomedicines 2022; 10:biomedicines10112971. [PMID: 36428538 PMCID: PMC9687367 DOI: 10.3390/biomedicines10112971] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/03/2022] [Accepted: 11/13/2022] [Indexed: 11/19/2022] Open
Abstract
Breast cancer, which attacks the glandular epithelium of the breast, is the second most common kind of cancer in women after lung cancer, and it affects a significant number of people worldwide. Based on the advantages of Residual Convolutional Network and the Transformer Encoder with Multiple Layer Perceptron (MLP), this study proposes a novel hybrid deep learning Computer-Aided Diagnosis (CAD) system for breast lesions. While the backbone residual deep learning network is employed to create the deep features, the transformer is utilized to classify breast cancer according to the self-attention mechanism. The proposed CAD system has the capability to recognize breast cancer in two scenarios: Scenario A (Binary classification) and Scenario B (Multi-classification). Data collection and preprocessing, patch image creation and splitting, and artificial intelligence-based breast lesion identification are all components of the execution framework that are applied consistently across both cases. The effectiveness of the proposed AI model is compared against three separate deep learning models: a custom CNN, the VGG16, and the ResNet50. Two datasets, CBIS-DDSM and DDSM, are utilized to construct and test the proposed CAD system. Five-fold cross validation of the test data is used to evaluate the accuracy of the performance results. The suggested hybrid CAD system achieves encouraging evaluation results, with overall accuracies of 100% and 95.80% for binary and multiclass prediction challenges, respectively. The experimental results reveal that the proposed hybrid AI model could identify benign and malignant breast tissues significantly, which is important for radiologists to recommend further investigation of abnormal mammograms and provide the optimal treatment plan.
Collapse
|
10
|
Fusco R, Granata V, Grazzini G, Pradella S, Borgheresi A, Bruno A, Palumbo P, Bruno F, Grassi R, Giovagnoni A, Grassi R, Miele V, Barile A. Radiomics in medical imaging: pitfalls and challenges in clinical management. Jpn J Radiol 2022; 40:919-929. [PMID: 35344132 DOI: 10.1007/s11604-022-01271-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 03/14/2022] [Indexed: 12/21/2022]
Abstract
BACKGROUND Radiomics and radiogenomics are two words that recur often in language of radiologists, nuclear doctors and medical physicists especially in oncology field. Radiomics is the technique of medical images analysis to extract quantitative data that are not detected by human eye. METHODS This article is a narrative review on Radiomics in Medical Imaging. In particular, the review exposes the process, the limitations related to radiomics, and future prospects are discussed. RESULTS Several studies showed that radiomics is very promising. However, there were some critical issues: poor standardization and generalization of radiomics results, data-quality control, repeatability, reproducibility, database balancing and issues related to model overfitting. CONCLUSIONS Radiomics procedure should made considered all pitfalls and challenges to obtain robust and reproducible results that could be generalized in other patients cohort.
Collapse
Affiliation(s)
| | - Vincenza Granata
- Division of Radiology, "Istituto Nazionale Tumori IRCCS Fondazione Pascale-IRCCS di Napoli", Naples, Italy.
