1
|
van Helvert M, Ruisch J, de Bakker JMK, Saris AECM, de Korte CL, Versluis M, Groot Jebbink E, Reijnen MMPJ. High-Frame-Rate Ultrasound Velocimetry in the Healthy Femoral Bifurcation: A Comparative Study Against 4-D Flow Magnetic Resonance Imaging. ULTRASOUND IN MEDICINE & BIOLOGY 2024; 50:1755-1763. [PMID: 39244482 DOI: 10.1016/j.ultrasmedbio.2024.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 09/09/2024]
Abstract
OBJECTIVE Local flow dynamics impact atherosclerosis yet are difficult to quantify with conventional ultrasound techniques. This study investigates the performance of ultrasound vector flow imaging (US-VFI) with and without ultrasound contrast agents in the healthy femoral bifurcation. METHODS High-frame-rate ultrasound data with incremental acoustic outputs were acquired in the femoral bifurcations of 20 healthy subjects before (50V) and after contrast injection (2V, 5V and 10V). 2-D blood-velocity profiles were obtained through native blood speckle tracking (BST) and contrast tracking (echo particle image velocimetry [echoPIV]). As a reference, 4-D flow magnetic resonance imaging (4-D flow MRI) was acquired. Contrast-to-background ratio and vector correlation were used to assess the quality of the US-VFI acquisitions. Spatiotemporal velocity profiles were extracted, from which peak velocities (PSV) were compared between the modalities. Furthermore, root-mean-square error analysis was performed. RESULTS US-VFI was successful in 99% of the cases and optimal VFI quality was established with the 10V echoPIV and BST settings. A good correspondence between 10V echoPIV and BST was found, with a mean PSV difference of -0.5 cm/s (limits of agreement: -14.1-13.2). Both US-VFI techniques compared well with 4-D flow MRI, with a mean PSV difference of 1.4 cm/s (-18.7-21.6) between 10V echoPIV and MRI, and 0.3 cm/s (-23.8-24.4) between BST and MRI. Similar complex flow patterns among all modalities were observed. CONCLUSION 2-D blood-flow quantification of femoral bifurcation is feasible with echoPIV and BST. Both modalities showed good agreement compared to 4-D flow MRI. For the femoral tract the administration of contrast was not needed to increase the echogenicity of the blood for optimal image quality.
Collapse
Affiliation(s)
- Majorie van Helvert
- Multi-Modality Medical Imaging Group, TechMed Centre, University of Twente, Enschede, The Netherlands; Department of Vascular Surgery, Rijnstate Hospital, Arnhem, The Netherlands; Physics of Fluids Group, TechMed Centre, University of Twente, Enschede, The Netherlands.
| | - Janna Ruisch
- Department of Vascular Surgery, Rijnstate Hospital, Arnhem, The Netherlands; Medical Ultrasound Imaging Centre, Department of Medical Imaging, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Joosje M K de Bakker
- Medical Ultrasound Imaging Centre, Department of Medical Imaging, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Anne E C M Saris
- Medical Ultrasound Imaging Centre, Department of Medical Imaging, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Chris L de Korte
- Physics of Fluids Group, TechMed Centre, University of Twente, Enschede, The Netherlands; Medical Ultrasound Imaging Centre, Department of Medical Imaging, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Michel Versluis
- Physics of Fluids Group, TechMed Centre, University of Twente, Enschede, The Netherlands
| | - Erik Groot Jebbink
- Multi-Modality Medical Imaging Group, TechMed Centre, University of Twente, Enschede, The Netherlands; Department of Vascular Surgery, Rijnstate Hospital, Arnhem, The Netherlands
| | - Michel M P J Reijnen
- Multi-Modality Medical Imaging Group, TechMed Centre, University of Twente, Enschede, The Netherlands; Department of Vascular Surgery, Rijnstate Hospital, Arnhem, The Netherlands
| |
Collapse
|
2
|
Krolak C, Wei A, Shumaker M, Dighe M, Averkiou M. A Comprehensive and Repeatable Contrast-Enhanced Ultrasound Quantification Approach for Clinical Evaluations of Tumor Blood Flow. Invest Radiol 2024:00004424-990000000-00256. [PMID: 39418656 DOI: 10.1097/rli.0000000000001127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
