1
|
Semple BD, Panagiotopoulou O. Cranial Bone Changes Induced by Mild Traumatic Brain Injuries: A Neglected Player in Concussion Outcomes? Neurotrauma Rep 2023; 4:396-403. [PMID: 37350792 PMCID: PMC10282977 DOI: 10.1089/neur.2023.0025] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2023] Open
Abstract
Mild traumatic brain injuries (TBIs), particularly when repetitive in nature, are increasingly recognized to have a range of significant negative implications for brain health. Much of the ongoing research in the field is focused on the neurological consequences of these injuries and the relationship between TBIs and long-term neurodegenerative conditions such as chronic traumatic encephalopathy and Alzheimer's disease. However, our understanding of the complex relationship between applied mechanical force at impact, brain pathophysiology, and neurological function remains incomplete. Past research has shown that mild TBIs, even below the threshold that results in cranial fracture, induce changes in cranial bone structure and morphology. These structural and physiological changes likely have implications for the transmission of mechanical force into the underlying brain parenchyma. Here, we review this evidence in the context of the current understanding of bone mechanosensitivity and the consequences of TBIs or concussions. We postulate that heterogeneity of the calvarium, including differing bone thickness attributable to past impacts, age, or individual variability, may be a modulator of outcomes after subsequent TBIs. We advocate for greater consideration of cranial responses to TBI in both experimental and computer modeling of impact biomechanics, and raise the hypothesis that calvarial bone thickness represents a novel biomarker of brain injury vulnerability post-TBI.
Collapse
Affiliation(s)
- Bridgette D. Semple
- Department of Neuroscience, Monash University, Prahran, Victoria, Australia
- Department of Neurology, Alfred Health, Prahran, Victoria, Australia
- Department of Medicine (Royal Melbourne Hospital), University of Melbourne, Parkville, Victoria, Australia
| | - Olga Panagiotopoulou
- Monash Biomedicine Discovery Institute, Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
2
|
Rowbotham SK, Mole CG, Tieppo D, Blaszkowska M, Cordner SM, Blau S. Average thickness of the bones of the human neurocranium: development of reference measurements to assist with blunt force trauma interpretations. Int J Legal Med 2023; 137:195-213. [PMID: 35486199 DOI: 10.1007/s00414-022-02824-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 03/31/2022] [Indexed: 01/10/2023]
Abstract
The accurate interpretation of a blunt force head injury relies on an understanding of the case circumstances (extrinsic variables) and anatomical details of the individual (intrinsic variables). Whilst it is often possible to account for many of these variables, the intrinsic variable of neurocranial thickness is difficult to account for as data for what constitutes 'normal' thickness is limited. The aim of this study was to investigate the effects of age, sex and ancestry on neurocranial thickness, and develop reference ranges for average neurocranial thickness in the context of those biological variables. Thickness (mm) was measured at 20 points across the frontal, left and right parietals, left and right temporals and occipital bones. Measurements were taken from post-mortem computed tomography scans of 604 individuals. Inferential statistics assessed how age, sex and ancestry affected thickness and descriptive statistics established thickness means. Mean thickness ranged from 2.11 mm (temporal squama) to 19.19 mm (petrous portion). Significant differences were noted in thickness of the frontal and temporal bones when age was considered, all bones when sex was considered and the, right parietal, left and right temporal and occipital bones when ancestry was considered. Furthermore, significant interactions in thickness were seen between age and sex in the frontal bone, ancestry and age in the temporal bone, ancestry and sex in the temporal bone, and age, sex and ancestry in the occipital bone. Given the assorted influence of the biological variables, reference measurement ranges for average thickness incorporated these variables. Such reference measurements allow forensic practitioners to identify when a neurocranial bone is of normal, or abnormal, thickness.
Collapse
Affiliation(s)
- Samantha K Rowbotham
- Victorian Institute of Forensic Medicine, 65 Kavanagh St, Southbank, VIC, 3006, Australia. .,Department of Forensic Medicine, School of Public Health and Preventative Medicine, Monash University, 65 Kavanagh St, Southbank, VIC, 3006, Australia.
| | - Calvin G Mole
- Division of Forensic Medicine and Toxicology, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town, 7925, South Africa
| | - Diana Tieppo
- Department of Forensic Medicine, School of Public Health and Preventative Medicine, Monash University, 65 Kavanagh St, Southbank, VIC, 3006, Australia
| | - Magda Blaszkowska
- Centre for Forensic Anthropology, Faculty of Arts, Business, Law and Education, University of Western Australia, 35 Stirling Hwy, Crawley, WA, 6009, Australia
| | - Stephen M Cordner
- Victorian Institute of Forensic Medicine, 65 Kavanagh St, Southbank, VIC, 3006, Australia.,Department of Forensic Medicine, School of Public Health and Preventative Medicine, Monash University, 65 Kavanagh St, Southbank, VIC, 3006, Australia
| | - Soren Blau
- Victorian Institute of Forensic Medicine, 65 Kavanagh St, Southbank, VIC, 3006, Australia.,Department of Forensic Medicine, School of Public Health and Preventative Medicine, Monash University, 65 Kavanagh St, Southbank, VIC, 3006, Australia
| |
Collapse
|
3
|
Symmetry of the Human Head—Are Symmetrical Models More Applicable in Numerical Analysis? Symmetry (Basel) 2021. [DOI: 10.3390/sym13071252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The study of symmetrical and non-symmetrical effects in physics, mathematics, mechanics, medicine, and numerical methods is a current topic due to the complexity of the experiments, calculations, and virtual simulations. However, there is a limited number of research publications in computational biomechanics focusing on the symmetry of numerical head models. The majority of the models in the researched literature are symmetrical. Thus, we stated a hypothesis wherever the symmetrical models might be more applicable in numerical analysis. We carried out in-depth studies about head symmetry through clinical data, medical images, materials models, and computer analysis. We concluded that the mapping of the entire geometry of the skull and brain is essential due to the significant differences that affect the results of numerical analyses and the possibility of misinterpretation of the tissue deformation under mechanical load results.
Collapse
|