| | - Giulia Grazzini
- Department of Radiology, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy.,Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, via della Signora 2, 20122, Milan, Italy
| | - Silvia Pradella
- Department of Radiology, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy.,Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, via della Signora 2, 20122, Milan, Italy
| | - Alessandra Borgheresi
- Department of Clinical Special and Dental Sciences, School of Radiology, University Politecnica delle Marche, Ancona, Italy
| | - Alessandra Bruno
- Department of Clinical Special and Dental Sciences, School of Radiology, University Politecnica delle Marche, Ancona, Italy
| | - Pierpaolo Palumbo
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, via della Signora 2, 20122, Milan, Italy.,Department of Diagnostic Imaging, Area of Cardiovascular and Interventional Imaging, Abruzzo Health Unit 1, 67100, L'Aquila, Italy
| | - Federico Bruno
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, via della Signora 2, 20122, Milan, Italy.,Department of Applied Clinical Sciences and Biotechnology, University of L'Aquila, 67100, L'Aquila, Italy
| | - Roberta Grassi
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, via della Signora 2, 20122, Milan, Italy.,Division of Radiology, "Università Degli Studi della Campania Luigi Vanvitelli", Naples, Italy
| | - Andrea Giovagnoni
- Department of Clinical Special and Dental Sciences, School of Radiology, University Politecnica delle Marche, Ancona, Italy
| | - Roberto Grassi
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, via della Signora 2, 20122, Milan, Italy.,Division of Radiology, "Università Degli Studi della Campania Luigi Vanvitelli", Naples, Italy
| | - Vittorio Miele
- Department of Radiology, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy.,Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, via della Signora 2, 20122, Milan, Italy
| | - Antonio Barile
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, via della Signora 2, 20122, Milan, Italy.,Department of Applied Clinical Sciences and Biotechnology, University of L'Aquila, 67100, L'Aquila, Italy
| |
Collapse
|
11
|
Advanced Magnetic Resonance Imaging (MRI) Techniques: Technical Principles and Applications in Nanomedicine. Cancers (Basel) 2022; 14:cancers14071626. [PMID: 35406399 PMCID: PMC8997011 DOI: 10.3390/cancers14071626] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 12/26/2022] Open
Abstract
Simple Summary Magnetic Resonance Imaging (MRI) is a consolidated imaging tool for the multiparametric assessment of tissues in various pathologies from degenerative and inflammatory diseases to cancer. In recent years, the continuous technological evolution of the equipment has led to the development of sequences that provide not only anatomical but also functional and metabolic information. In addition, there is a growing and emerging field of research in clinical applications using MRI to exploit the diagnostic and therapeutic capabilities of nanocompounds. This review illustrates the application of the most advanced magnetic resonance techniques in the field of nanomedicine. Abstract In the last decades, nanotechnology has been used in a wide range of biomedical applications, both diagnostic and therapeutic. In this scenario, imaging techniques represent a fundamental tool to obtain information about the properties of nanoconstructs and their interactions with the biological environment in preclinical and clinical settings. This paper reviews the state of the art of the application of magnetic resonance imaging in the field of nanomedicine, as well as the use of nanoparticles as diagnostic and therapeutic tools, especially in cancer, including the characteristics that hinder the use of nanoparticles in clinical practice.
Collapse
|
12
|
Granata V, Fusco R, Setola SV, Simonetti I, Cozzi D, Grazzini G, Grassi F, Belli A, Miele V, Izzo F, Petrillo A. An update on radiomics techniques in primary liver cancers. Infect Agent Cancer 2022; 17:6. [PMID: 35246207 PMCID: PMC8897888 DOI: 10.1186/s13027-022-00422-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 02/28/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Radiomics is a progressing field of research that deals with the extraction of quantitative metrics from medical images. Radiomic features detention indirectly tissue features such as heterogeneity and shape and can, alone or in combination with demographic, histological, genomic, or proteomic data, be used for decision support system in clinical setting. METHODS This article is a narrative review on Radiomics in Primary Liver Cancers. Particularly, limitations and future perspectives are discussed. RESULTS In oncology, assessment of tissue heterogeneity is of particular interest: genomic analysis have demonstrated that the degree of tumour heterogeneity is a prognostic determinant of survival and an obstacle to cancer control. Therefore, that Radiomics could support cancer detection, diagnosis, evaluation of prognosis and response to treatment, so as could supervise disease status in hepatocellular carcinoma (HCC) and Intrahepatic Cholangiocarcinoma (ICC) patients. Radiomic analysis is a convenient radiological image analysis technique used to support clinical decisions as it is able to provide prognostic and / or predictive biomarkers that allow a fast, objective and repeatable tool for disease monitoring. CONCLUSIONS Although several studies have shown that this analysis is very promising, there is little standardization and generalization of the results, which limits the translation of this method into the clinical context. The limitations are mainly related to the evaluation of data quality, repeatability, reproducibility, overfitting of the model. TRIAL REGISTRATION Not applicable.
