1
|
Del Franco A, Ruggieri R, Pieroni M, Ciabatti M, Zocchi C, Biagioni G, Tavanti V, Del Pace S, Leone O, Favale S, Guaricci AI, Udelson J, Olivotto I. Atlas of Regional Left Ventricular Scar in Nonischemic Cardiomyopathies: Substrates and Etiologies. JACC. ADVANCES 2024; 3:101214. [PMID: 39246577 PMCID: PMC11380395 DOI: 10.1016/j.jacadv.2024.101214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 05/18/2024] [Accepted: 06/05/2024] [Indexed: 09/10/2024]
Abstract
Most acquired and inherited cardiomyopathies are characterized by regional left ventricular involvement and nonischemic myocardial scars, often with a disease-specific pattern. Irrespective of the etiology and pathophysiological mechanisms, myocardial disorders are invariably associated with cardiac fibrosis, which contributes to dysfunction and electrical instability. Accordingly, cardiac magnetic resonance plays a central role in the diagnostic work-up and prognostic risk stratification of cardiomyopathies, particularly with the increasing correlation between genetic background and specific disease phenotype. Starting from pattern and distribution of myocardial fibrosis at cardiac magnetic resonance, we provide a practical regional atlas of nonischemic myocardial scar to guide the diagnostic approach to nonischemic cardiomyopathies.
Collapse
Affiliation(s)
| | | | | | | | - Chiara Zocchi
- Cardiovascular Department, San Donato Hospital, Arezzo, Italy
| | - Giulia Biagioni
- Cardiomyopathy Unit, Careggi University Hospital, Florence, Italy
| | | | - Stefano Del Pace
- Cardiothoracovascular Department, Careggi University Hospital, Florence, Italy
| | - Ornella Leone
- Department of Pathology, Cardiovascular and Cardiac Transplant Pathology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Stefano Favale
- Cardiology Unit, Interdisciplinary Department of Medicine, University of Bari Aldo Moro, Bari, Italy
| | - Andrea Igoren Guaricci
- Cardiology Unit, Interdisciplinary Department of Medicine, University of Bari Aldo Moro, Bari, Italy
| | - James Udelson
- Division of Cardiology and The CardioVascular Center, Tufts Medical Center, and the Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Iacopo Olivotto
- Cardiomyopathy Unit, Careggi University Hospital, Florence, Italy
- Cardiology Unit, Meyer University Hospital, Florence, Italy
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| |
Collapse
|
2
|
Kazimierczyk R, Kaminski KA, Nekolla SG. Cardiac PET/MRI: Recent Developments and Future Aspects. Semin Nucl Med 2024; 54:733-746. [PMID: 38853039 DOI: 10.1053/j.semnuclmed.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 06/11/2024]
Abstract
Positron emission tomography/magnetic resonance (PET/MRI) hybrid imaging is now available for over a decade and although the quantity of installed systems is rather low, the number of emerging applications for cardiovascular diseases is still growing. PET/MRI provides integrated images of high quality anatomical and functional assessment obtained by MRI with the possibilities of PET for quantification of molecular parameters such as metabolism, inflammation, and perfusion. In recent years, sequential co-registration of myocardial tissue characterization with its molecular data had become an increasingly helpful tool in clinical practice and an integrated device simplifies this task. This review summarizes recent developments and future possibilities in the use of the PET/MRI in the diagnosis and treatment of cardiovascular disorders.
