1
|
Macdonald-Laurs E, Warren AEL, Francis P, Mandelstam SA, Lee WS, Coleman M, Stephenson SEM, Barton S, D'Arcy C, Lockhart PJ, Leventer RJ, Harvey AS. The clinical, imaging, pathological and genetic landscape of bottom-of-sulcus dysplasia. Brain 2024; 147:1264-1277. [PMID: 37939785 DOI: 10.1093/brain/awad379] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/20/2023] [Accepted: 10/22/2023] [Indexed: 11/10/2023] Open
Abstract
Bottom-of-sulcus dysplasia (BOSD) is increasingly recognized as a cause of drug-resistant, surgically-remediable, focal epilepsy, often in seemingly MRI-negative patients. We describe the clinical manifestations, morphological features, localization patterns and genetics of BOSD, with the aims of improving management and understanding pathogenesis. We studied 85 patients with BOSD diagnosed between 2005-2022. Presenting seizure and EEG characteristics, clinical course, genetic findings and treatment response were obtained from medical records. MRI (3 T) and 18F-FDG-PET scans were reviewed systematically for BOSD morphology and metabolism. Histopathological analysis and tissue genetic testing were performed in 64 operated patients. BOSD locations were transposed to common imaging space to study anatomical location, functional network localization and relationship to normal MTOR gene expression. All patients presented with stereotyped focal seizures with rapidly escalating frequency, prompting hospitalization in 48%. Despite 42% patients having seizure remissions, usually with sodium channel blocking medications, most eventually became drug-resistant and underwent surgery (86% seizure-free). Prior developmental delay was uncommon but intellectual, language and executive dysfunction were present in 24%, 48% and 29% when assessed preoperatively, low intellect being associated with greater epilepsy duration. BOSDs were missed on initial MRI in 68%, being ultimately recognized following repeat MRI, 18F-FDG-PET or image postprocessing. MRI features were grey-white junction blurring (100%), cortical thickening (91%), transmantle band (62%), increased cortical T1 signal (46%) and increased subcortical FLAIR signal (26%). BOSD hypometabolism was present on 18F-FDG-PET in 99%. Additional areas of cortical malformation or grey matter heterotopia were present in eight patients. BOSDs predominated in frontal and pericentral cortex and related functional networks, mostly sparing temporal and occipital cortex, and limbic and visual networks. Genetic testing yielded pathogenic mTOR pathway variants in 63% patients, including somatic MTOR variants in 47% operated patients and germline DEPDC5 or NPRL3 variants in 73% patients with familial focal epilepsy. BOSDs tended to occur in regions where the healthy brain normally shows lower MTOR expression, suggesting these regions may be more vulnerable to upregulation of MTOR activity. Consistent with the existing literature, these results highlight (i) clinical features raising suspicion of BOSD; (ii) the role of somatic and germline mTOR pathway variants in patients with sporadic and familial focal epilepsy associated with BOSD; and (iii) the role of 18F-FDG-PET alongside high-field MRI in detecting subtle BOSD. The anatomical and functional distribution of BOSDs likely explain their seizure, EEG and cognitive manifestations and may relate to relative MTOR expression.
Collapse
Affiliation(s)
- Emma Macdonald-Laurs
- Department of Neurology, The Royal Children's Hospital, Parkville, Victoria 3052Australia
- Department of Neuroscience, Murdoch Children's Research Institute, Parkville 3052, Australia
- Department of Paediatrics, The University of Melbourne, Parkville 3052, Australia
| | - Aaron E L Warren
- Department of Neuroscience, Murdoch Children's Research Institute, Parkville 3052, Australia
- Department of Medicine (Austin Health), The University of Melbourne, Heidelberg 3084, Australia
| | - Peter Francis
- Department of Medical Imaging, The Royal Children's Hospital, Parkville 3052, Australia
| | - Simone A Mandelstam
- Department of Neuroscience, Murdoch Children's Research Institute, Parkville 3052, Australia
- Department of Paediatrics, The University of Melbourne, Parkville 3052, Australia
- Department of Medical Imaging, The Royal Children's Hospital, Parkville 3052, Australia
| | - Wei Shern Lee
- Department of Paediatrics, The University of Melbourne, Parkville 3052, Australia
- Department of Genomic Medicine, Bruce Lefroy Centre, Murdoch Children's Research Institute, Parkville 3052, Australia
| | - Matthew Coleman