OBJECTIVE The aim of this study is to define a comprehensive and repeatable contrast-enhanced ultrasound (CEUS) imaging protocol and analysis method to quantitatively assess lesional blood flow. Easily repeatable CEUS evaluations are essential for longitudinal treatment monitoring. The quantification method described here aims to provide a structure for future clinical studies. MATERIALS AND METHODS This retrospective analysis study included liver CEUS studies in 80 patients, 40 of which contained lesions (primarily hepatocellular carcinoma, n = 28). Each patient was given at least 2 injections of a microbubble contrast agent, and 60-second continuous loops were acquired for each injection to enable evaluation of repeatability. For each bolus injection, 1.2 mL of contrast was delivered, whereas continuous, stationary scanning was performed. Automated respiratory gating and motion compensation algorithms dealt with breathing motion. Similar in size regions of interest were drawn around the lesion and liver parenchyma, and time-intensity curves (TICs) with linearized image data were generated. Four bolus transit parameters, rise time (RT), mean transit time (MTT), peak intensity (PI), and area under the curve (AUC), were extracted either directly from the actual TIC data or from a lognormal distribution curve fitted to the TIC. Interinjection repeatability for each parameter was evaluated with coefficient of variation. A 95% confidence interval was calculated for all fitted lognormal distribution curve coefficient of determination (R2) values, which serves as a data quality metric. One-sample t tests were performed between values obtained from injection pairs and between the fitted lognormal distribution curve and direct extraction from the TIC calculation methods to establish there were no significant differences between injections and measurement precision, respectively. RESULTS Average interinjection coefficient of variation with both the fitted curve and direct calculation of RT and MTT was less than 21%, whereas PI and AUC were less than 40% for lesion and parenchyma regions of interest. The 95% confidence interval for the R2 value of all fitted lognormal curves was [0.95, 0.96]. The 1-sample t test for interinjection value difference showed no significant differences, indicating there was no relationship between the order of the repeated bolus injections and the resulting parameters. The 1-sample t test between the values from the fitted lognormal distribution curve and the direct extraction from the TIC calculation found no statistically significant differences (α = 0.05) for all perfusion-related parameters except lesion and parenchyma PI and lesion MTT. CONCLUSIONS The scanning protocol and analysis method outlined and validated in this study provide easily repeatable quantitative evaluations of lesional blood flow with bolus transit parameters in CEUS data that were not available before. With vital features such as probe stabilization ideally performed with an articulated arm and an automated respiratory gating algorithm, we were able to achieve interinjection repeatability of blood flow parameters that are comparable or surpass levels currently established for clinical 2D CEUS scans. Similar values and interinjection repeatability were achieved between calculations from a fitted curve or directly from the data. This demonstrated not only the strength of the protocol to generate TICs with minimal noise, but also suggests that curve fitting might be avoided for a more standardized approach. Utilizing the imaging protocol and analysis method defined in this study, we aim for this methodology to potentially assist clinicians to assess true perfusion changes for treatment monitoring with CEUS in longitudinal studies.
Collapse
Affiliation(s)
- Connor Krolak
- From the Department of Bioengineering, University of Washington, Seattle, WA (C.K., A.W., M.S., M.A.); and Department of Radiology, University of Washington, Seattle, WA (M.D.)