Collapse
Affiliation(s)
- Vincenza Granata
- Division of Radiology, "Istituto Nazionale Tumori IRCCS Fondazione Pascale - IRCCS di Napoli", Via Mariano Semmola 80131, Naples, Italy.
| | | | - Sergio Venazio Setola
- Division of Radiology, "Istituto Nazionale Tumori IRCCS Fondazione Pascale - IRCCS di Napoli", Via Mariano Semmola 80131, Naples, Italy
| | - Igino Simonetti
- Division of Radiology, "Istituto Nazionale Tumori IRCCS Fondazione Pascale - IRCCS di Napoli", Via Mariano Semmola 80131, Naples, Italy
| | - Diletta Cozzi
- Department of Radiology, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy.,Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Via Della Signora 2, 20122, Milan, Italy
| | - Giulia Grazzini
- Department of Radiology, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy.,Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Via Della Signora 2, 20122, Milan, Italy
| | - Francesca Grassi
- Division of Radiology, "Università Degli Studi Della Campania Luigi Vanvitelli", Naples, Italy
| | - Andrea Belli
- Division of Hepatobiliary Surgical Oncology, "Istituto Nazionale Tumori IRCCS Fondazione Pascale - IRCCS di Napoli", 80131, Naples, Italy
| | - Vittorio Miele
- Department of Radiology, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy.,Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Via Della Signora 2, 20122, Milan, Italy
| | - Francesco Izzo
- Division of Hepatobiliary Surgical Oncology, "Istituto Nazionale Tumori IRCCS Fondazione Pascale - IRCCS di Napoli", 80131, Naples, Italy
| | - Antonella Petrillo
- Division of Radiology, "Istituto Nazionale Tumori IRCCS Fondazione Pascale - IRCCS di Napoli", Via Mariano Semmola 80131, Naples, Italy
| |
Collapse
|
13
|
Kuramoto Y, Wada N, Uchiyama Y. Prediction of pathological complete response using radiomics on MRI in patients with breast cancer undergoing neoadjuvant pharmacotherapy. Int J Comput Assist Radiol Surg 2022; 17:619-625. [PMID: 35023018 DOI: 10.1007/s11548-022-02560-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 01/03/2022] [Indexed: 12/17/2022]
Abstract
PURPOSE Neoadjuvant pharmacotherapy is essential for patients with breast cancer who wish to preserve the breast by shrinking the malignant tumor, allowing breast-conserving surgery. It may eliminate cancer cells completely, which is known as pathologic complete response (pCR). Patients with pCR have a lower risk of recurrence. The purpose of this study was to develop a method for predicting patients who achieve pCR by neoadjuvant pharmacotherapy using radiomic features in MR images. METHODS Fat-suppressed T2-weighted MR images of 64 cases were identified from the ISPY1 dataset. There were 26 cases of pCR and 38 cases of non-pCR. The image slice with the largest tumor diameter was selected from MR images, and the tumor region was manually segmented. A total of 371 radiomic features were calculated from the tumor region. We selected nine radiomic features using Lasso in this study. A support vector machine (SVM) with nine radiomic features was used for predicting patients with pCR. RESULTS The result of the ROC analysis showed that the area under the curve of SVM was 0.92 for distinguishing between pCR and non-pCR. Although the input data contain data that were misclassified by SVM, the survival curve classified into the pCR group was at a higher position than the non-pCR group. However, the log-rank test was [Formula: see text]. CONCLUSIONS We developed a method to predict patients with pCR by neoadjuvant pharmacotherapy using noninvasive MR images. The survival curve of patients classified as having pCR by the proposed method was higher than those classified as non-pCR. Since the proposed method predicts patients who achieve pCR by neoadjuvant pharmacotherapy, it enhances the value of preoperative image information.
Collapse
Affiliation(s)
- Yuka Kuramoto
- Graduate School of Health Sciences, Kumamoto University, 4-24-1 Kuhonji, Chuo-ku, Kumamoto, Kumamoto, 862-0976, Japan
| | - Natsumi Wada
- Graduate School of Health Sciences, Kumamoto University, 4-24-1 Kuhonji, Chuo-ku, Kumamoto, Kumamoto, 862-0976, Japan
| | - Yoshikazu Uchiyama
- Department of Medical Image Sciences, Faculty of Life Sciences, Kumamoto University, 4-24-1 Kuhonji, Chuo-ku, Kumamoto, Kumamoto, 862-0976, Japan.