Collapse
Affiliation(s)
| | - Karol A Kaminski
- Department of Cardiology, Medical University of Bialystok, Bialystok, Poland; Department of Population Medicine and Lifestyle Diseases, Medical University of Bialystok, Bialystok, Poland
| | - Stephan G Nekolla
- Department of Nuclear Medicine, Technical University Munich, Ismaninger Str., Munich, Germany; DZKH (Deutsches Zentrum für Herz-Kreislauf-Forschung e.V.), partner site Munich Heart Alliance, Munich, Germany.
| |
Collapse
|
3
|
Pan JA, Patel AR. The Role of Multimodality Imaging in Cardiomyopathy. Curr Cardiol Rep 2024; 26:689-703. [PMID: 38753290 PMCID: PMC11236518 DOI: 10.1007/s11886-024-02068-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/24/2024] [Indexed: 06/25/2024]
Abstract
PURPOSE OF REVIEW There has been increasing use of multimodality imaging in the evaluation of cardiomyopathies. RECENT FINDINGS Echocardiography, cardiac magnetic resonance (CMR), cardiac nuclear imaging, and cardiac computed tomography (CCT) play an important role in the diagnosis, risk stratification, and management of patients with cardiomyopathies. Echocardiography is essential in the initial assessment of suspected cardiomyopathy, but a multimodality approach can improve diagnostics and management. CMR allows for accurate measurement of volumes and function, and can easily detect unique pathologic structures. In addition, contrast imaging and parametric mapping enable the characterization of tissue features such as scar, edema, infiltration, and deposition. In non-ischemic cardiomyopathies, metabolic and molecular nuclear imaging is used to diagnose rare but life-threatening conditions such amyloidosis and sarcoidosis. There is an expanding use of CCT for planning electrophysiology procedures such as cardioversion, ablations, and device placement. Furthermore, CCT can evaluate for complications associated with advanced heart failure therapies such as cardiac transplant and mechanical support devices. Innovations in multimodality cardiac imaging should lead to increased volumes and better outcomes.
Collapse
Affiliation(s)
- Jonathan A Pan
- Cardiovascular Division, Department of Medicine, University of Virginia Health System, 1215 Lee Street, Box 800158, Charlottesville, VA, 22908, USA
| | - Amit R Patel
- Cardiovascular Division, Department of Medicine, University of Virginia Health System, 1215 Lee Street, Box 800158, Charlottesville, VA, 22908, USA.
| |
Collapse
|
4
|
Fukushima K, Ito H, Takeishi Y. Comprehensive assessment of molecular function, tissue characterization, and hemodynamic performance by non-invasive hybrid imaging: Potential role of cardiac PETMR. J Cardiol 2023; 82:286-292. [PMID: 37343931 DOI: 10.1016/j.jjcc.2023.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/16/2023] [Accepted: 05/23/2023] [Indexed: 06/23/2023]
Abstract
Noninvasive cardiovascular imaging plays a key role in diagnosis and patient management including monitoring treatment efficacy. The usefulness of noninvasive cardiovascular imaging has been extensively studied and shown to have high diagnostic reliability and prognostic significance, while the nondiagnostic results frequently encountered with single imaging modality require complementary or alternative imaging techniques. Hybrid cardiac imaging was initially introduced to integrate anatomical and functional information to enhance the diagnostic performance, and lately employed as a strategy for comprehensive assessment of the underlying pathophysiology of diseases. More recently, the utility of computed tomography has grown in diversity, and emerged from being an exploratory technique allowing functional measurement such as stress dynamic perfusion. Cardiac magnetic resonance imaging (CMR) is widely accepted as a robust tool for evaluation of cardiac function, fibrosis, and edema, yielding high spatial resolution and soft-tissue contrast. However, the use of intravenous contrast materials is typically required for accurate diagnosis with these imaging modalities, despite the associated risk of renal toxicity. Nuclear cardiology, established as a molecular imaging technique, has advantages in visualization of the disease-specific biological process at cellular level using numerous probes without requiring contrast materials. Various imaging modalities should be appropriately used sequentially to assess concomitant disease and the progression over time. Therefore, simultaneous evaluation combining high spatial resolution and disease-specific imaging probe is a useful approach to identify the regional activity and the stage of the disease. Given the recent advance and potential of multiparametric CMR and novel nuclide tracers, hybrid positron emission tomography MR is becoming an ideal tool for disease-specific imaging.