| | | | | | | | | |
Collapse
|
3
|
Wu H, Shi J, Gao L, Wang J, Yuan W, Zhang W, Liu Z, Mao Y. Qualitative and quantitative analysis of solid renal tumors by high-frame-rate contrast-enhanced ultrasound. Cancer Imaging 2024; 24:139. [PMID: 39407335 PMCID: PMC11481758 DOI: 10.1186/s40644-024-00788-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 10/08/2024] [Indexed: 10/19/2024] Open
Abstract
OBJECTIVE To analyze the characteristics of high-frame-rate contrast-enhanced ultrasound (H-CEUS) in solid renal tumors using qualitative and quantitative methods. METHODS Seventy-five patients who underwent preoperative conventional ultrasound (US), conventional contrast-enhanced ultrasound (C-CEUS), and H-CEUS examination of renal tumors were retrospectively analyzed, with a total of 89 renal masses. The masses were divided into the benign (30 masses) and malignant groups (59 masses) based on the results of enhanced computer tomography and pathology. The location, diameter, shape, border, calcification, and color doppler blood flow imaging (CDFI) of the lesions were observed by US, and the characteristics of the C-CEUS and H-CEUS images were qualitatively and quantitatively analyzed. The χ² test or Fisher's exact probability method was used to compare the US image characteristics between the benign and malignant groups, and the image characteristics of C-CEUS and H-CEUS between the benign and malignant groups. Moreover, the nonparametric Mann-Whitney test was used to compare the differences in C-CEUS and H-CEUS time-intensity curve (TIC) parameters. RESULTS Significant differences in gender, surgical approach, echogenicity, and CDFI were observed between the malignant and benign groups (p = 0.003, < 0.001, < 0.001, = 0003). Qualitative analysis also revealed significant differences in the mode of wash-out and fill-in direction between C-CEUS and H-CEUS in the malignant group (p = 0.041, 0.002). In addition, the homogeneity of enhancement showed significant differences between the two contrast models in the benign group (p = 0.009). Quantitative analysis indicated that the TIC parameters peak intensity (PI), deceleration time (DT) /2, area under the curve (AUC), and mean transition time (MTT) were significantly lower in the H-CEUS model compared to the C-CEUS model in both the benign and malignant groups. (all p < 0.001). In contrast, ascending slope of rise curve (AS) was significantly higher in the H-CEUS model compared to the C-CEUS model in the malignant group (p = 0.048). CONCLUSIONS In renal tumors, H-CEUS shows clearer internal enhancement of the mass and the changes in the wash-out period. The quantitative TIC parameters PI, DT/2, AUC, and MTT were lower in H-CEUS compared to C-CEUS. Both the quantitative and qualitative analyses indicated that H-CEUS better displays the characteristics of solid renal masses compared with C-CEUS.
Collapse
Affiliation(s)
- Hailan Wu
- Department of Ultrasound, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Jiayu Shi
- The First Clinical Medical College, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Long Gao
- School of Advanced Manufacturing, Nanchang University, Nanchang, China
| | - Jingling Wang
- Department of Ultrasound, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - WenXin Yuan
- Department of Ultrasound, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - WeiPing Zhang
- Department of Ultrasound, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
| | - Zhixing Liu
- Department of Ultrasound, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yi Mao
- Department of Ultrasound, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| |
Collapse
|
4
|
Ghanbarzadeh-Dagheyan A, van Helvert M, van de Velde L, Reijnen MMPJ, Versluis M, Groot Jebbink E. Swirling Flow Quantification in Helical Stents Using Ultrasound Velocimetry. J Endovasc Ther 2024:15266028241283326. [PMID: 39397375 DOI: 10.1177/15266028241283326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
OBJECTIVE Helical stents have been developed to treat peripheral arterial disease (PAD) in the superficial femoral artery (SFA), with the premise that their particular geometry could promote swirling flow in the blood. The aim of this work is to provide evidence on the existence of this swirling flow by quantifying its signatures. MATERIALS AND METHODS This study consists of in vitro and in vivo parts. For the in vitro part, 3 helical stent models of different helicity degrees and 1 straight model were fabricated, and the flow was assessed at the inlet and outlet of each model. For the in vivo part, only 1 patient, treated with the helical stent, was eligible to participate in the study. The stent implanted in the SFA of the patient was evaluated in 2 leg postures (straight and flexed), and flow was assessed in 12 locations along the SFA. The in vivo study was approved by an ethical board (NL80130.091.21) in the Netherlands. High-frame-rate ultrasound was used to acquire data from the regions of interest (ROIs), using microbubbles as contrast agents. After processing the data via a correlation-based algorithm (echo particle image velocimetry or echoPIV), the velocity vector field within each ROI was extracted and analyzed for parameters such as vector complexity and velocity profile skewedness. RESULTS The results show that in the outlet of the helical stents, when compared with the inlet, the flow vector field is more complex and the velocity profile is more skewed. For the in vivo case, the outcomes demonstrate more complexity and higher variability in the sign of skewedness inside the stent when compared with the flow in the proximal to the stent. CONCLUSIONS Helical stents make the vector field of the flow more complex and the velocity profile more skewed, both of which are signatures of swirling flow. Further studies are needed to evaluate whether these features can benefit patients in terms of patency rates. CLINICAL IMPACT This study demonstrates that helical stent models alter the blood flow when compared with straight stent models. Particularly, the flow grows more complex and its velocity profile becomes more skewed, both of which hint at the existence of swirling flow inside the helical stent. These observations, alongside with population-based studies that are currently being carried out, may provide the evidence that helical stents have some advantages over straight stents for the patients.