| |
Collapse
|
14
|
Preliminary Report on Computed Tomography Radiomics Features as Biomarkers to Immunotherapy Selection in Lung Adenocarcinoma Patients. Cancers (Basel) 2021; 13:cancers13163992. [PMID: 34439148 PMCID: PMC8393664 DOI: 10.3390/cancers13163992] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/03/2021] [Accepted: 08/04/2021] [Indexed: 12/29/2022] Open
Abstract
PURPOSE To assess the efficacy of radiomics features obtained by computed tomography (CT) examination as biomarkers in order to select patients with lung adenocarcinoma who would benefit from immunotherapy. METHODS Seventy-four patients (median age 63 years, range 42-86 years) with histologically confirmed lung cancer who underwent immunotherapy as first- or second-line therapy and who had baseline CT studies were enrolled in this approved retrospective study. As a control group, we selected 50 patients (median age 66 years, range 36-86 years) from 2005 to 2013 with histologically confirmed lung adenocarcinoma who underwent chemotherapy alone or in combination with targeted therapy. A total of 573 radiomic metrics were extracted: 14 features based on Hounsfield unit values specific for lung CT images; 66 first-order profile features based on intensity values; 43 second-order profile features based on lesion shape; 393 third-order profile features; and 57 features with higher-order profiles. Univariate and multivariate statistical analysis with pattern recognition approaches and the least absolute shrinkage and selection operator (LASSO) method were used to assess the capability of extracted radiomics features to predict overall survival (OS) and progression free survival (PFS) time. RESULTS A total of 38 patients (median age 61; range 41-78 years) with confirmed lung adenocarcinoma and subjected to immunotherapy satisfied inclusion criteria, and 50 patients in a control group were included in the analysis The shift in the center of mass of the lesion due to image intensity was significant both to predict OS in patients subjected to immunotherapy and to predict PFS in patients subjected to immunotherapy and in patients in the control group. With univariate analysis, low diagnostic accuracy was reached to stratify patients based on OS and PFS time. Regarding multivariate analysis, considering the robust (two morphological features, three textural features and three higher-order statistical metrics) application of the LASSO approach and all patients, a support vector machine reached the best results for stratifying patients based on OS (area under curve (AUC) of 0.89 and accuracy of 81.6%). Alternatively, considering the robust predictors (six textural features and one higher-order statistical metric) and application of the LASSO approach including all patients, a decision tree reached the best results for stratifying patients based on PFS time (AUC of 0.96 and accuracy of 94.7%). CONCLUSIONS Specific radiomic features could be used to select patients with lung adenocarcinoma who would benefit from immunotherapy because a subset of imaging radiomic features useful to predict OS or PFS time were different between the control group and the immunotherapy group.
Collapse
|
15
|
Song L, Li C, Yin J. Texture Analysis Using Semiquantitative Kinetic Parameter Maps from DCE-MRI: Preoperative Prediction of HER2 Status in Breast Cancer. Front Oncol 2021; 11:675160. [PMID: 34168994 PMCID: PMC8217832 DOI: 10.3389/fonc.2021.675160] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 05/14/2021] [Indexed: 12/29/2022] Open
Abstract
Objective To evaluate whether texture features derived from semiquantitative kinetic parameter maps based on breast dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) can determine human epidermal growth factor receptor 2 (HER2) status of patients with breast cancer. Materials and Methods This study included 102 patients with histologically confirmed breast cancer, all of whom underwent preoperative breast DCE-MRI and were enrolled retrospectively. This cohort included 48 HER2-positive cases and 54 HER2-negative cases. Seven semiquantitative kinetic parameter maps were calculated on the lesion area. A total of 55 texture features were extracted from each kinetic parameter map. Patients were randomly divided into training (n = 72) and test (n = 30) sets. The least absolute shrinkage and selection operator (LASSO) was used to select features in the training set, and then, multivariate logistic regression analysis was conducted to establish the prediction models. The classification performance was evaluated by receiver operating characteristic (ROC) analysis. Results Among the seven prediction models, the model with features extracted from the early signal enhancement ratio (ESER) map yielded an area under the ROC curve (AUC) of 0.83 in the training set (sensitivity of 70.59%, specificity of 92.11%, and accuracy of 81.94%), and the highest AUC of 0.83 in the test set (sensitivity of 57.14%, specificity of 100.00%, and accuracy of 80.00%). The model with features extracted from the slope of signal intensity (SIslope) map yielded the highest AUC of 0.92 in the training set (sensitivity of 82.35%, specificity of 97.37%, and accuracy of 90.28%), and an AUC of 0.79 in the test set (sensitivity of 92.86%, specificity of 68.75%, and accuracy of 80.00%). Conclusions Texture features derived from kinetic parameter maps, calculated based on breast DCE-MRI, have the potential to be used as imaging biomarkers to distinguish HER2-positive and HER2-negative breast cancer.