Collapse
Affiliation(s)
- Kenji Fukushima
- Department of Radiology and Nuclear Medicine, Fukushima Medical University, Fukushima, Japan.
| | - Hiroshi Ito
- Department of Radiology and Nuclear Medicine, Fukushima Medical University, Fukushima, Japan
| | - Yasuchika Takeishi
- Department of Cardiovascular Medicine, Fukushima Medical University, Fukushima, Japan
| |
Collapse
|
5
|
Nakata T, Nakajima K, Naya M, Yoshida S, Momose M, Taniguchi Y, Fukushima Y, Moroi M, Okizaki A, Hashimoto A, Kiko T, Hida S, Takehana K. Multicenter Registry in the Japanese Cardiac Sarcoidosis Prognostic (J-CASP) Study: Baseline Characteristics and Validation of the Non-invasive Approach Using 18F-FDG PET. ANNALS OF NUCLEAR CARDIOLOGY 2022; 8:42-50. [PMID: 36540169 PMCID: PMC9749758 DOI: 10.17996/anc.22-00153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/09/2022] [Accepted: 05/15/2022] [Indexed: 06/13/2023]
Abstract
Background: Recent advances in cardiac modalities contribute to the guidelines on the diagnosis of cardiac sarcoidosis (CS) updated by the Japanese Circulation Society. The multicenter registry, Japanese Cardiac Sarcoidosis Prognostic (J-CASP) study tried to reveal recent trends of diagnosis and outcomes in CS patients and to validate the non-invasive diagnostic approach, including cardiac 18F-fluorodeoxyglucose (FDG) study. Methods/results: Databases from 12 hospitals consisting of 231 CS patients (mean age, 64 years; female, 65%; LV ejection fraction, 47%) diagnosed by the guidelines with FDG positron emission tomography (PET) study were integrated to compile clinical information on the diagnostic criteria and outcomes. Cardiac 18F-FDG uptake and magnetic resonance imaging (CMR) was positive identically in the histology-proven and clinically-diagnosed groups. The histology-proven group more frequently had reduce LV ejection fraction, myocardial perfusion abnormality and low-grade electrocardiogram (ECG) abnormality (P=0.003 to 0.016) than did the clinical group. During a 45-month period, the histology-proven group more frequently underwent appropriate implantable cardioverter-defibrillator (ICD) treatment (14% versus 4%, P=0.013) and new electronic device implantation (30% versus 12%, P=0.007) than did clinical group, respectively. There, however, was no difference in all-cause or cardiac mortality or in new hospitalization due to heart failure progression between them. Conclusion: The J-CASP registry demonstrated the rationale and clinical efficacies of non-invasive approach using advanced cardiac imaging modalities in the diagnosis of CS even when histological data were available.
Collapse
Affiliation(s)
- Tomoaki Nakata
- Cardiology, Hakodate Goryoukaku Hospital, Hakodate, Japan
| | - Kenichi Nakajima
- Department of Functional Imaging and Artificial Intelligence, Kanazawa University, Kanazawa, Japan
| | - Masanao Naya
- Department of Cardiology, Hokkaido University Hospital, Sapporo, Japan
| | - Shohei Yoshida
- Department of Cardiovascular Medicine, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Mitsuru Momose
- Department of Diagnostic Imaging and Nuclear Medicine, Tokyo Woman's Medical University, Tokyo, Japan
| | - Yasuyo Taniguchi
- Department of Cardiology, Hyogo Brain and Heart Center, Himeji, Japan
| | | | - Masao Moroi
- Department of Cardiovascular Medicine, Toho University Ohashi Medical Center, Tokyo, Japan
| | - Atsutaka Okizaki
- Department of Radiology, Asahikawa Medical University, Asahikawa, Japan
| | | | - Takatoyo Kiko
- Department of Cardiology, Fukushima Medical University, Fukushima, Japan
| | - Satoshi Hida
- Department of Cardiology, Tokyo Medical University, Tokyo, Japan
| | - Kazuya Takehana
- Division of Cardiology, Department of Medicine II, Kansai Medical University, Hirakata, Japan
| |
Collapse
|