Collapse
Affiliation(s)
- Ashkan Ghanbarzadeh-Dagheyan
- Multi-Modality Medical Imaging, Technical Medical (TechMed) Centre, University of Twente, Enschede, The Netherlands
- Biomedical Photonic Imaging Group, Technical Medical (TechMed) Centre, University of Twente, Enschede, The Netherlands
- Physics of Fluids, Technical Medical (TechMed) Centre, University of Twente, Enschede, The Netherlands
| | - Majorie van Helvert
- Multi-Modality Medical Imaging, Technical Medical (TechMed) Centre, University of Twente, Enschede, The Netherlands
- Department of Vascular Surgery, Rijnstate Hospital, Arnhem, The Netherlands
| | - Lennart van de Velde
- Multi-Modality Medical Imaging, Technical Medical (TechMed) Centre, University of Twente, Enschede, The Netherlands
- Department of Vascular Surgery, Rijnstate Hospital, Arnhem, The Netherlands
| | - Michel M P J Reijnen
- Multi-Modality Medical Imaging, Technical Medical (TechMed) Centre, University of Twente, Enschede, The Netherlands
- Department of Vascular Surgery, Rijnstate Hospital, Arnhem, The Netherlands
| | - Michel Versluis
- Physics of Fluids, Technical Medical (TechMed) Centre, University of Twente, Enschede, The Netherlands
| | - Erik Groot Jebbink
- Multi-Modality Medical Imaging, Technical Medical (TechMed) Centre, University of Twente, Enschede, The Netherlands
- Department of Vascular Surgery, Rijnstate Hospital, Arnhem, The Netherlands
| |
Collapse
|
5
|
van de Velde L, van Helvert M, Engelhard S, Ghanbarzadeh-Dagheyan A, Mirgolbabaee H, Voorneveld J, Lajoinie G, Versluis M, Reijnen MMPJ, Groot Jebbink E. Validation of ultrasound velocimetry and computational fluid dynamics for flow assessment in femoral artery stenotic disease. J Med Imaging (Bellingham) 2024; 11:037001. [PMID: 38765874 PMCID: PMC11097197 DOI: 10.1117/1.jmi.11.3.037001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 04/05/2024] [Accepted: 04/16/2024] [Indexed: 05/22/2024] Open
Abstract
Purpose To investigate the accuracy of high-framerate echo particle image velocimetry (ePIV) and computational fluid dynamics (CFD) for determining velocity vectors in femoral bifurcation models through comparison with optical particle image velocimetry (oPIV). Approach Separate femoral bifurcation models were built for oPIV and ePIV measurements of a non-stenosed (control) and a 75%-area stenosed common femoral artery. A flow loop was used to create triphasic pulsatile flow. In-plane velocity vectors were measured with oPIV and ePIV. Flow was simulated with CFD using boundary conditions from ePIV and additional duplex-ultrasound (DUS) measurements. Mean differences and 95%-limits of agreement (1.96*SD) of the velocity magnitudes in space and time were compared, and the similarity of vector complexity (VC) and time-averaged wall shear stress (TAWSS) was assessed. Results Similar flow features were observed between modalities with velocities up to 110 and 330 cm / s in the control and the stenosed model, respectively. Relative to oPIV, ePIV and CFD-ePIV showed negligible mean differences in velocity (< 3 cm / s ), with limits of agreement of ± 25 cm / s (control) and ± 34 cm / s (stenosed). CFD-DUS overestimated velocities with limits of agreements of 13 ± 40 and 16.1 ± 55 cm / s for the control and stenosed model, respectively. VC showed good agreement, whereas TAWSS showed similar trends but with higher values for ePIV, CFD-DUS, and CFD-ePIV compared to oPIV. Conclusions EPIV and CFD-ePIV can accurately measure complex flow features in the femoral bifurcation and around a stenosis. CFD-DUS showed larger deviations in velocities making it a less robust technique for hemodynamical assessment. The applied ePIV and CFD techniques enable two- and three-dimensional assessment of local hemodynamics with high spatiotemporal resolution and thereby overcome key limitations of current clinical modalities making them an attractive and cost-effective alternative for hemodynamical assessment in clinical practice.