Collapse
Affiliation(s)
- Lirong Song
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Chunli Li
- Department of Biomedical Engineering, School of Fundamental Sciences, China Medical University, Shenyang, China
| | - Jiandong Yin
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
16
|
Granata V, Fusco R, Barretta ML, Picone C, Avallone A, Belli A, Patrone R, Ferrante M, Cozzi D, Grassi R, Grassi R, Izzo F, Petrillo A. Radiomics in hepatic metastasis by colorectal cancer. Infect Agent Cancer 2021; 16:39. [PMID: 34078424 PMCID: PMC8173908 DOI: 10.1186/s13027-021-00379-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/12/2021] [Indexed: 02/06/2023] Open
Abstract
Background Radiomics is an emerging field and has a keen interest, especially in the oncology field. The process of a radiomics study consists of lesion segmentation, feature extraction, consistency analysis of features, feature selection, and model building. Manual segmentation is one of the most critical parts of radiomics. It can be time-consuming and suffers from variability in tumor delineation, which leads to the reproducibility problem of calculating parameters and assessing spatial tumor heterogeneity, particularly in large or multiple tumors. Radiomic features provides data on tumor phenotype as well as cancer microenvironment. Radiomics derived parameters, when associated with other pertinent data and correlated with outcomes data, can produce accurate robust evidence based clinical decision support systems. The principal challenge is the optimal collection and integration of diverse multimodal data sources in a quantitative manner that delivers unambiguous clinical predictions that accurately and robustly enable outcome prediction as a function of the impending decisions. Methods The search covered the years from January 2010 to January 2021. The inclusion criterion was: clinical study evaluating radiomics of liver colorectal metastases. Exclusion criteria were studies with no sufficient reported data, case report, review or editorial letter. Results We recognized 38 studies that assessed radiomics in mCRC from January 2010 to January 2021. Twenty were on different tpics, 5 corresponded to most criteria; 3 are review, or letter to editors; so 10 articles were included. Conclusions In colorectal liver metastases radiomics should be a valid tool for the characterization of lesions, in the stratification of patients based on the risk of relapse after surgical treatment and in the prediction of response to chemotherapy treatment.
Collapse
Affiliation(s)
- Vincenza Granata
- Radiology Division, "ISTITUTO NAZIONALE TUMORI - IRCCS - FONDAZIONE G. PASCALE, Napoli, Italy", Via Mariano Semmola, Naples, Italy
| | - Roberta Fusco
- Radiology Division, "ISTITUTO NAZIONALE TUMORI - IRCCS - FONDAZIONE G. PASCALE, Napoli, Italy", Via Mariano Semmola, Naples, Italy.
| | - Maria Luisa Barretta
- Radiology Division, "ISTITUTO NAZIONALE TUMORI - IRCCS - FONDAZIONE G. PASCALE, Napoli, Italy", Via Mariano Semmola, Naples, Italy
| | - Carmine Picone
- Radiology Division, "ISTITUTO NAZIONALE TUMORI - IRCCS - FONDAZIONE G. PASCALE, Napoli, Italy", Via Mariano Semmola, Naples, Italy
| | - Antonio Avallone
- Abdominal Oncology Division, "ISTITUTO NAZIONALE TUMORI - IRCCS - FONDAZIONE G. PASCALE, NAPOLI, ITALIA", Via Mariano Semmola, Naples, Italy
| | - Andrea Belli
- Hepatobiliary Surgical Oncology Division, "ISTITUTO NAZIONALE TUMORI - IRCCS - FONDAZIONE G. PASCALE, NAPOLI, ITALIA", Via Mariano Semmola, Naples, Italy
| | - Renato Patrone
- Hepatobiliary Surgical Oncology Division, "ISTITUTO NAZIONALE TUMORI - IRCCS - FONDAZIONE G. PASCALE, NAPOLI, ITALIA", Via Mariano Semmola, Naples, Italy
| | - Marilina Ferrante
- Division of Radiology, "Università degli Studi della Campania Luigi Vanvitelli", Naples, Italy
| | - Diletta Cozzi
- Division of Radiology, "Azienda Ospedaliera Universitaria Careggi", Florence, Italy
| | - Roberta Grassi
- Division of Radiology, "Università degli Studi della Campania Luigi Vanvitelli", Naples, Italy
| | - Roberto Grassi
- Division of Radiology, "Università degli Studi della Campania Luigi Vanvitelli", Naples, Italy.,Italian Society of Medical and Interventional Radiology SIRM, SIRM Foundation, Via della Signora 2, 20122, Milan, Italy
| | - Francesco Izzo
- Hepatobiliary Surgical Oncology Division, "ISTITUTO NAZIONALE TUMORI - IRCCS - FONDAZIONE G. PASCALE, NAPOLI, ITALIA", Via Mariano Semmola, Naples, Italy
| | - Antonella Petrillo
- Radiology Division, "ISTITUTO NAZIONALE TUMORI - IRCCS - FONDAZIONE G. PASCALE, Napoli, Italy", Via Mariano Semmola, Naples, Italy
| |
Collapse
|
17
|
Moyya PD, Asaithambi M. Radiomics- Quantitative Biomarker Analysis for Breast Cancer Diagnosis and Prediction: A Review. Curr Med Imaging 2021; 18:3-17. [PMID: 33655872 DOI: 10.2174/1573405617666210303102526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 01/06/2021] [Accepted: 01/14/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Cancer of the breast has become a global problem for women's health. Though concerns regarding early detection and accurate diagnosis were raised, an effort is required for precision medicine as well as personalized treatment. In the past years, the area of medicinal imaging has seen an unprecedented growth that leads to an advancement of radiomics, which provides countless quantitative biomarkers extracted from modern diagnostic images, including a detailed tumor characterization of breast malignancy. DISCUSSION In this research, we presented the methodology and implementation of radiomics, together with its future trends and challenges by the basis of published papers. Radiomics could distinguish between malignant from benign tumors, predict prognostic factors, molecular subtypes of breast carcinoma, treatment response to neoadjuvant chemotherapy (NAC), and recurrence survival. The incorporation of quantitative knowledge with clinical, histopathological and genomic information will enable physicians to afford customized care of treatment for patients with breast cancer. CONCLUSION Our research was intended to help physicians and radiologists learn fundamental knowledge about radiomics and also to work collaboratively with researchers to explore evidence for further usage in clinical practice.
Collapse
Affiliation(s)
- Priscilla Dinkar Moyya
- School of Electronics Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu-632014. India
| | - Mythili Asaithambi
- School of Electronics Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu-632014. India
| |
Collapse
|
18
|
Fusco R, Granata V, Mazzei MA, Meglio ND, Roscio DD, Moroni C, Monti R, Cappabianca C, Picone C, Neri E, Coppola F, Montanino A, Grassi R, Petrillo A, Miele V. Quantitative imaging decision support (QIDS TM) tool consistency evaluation and radiomic analysis by means of 594 metrics in lung carcinoma on chest CT scan. Cancer Control 2021; 28:1073274820985786. [PMID: 33567876 PMCID: PMC8482708 DOI: 10.1177/1073274820985786] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Objective: To evaluate the consistency of the quantitative imaging decision support (QIDSTM) tool and radiomic analysis using 594 metrics in lung carcinoma on chest CT scan. Materials and Methods: We included, retrospectively, 150 patients with histologically confirmed lung cancer who underwent chemotherapy and baseline and follow-ups CT scans. Using the QIDSTM platform, 3 radiologists segmented each lesion and automatically collected the longest diameter and the density mean value. Inter-observer variability, Bland Altman analysis and Spearman’s correlation coefficient were performed. QIDSTM tool consistency was assessed in terms of agreement rate in the treatment response classification. Kruskal Wallis test and the least absolute shrinkage and selection operator (LASSO) method with 10-fold cross validation were used to identify radiomic metrics correlated with lesion size change. Results: Good and significant correlation was obtained between the measurements of largest diameter and of density among the QIDSTM tool and the radiologists measurements. Inter-observer variability values were over 0.85. HealthMyne QIDSTM tool quantitative volumetric delineation was consistent and matched with each radiologist measurement considering the RECIST classification (80-84%) while a lower concordance among QIDSTM and the radiologists CHOI classification was observed (58-63%). Among 594 extracted metrics, significant and robust predictors of RECIST response were energy, histogram entropy and uniformity, Kurtosis, coronal long axis, longest planar diameter, surface, Neighborhood Grey-Level Different Matrix (NGLDM) dependence nonuniformity and low dependence emphasis as Volume, entropy of Log(2.5 mm), wavelet energy, deviation and root man squared. Conclusion: In conclusion, we demonstrated that HealthMyne quantitative volumetric delineation was consistent and that several radiomic metrics extracted by QIDSTM were significant and robust predictors of RECIST response.