Collapse
Affiliation(s)
- Lennart van de Velde
- University of Twente, TechMed Centre, Multi-Modality Medical Imaging, Enschede, The Netherlands
- University of Twente, TechMed Centre, Physics of Fluids, Enschede, The Netherlands
- Rijnstate Hospital, Department of Surgery, Arnhem, The Netherlands
| | - Majorie van Helvert
- University of Twente, TechMed Centre, Multi-Modality Medical Imaging, Enschede, The Netherlands
- University of Twente, TechMed Centre, Physics of Fluids, Enschede, The Netherlands
- Rijnstate Hospital, Department of Surgery, Arnhem, The Netherlands
| | - Stefan Engelhard
- Rijnstate Hospital, Department of Surgery, Arnhem, The Netherlands
| | - Ashkan Ghanbarzadeh-Dagheyan
- University of Twente, TechMed Centre, Multi-Modality Medical Imaging, Enschede, The Netherlands
- University of Twente, TechMed Centre, Physics of Fluids, Enschede, The Netherlands
| | - Hadi Mirgolbabaee
- University of Twente, TechMed Centre, Multi-Modality Medical Imaging, Enschede, The Netherlands
- University of Twente, TechMed Centre, Physics of Fluids, Enschede, The Netherlands
| | - Jason Voorneveld
- Erasmus MC, Department of Cardiology, Thorax Biomedical Engineering, Rotterdam, The Netherlands
| | - Guillaume Lajoinie
- University of Twente, TechMed Centre, Physics of Fluids, Enschede, The Netherlands
| | - Michel Versluis
- University of Twente, TechMed Centre, Physics of Fluids, Enschede, The Netherlands
| | - Michel M. P. J. Reijnen
- University of Twente, TechMed Centre, Multi-Modality Medical Imaging, Enschede, The Netherlands
- Rijnstate Hospital, Department of Surgery, Arnhem, The Netherlands
| | - Erik Groot Jebbink
- University of Twente, TechMed Centre, Multi-Modality Medical Imaging, Enschede, The Netherlands
- Rijnstate Hospital, Department of Surgery, Arnhem, The Netherlands
| |
Collapse
|
6
|
Zhang W, Wang J, Chen L. Characteristics of high frame frequency contrast-enhanced ultrasound in renal tumors. BMC Med Imaging 2024; 24:71. [PMID: 38528467 DOI: 10.1186/s12880-024-01245-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 03/13/2024] [Indexed: 03/27/2024] Open
Abstract
OBJECTIVE This study aims to analyze the characteristics of high frame rate contrast-enhanced ultrasound (H-CEUS) in renal lesions and to improve the ability for differential diagnosis of renal tumors. METHODS A total of 140 patients with renal lesions underwent contrast-enhanced ultrasound (CEUS) examination in the First Affiliated Hospital of Nanchang University from July 2022 to July 2023. Based on the tumor pathology and the results of enhanced CT, tumor patients were divided into malignant and benign groups. All subjects were examined using gray-scale ultrasound, conventional contrast-enhanced ultrasound (C-CEUS), and H-CEUS, and their dynamic images were recorded. Two radiologists independently analyzed and recorded the results of ultrasound, C-CEUS, and H-CEUS images and statistically analyzed the features of C-CEUS and H-CEUS images. The independent sample t-test was used to compare the difference in age and maximum diameter of nodules between the benign and malignant groups. The χ2 test was used to compare the sex, mode of operation, gray-scale ultrasound characteristics, and enhancement characteristics of the two CEUS modes (enhancement mode, regression mode, enhancement degree, enhancement uniformity, enhancement or not, enhancement direction, post-enhancement boundary and range, and pseudocapsule) between the benign and malignant groups. The difference in vascular morphology of malignant nodules of varying sizes under two angiographic modes. RESULTS There were significant differences in gender (χ2 = 10.408, P = 0.001), mode of operation (χ2 = 47.089, P < 0.001), nodule composition (χ2 = 7.481, P = 0.003), nodule echo (χ2 = 20.926, P < 0.001), necrosis (χ2 = 31.343, P < 0.001) and nodule blood flow (χ2 = 9.006, P = 0.029) between the benign and malignant groups. There were significant differences in the regression model (χ2 = 6.782, P = 0.034) and enhancement direction (χ2 = 13.771, P = 0.001) between the two radiographic