Collapse
Affiliation(s)
- Roberta Fusco
- Radiology Division, "Istituto Nazionale Tumori IRCCS Fondazione Pascale-IRCCS di Napoli", Naples, Italy
| | - Vincenza Granata
- Radiology Division, "Istituto Nazionale Tumori IRCCS Fondazione Pascale-IRCCS di Napoli", Naples, Italy
| | - Maria Antonietta Mazzei
- Department of Radiological Sciences, Diagnostic Imaging Unit, "Azienda Ospedaliera Universitaria Senese," Siena, Italy
| | - Nunzia Di Meglio
- Department of Radiological Sciences, Diagnostic Imaging Unit, "Azienda Ospedaliera Universitaria Senese," Siena, Italy
| | - Davide Del Roscio
- Department of Radiological Sciences, Diagnostic Imaging Unit, "Azienda Ospedaliera Universitaria Senese," Siena, Italy
| | - Chiara Moroni
- Division of Radiodiagnostic, 18561"Azienda Ospedaliero-Universitaria Careggi," Firenze, Italy
| | - Riccardo Monti
- Division of Radiodiagnostic, "Università degli Studi della Campania Luigi Vanvitelli," Naples, Italy
| | - Carlotta Cappabianca
- Division of Radiodiagnostic, "Università degli Studi della Campania Luigi Vanvitelli," Naples, Italy
| | - Carmine Picone
- Radiology Division, "Istituto Nazionale Tumori IRCCS Fondazione Pascale-IRCCS di Napoli", Naples, Italy
| | - Emanuele Neri
- Division of Radiodiagnostic, 9257"Azienda Ospedaliera Universitaria Pisana," Pisa, Italy
| | - Francesca Coppola
- Radiology Unit, Department of Specialized, Diagnostic and Experimental Medicine (DIMES), "S. Orsola Hospital, University of Bologna," Bologna, Italy
| | - Agnese Montanino
- Thoracic Medical Oncology, "Istituto Nazionale Tumori IRCCS Fondazione Pascale-IRCCS di Napoli," Naples, Italy
| | - Roberta Grassi
- Division of Radiodiagnostic, "Università degli Studi della Campania Luigi Vanvitelli," Naples, Italy
| | - Antonella Petrillo
- Radiology Division, "Istituto Nazionale Tumori IRCCS Fondazione Pascale-IRCCS di Napoli", Naples, Italy
| | - Vittorio Miele
- Division of Radiodiagnostic, 18561"Azienda Ospedaliero-Universitaria Careggi," Firenze, Italy
| |
Collapse
|
19
|
Feasibility of MRI-based radiomics features for predicting lymph node metastases and VEGF expression in cervical cancer. Eur J Radiol 2020; 134:109429. [PMID: 33290975 DOI: 10.1016/j.ejrad.2020.109429] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 10/09/2020] [Accepted: 11/18/2020] [Indexed: 12/29/2022]
Abstract
PURPOSE To investigate the predictive value of MRI-based radiomics features for lymph node metastasis (LNM) and vascular endothelial growth factor (VEGF) expression in patients with cervical cancer. METHOD A total of 163 patients with cervical cancer were enrolled in this study. A total of 134 patients were included for LNM differentiation, and 118 were included for VEGF expression discrimination. The patients were randomly assigned to the training group or test group at a ratio of 2:1. Radiomics features were extracted from T1WI enhanced and T2WI MRI scans of each patient, and tumor stage was also documented according to the International Federation of Gynecology and Obstetrics (FIGO) guidelines. The least absolute shrinkage and selection operator algorithm was used for feature selection. The results of 5-fold cross validation were applied to select the best classification models. The performances of the constructed models were further evaluated with the test group. RESULTS Sixteen radiomics features and the FIGO stage were selected to construct the LNM discrimination model. The LNM prediction model achieved the best diagnostic performance, with areas under the receiver operating curve (AUCs) of 0.95 and 0.88 in the training group and test group, respectively. Nine radiomics characteristics were screened to build the VEGF prediction model, with AUCs of 0.82 and 0.70 in the training group and test group, respectively. Decision curve analysis confirmed their clinical usefulness. CONCLUSIONS The presented radiomics prediction models demonstrated potential to noninvasively differentiate LNM and VEGF expression in cervical cancer.
Collapse
|
20
|
Fusco R, Granata V, Petrillo A. Introduction to Special Issue of Radiology and Imaging of Cancer. Cancers (Basel) 2020; 12:E2665. [PMID: 32961946 PMCID: PMC7565136 DOI: 10.3390/cancers12092665] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 09/15/2020] [Indexed: 12/12/2022] Open
Abstract
The increase in knowledge in oncology and the possibility of creating personalized medicine by selecting a more appropriate therapy related to the different tumor subtypes, as well as the management of patients with cancer within a multidisciplinary team has improved the clinical outcomes [...].
Collapse
Affiliation(s)
| | - Vincenza Granata
- Radiology Division, Istituto Nazionale Tumori—IRCCS—Fondazione G. Pascale, Via Mariano Semmola, 80131 Naples, Italy; (R.F.); (A.P.)
| | | |
Collapse
|
21
|
Orlando A, Dimarco M, Cannella R, Bartolotta TV. Breast dynamic contrast-enhanced-magnetic resonance imaging and radiomics: State of art. Artif Intell Med Imaging 2020; 1:6-18. [DOI: 10.35711/aimi.v1.i1.6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/17/2020] [Accepted: 06/19/2020] [Indexed: 02/06/2023] Open
Abstract
Breast cancer represents the most common malignancy in women, being one of the most frequent cause of cancer-related mortality. Ultrasound, mammography, and magnetic resonance imaging (MRI) play a pivotal role in the diagnosis of breast lesions, with different levels of accuracy. Particularly, dynamic contrast-enhanced MRI has shown high diagnostic value in detecting multifocal, multicentric, or contralateral breast cancers. Radiomics is emerging as a promising tool for quantitative tumor evaluation, allowing the extraction of additional quantitative data from radiological imaging acquired with different modalities. Radiomics analysis may provide novel information through the quantification of lesions heterogeneity, that may be relevant in clinical practice for the characterization of breast lesions, prediction of tumor response to systemic therapies and evaluation of prognosis in patients with breast cancers. Several published studies have explored the value of radiomics with good-to-excellent diagnostic and prognostic performances for the evaluation of breast lesions. Particularly, the integrations of radiomics data with other clinical and histopathological parameters have demonstrated to improve the prediction of tumor aggressiveness with high accuracy and provided precise models that will help to guide clinical decisions and patients management. The purpose of this article in to describe the current application of radiomics in breast dynamic contrast-enhanced MRI.
Collapse
Affiliation(s)
- Alessia Orlando
- Section of Radiology - BiND, University Hospital “Paolo Giaccone”, Palermo 90127, Italy
| | - Mariangela Dimarco
- Section of Radiology - BiND, University Hospital “Paolo Giaccone”, Palermo 90127, Italy
| | - Roberto Cannella
- Section of Radiology - BiND, University Hospital “Paolo Giaccone”, Palermo 90127, Italy
| | - Tommaso Vincenzo Bartolotta
- Section of Radiology - BiND, University Hospital “Paolo Giaccone”, Palermo 90127, Italy
- Department of Radiology, Fondazione Istituto Giuseppe Giglio, Ct.da Pietrapollastra, Palermo 90015, Italy
| |
Collapse
|