techniques in the malignant group. There was a significant difference in the enhancement uniformity between the two CEUS techniques in the benign group (χ2 = 8.264, P = 0.004). There was a significant difference between the two CEUS techniques in displaying the vascular morphology in the malignant group with the maximum diameter of nodules ≤ 4.0 cm (χ2 = 11.421, P < 0.022). However, there was no significant difference between the two techniques in the malignant group with the maximum diameter of nodules > 4.0 cm. CONCLUSION Increasing the frame rate of ultrasound images is helpful to accurately display the enhanced features and vascular morphology of renal tumors, especially for malignant tumors with a maximum diameter of ≤ 4.0 cm. Thus, H-CEUS can make up for the limitation of CEUS with regard to the display of vascular morphology.
Collapse
Affiliation(s)
- WeiPing Zhang
- Department of Ultrasound, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - JingLing Wang
- Department of Ultrasound, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Li Chen
- Department of Ultrasound, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
| |
Collapse
|
7
|
Mirgolbabaee H, van de Velde L, Geelkerken RH, Versluis M, Groot Jebbink E, Reijnen MMPJ. Ultrasound Particle Image Velocimetry to Investigate Potential Hemodynamic Causes of Limb Thrombosis After Endovascular Aneurysm Repair With the Anaconda Device. J Endovasc Ther 2023:15266028231219988. [PMID: 38149463 DOI: 10.1177/15266028231219988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
PURPOSE To identify potential hemodynamic predictors for limb thrombosis (LT) following endovascular aneurysm repair with the Anaconda endograft in a patient-specific phantom. MATERIALS AND METHODS A thin-walled flow phantom, based on a patient's aortic anatomy and treated with an Anaconda endograft, that presented with a left-sided LT was fabricated. Contrast-enhanced ultrasound particle image velocimetry was performed to quantify time-resolved velocity fields. Measurements were performed in the same phantom with and without the Anaconda endograft, to investigate the impact of the endograft on the local flow fields. Hemodynamic parameters, namely vector complexity (VC) and residence time (RT), were calculated for both iliac arteries. RESULTS In both limbs, the vector fields were mostly unidirectional during the peak systolic and end-systolic velocity phases before and after endograft placement. Local vortical structures and complex flow fields were observed at the diastolic and transitional flow phases. The average VC was higher (0.11) in the phantom with endograft, compared to the phantom without endograft (0.05). Notably, in both left and right iliac arteries, the anterior wall regions corresponded to a 2- and 4-fold increase in VC in the phantom with endograft, respectively. RT simulations showed values of 1.3 to 6 seconds in the phantom without endograft. A higher RT (up to 25 seconds) was observed in the phantom with endograft, in which the left iliac artery, with LT in follow-up, showed 2 fluid stasis regions. CONCLUSION This in vitro study shows that unfavorable hemodynamics were present mostly in the limb that thrombosed during follow-up, with the highest VC and longest RT. These parameters might be valuable in predicting the occurrence of LT in the future. CLINICAL IMPACT This in-vitro study aimed to identify potential hemodynamic predictors for limb thrombosis following EVAR using ultrasound particle image velocimetry (echoPIV) technique. It was shown that unfavorable hemodynamic norms were present mostly in the thrombosed limb. Owing to the in-vivo feasibility of the echoPIV, future efforts should focus on the evaluation of these hemodynamic norms in clinical trials. Thereafter, using echoPIV as a bedside technique in hospitals becomes more promising. Performing echoPIV in pre-op phase may provide valuable insights for surgeons to enhance treatment planning. EchoPIV is also applicable for follow-up sessions to evaluate treatment progress and avoid/predict complications.
Collapse
Affiliation(s)
- Hadi Mirgolbabaee
- Multi-Modality Medical Imaging Group, Technical Medical Centre, University of Twente, Enschede, The Netherlands
- Physics of Fluids Group, Technical Medical Centre, University of Twente, Enschede, The Netherlands
| | - Lennart van de Velde
- Multi-Modality Medical Imaging Group, Technical Medical Centre, University of Twente, Enschede, The Netherlands
- Physics of Fluids Group, Technical Medical Centre, University of Twente, Enschede, The Netherlands
- Department of Vascular Surgery, Rijnstate Hospital, Arnhem, The Netherlands
| | - Robert H Geelkerken
- Multi-Modality Medical Imaging Group, Technical Medical Centre, University of Twente, Enschede, The Netherlands
- Section of Vascular Surgery, Department of Surgery, Medisch Spectrum Twente, Enschede, The Netherlands
| | - Michel Versluis
- Physics of Fluids Group, Technical Medical Centre, University of Twente, Enschede, The Netherlands
| | - Erik Groot Jebbink
- Multi-Modality Medical Imaging Group, Technical Medical Centre, University of Twente, Enschede, The Netherlands
- Department of Vascular Surgery, Rijnstate Hospital, Arnhem, The Netherlands
| | - Michel M P J Reijnen
- Multi-Modality Medical Imaging Group, Technical Medical Centre, University of Twente, Enschede, The Netherlands
- Department of Vascular Surgery, Rijnstate Hospital, Arnhem, The Netherlands
| |
Collapse
|
8
|
David E, Martinelli O, Pacini P, Di Serafino M, Huang P, Dolcetti V, Del Gaudio G, Barr RG, Renda M, Lucarelli GT, Di Marzo L, Clevert DA, Solito C, Di Bella C, Cantisani V. New Technologies in the Assessment of Carotid Stenosis: Beyond the Color-Doppler Ultrasound-High Frame Rate Vector-Flow and 3D Arterial Analysis Ultrasound. Diagnostics (Basel) 2023; 13:diagnostics13081478. [PMID: 37189578 DOI: 10.3390/diagnostics13081478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/27/2023] [Accepted: 04/03/2023] [Indexed: 05/17/2023] Open
Abstract
Atherosclerotic plaque in the carotid artery is the main cause of ischemic stroke, with a high incidence rate among people over 65 years. A timely and precise diagnosis can help to prevent the ischemic event and decide patient management, such as follow up, medical, or surgical treatment. Presently, diagnostic imaging techniques available include color-Doppler ultrasound, as a first evaluation technique, computed tomography angiography, which, however, uses ionizing radiation, magnetic resonance angiography, still not in widespread use, and cerebral angiography, which is an invasively procedure reserved for therapeutically purposes. Contrast-enhanced ultrasound is carving out an important and emerging role which can significantly improve the diagnostic accuracy of an ultrasound. Modern ultrasound technologies, still not universally utilized, are opening new horizons in the arterial pathologies research field. In this paper, the technical development of various carotid artery stenosis diagnostic imaging modalities and their impact on clinical efficacy is thoroughly reviewed.
Collapse
Affiliation(s)
- Emanuele David
- Department of Translational and Precision Medicine, Sapienza University of Rome, 00185 Rome, Italy
- Radiology Unit 1, Department of Medical Surgical Sciences and Advanced Technologies "GF Ingrassia", University Hospital "Policlinico G. Rodolico", University of Catania, 95123 Catania, Italy
- Radiology Unit, Papardo-Hospital, 98158 Messina, Italy
| | - Ombretta Martinelli
- Department of Surgery "Paride Stefanini", Vascular and Endovascular Surgery Division, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - Patrizia Pacini
- Department of Radiological Sciences, Oncology and Pathology, Policlinico Umberto I, Sapienza University of Rome, 00161 Rome, Italy
| | - Marco Di Serafino
- Department of General and Emergency Radiology, "Antonio Cardarelli" Hospital, 80131 Naples, Italy
| | - Pintong Huang
- Department of Ultrasound in Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 242332, China
| | - Vincenzo Dolcetti
- Department of Radiological Sciences, Oncology and Pathology, Policlinico Umberto I, Sapienza University of Rome, 00161 Rome, Italy
| | - Giovanni Del Gaudio
- Department of Radiological Sciences, Oncology and Pathology, Policlinico Umberto I, Sapienza University of Rome, 00161 Rome, Italy
| | - Richard G Barr
- Department of Radiology, Northeastern Ohio Medical University, Rootstown, OH 44272, USA
- Southwoods Imaging, Youngstown, OH 44512, USA
| | - Maurizio Renda
- Department of Radiological Sciences, Oncology and Pathology, Policlinico Umberto I, Sapienza University of Rome, 00161 Rome, Italy
| | - Giuseppe T Lucarelli
- Department of Radiological Sciences, Oncology and Pathology, Policlinico Umberto I, Sapienza University of Rome, 00161 Rome, Italy
| | - Luca Di Marzo
- Department of Surgery "Paride Stefanini", Vascular and Endovascular Surgery Division, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - Dirk A Clevert
- Interdisciplinary Ultrasound-Center, Department of Radiology, University of Munich, Grosshadern Campus, 81377 Munich, Germany
| | - Carmen Solito
- Department of Radiological Sciences, Oncology and Pathology, Policlinico Umberto I, Sapienza University of Rome, 00161 Rome, Italy
| | - Chiara Di Bella
- Department of Radiological Sciences, Oncology and Pathology, Policlinico Umberto I, Sapienza University of Rome, 00161 Rome, Italy
| | - Vito Cantisani
- Department of Radiological Sciences, Oncology and Pathology, Policlinico Umberto I, Sapienza University of Rome, 00161 Rome, Italy
| |
Collapse
|
9
|
Rohacs D, Yasar O, Kale U, Ekici S, Yalcin E, Midilli A, Karakoc TH. Past and current components-based detailing of particle image velocimetry: A comprehensive review. Heliyon 2023; 9:e14404. [PMID: 36950576 PMCID: PMC10025931 DOI: 10.1016/j.heliyon.2023.e14404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/25/2022] [Accepted: 03/03/2023] [Indexed: 03/13/2023] Open
Abstract
Particle image velocimetry has been widely used in various sectors from the automotive to aviation, research, and development, energy, medical, turbines, reactors, electronics, education, refrigeration for flow characterization and investigation. In this study, articles examined in open literature containing the particle image velocimetry techniques are reviewed in terms of components, lasers, cameras, lenses, tracers, computers, synchronizers, and seeders. The results of the evaluation are categorized and explained within the tables and figures. It is anticipated that this paper will be a starting point for researchers willing to study in this area and industrial companies willing to include PIV experimenting in their portfolios. In addition, the study shows in detail the advantages and disadvantages of past and current technologies, which technologies in existing PIV laboratories can be renewed, and which components are used in the PIV laboratories to be installed.
Collapse
Affiliation(s)
- Daniel Rohacs
- Department of Aeronautics and Naval Architecture, Faculty of Transportation Engineering and Vehicle Engineering, Budapest University of Technology and Economics, HU-1111, Budapest, Hungary
| | - Onur Yasar
- Aviation Academy, Amsterdam University of Applied Sciences, Amsterdam, Netherlands
| | - Utku Kale
- Department of Aeronautics and Naval Architecture, Faculty of Transportation Engineering and Vehicle Engineering, Budapest University of Technology and Economics, HU-1111, Budapest, Hungary
- Aviation Academy, Amsterdam University of Applied Sciences, Amsterdam, Netherlands
- Corresponding author.
| | - Selcuk Ekici
- Department of Aviation, Iğdır University, TR-76000, Iğdır, Turkey
| | - Enver Yalcin
- Aviation Academy, Amsterdam University of Applied Sciences, Amsterdam, Netherlands
| | - Adnan Midilli
- Faculty of Mechanical Engineering, Department of Mechanical Engineering, Yıldız Technical University, TR-34349, İstanbul, Turkey
| | - T. Hikmet Karakoc
- Faculty of Aeronautics and Astronautics, Eskişehir Technical University, TR-26000, Eskişehir, Turkey
- Information Technology Research and Application Center, Istanbul Ticaret University, Istanbul, Turkey
| |
Collapse
|