- Department of Paediatrics, The University of Melbourne, Parkville 3052, Australia
- Department of Genomic Medicine, Bruce Lefroy Centre, Murdoch Children's Research Institute, Parkville 3052, Australia
| | - Sarah E M Stephenson
- Department of Paediatrics, The University of Melbourne, Parkville 3052, Australia
- Department of Genomic Medicine, Bruce Lefroy Centre, Murdoch Children's Research Institute, Parkville 3052, Australia
| | - Sarah Barton
- Department of Neurology, The Royal Children's Hospital, Parkville, Victoria 3052Australia
- Department of Neuroscience, Murdoch Children's Research Institute, Parkville 3052, Australia
- Department of Paediatrics, The University of Melbourne, Parkville 3052, Australia
| | - Colleen D'Arcy
- Department of Pathology, The Royal Children's Hospital, Parkville 3052, Australia
| | - Paul J Lockhart
- Department of Paediatrics, The University of Melbourne, Parkville 3052, Australia
- Department of Genomic Medicine, Bruce Lefroy Centre, Murdoch Children's Research Institute, Parkville 3052, Australia
| | - Richard J Leventer
- Department of Neurology, The Royal Children's Hospital, Parkville, Victoria 3052Australia
- Department of Neuroscience, Murdoch Children's Research Institute, Parkville 3052, Australia
- Department of Paediatrics, The University of Melbourne, Parkville 3052, Australia
| | - A Simon Harvey
- Department of Neurology, The Royal Children's Hospital, Parkville, Victoria 3052Australia
- Department of Neuroscience, Murdoch Children's Research Institute, Parkville 3052, Australia
- Department of Paediatrics, The University of Melbourne, Parkville 3052, Australia
| |
Collapse
|
2
|
Yao Y, Wang X, Zhao B, Mo J, Guo Z, Yang B, Li Z, Fan X, Cai D, Sang L, Zheng Z, Shao X, Ai L, Hu W, Zhang C, Zhang K. Hypometabolic patterns are related to post-surgical seizure outcomes in focal cortical dysplasia: A semi-quantitative study. Epilepsia Open 2024; 9:653-664. [PMID: 38265725 PMCID: PMC10984320 DOI: 10.1002/epi4.12903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 12/25/2023] [Accepted: 01/06/2024] [Indexed: 01/25/2024] Open
Abstract
OBJECTIVE Fluorine-18-fluorodeoxyglucose-positron emission tomography (FDG-PET) is routinely used for presurgical evaluation in many epilepsy centers. Hypometabolic characteristics have been extensively examined in prior studies, but the metabolic patterns associated with specific pathological types of drug-resistant epilepsy remain to be fully defined. This study was developed to explore the relationship between metabolic patterns or characteristics and surgical outcomes in type I and II focal cortical dysplasia (FCD) patients based on results from a large cohort. METHODS Data from individuals who underwent epilepsy surgery from 2014 to 2019 with a follow-up duration of over 3 years and a pathological classification of type I or II FCD in our hospital were retrospectively analyzed. Hypometabolic patterns were quantitatively identified via statistical parametric mapping (SPM) and qualitatively analyzed via visual examination of PET-MRI co-registration images. Univariate analyses were used to explore the relationship between metabolic patterns and surgical outcomes. RESULTS In total, this study included data from 210 patients. Following SPM calculations, four hypometabolic patterns were defined including unilobar, multi-lobar, and remote patterns as well as cases where no pattern was evident. In type II FCD patients, the unilobar pattern was associated with the best surgical outcomes (p = 0.014). In visual analysis, single gyrus (p = 0.032) and Clear-cut hypometabolism edge (p = 0.040) patterns exhibited better surgery outcomes in the type II FCD group. CONCLUSIONS PET metabolic patterns are well-correlated with the prognosis of type II FCD patients. However, similar correlations were not observed in type I FCD, potentially owing to the complex distribution of the epileptogenic region. PLAIN LANGUAGE SUMMARY In this study, we demonstrated that FDG-PET was a crucial examination for patients with FCD, which was a common cause of epilepsy. We compared the surgical prognosis for patients with different hypometabolism distribution patterns and found that clear and focal abnormal region in PET was correlated with good surgical outcome in type II FCD patients.
Collapse
Affiliation(s)
- Yuan Yao
- Department of NeurosurgeryBeijing TianTan Hospital, Capital Medical UniversityBeijingChina
| | - Xiu Wang
- Department of NeurosurgeryBeijing TianTan Hospital, Capital Medical UniversityBeijingChina
| | - Baotian Zhao
- Department of NeurosurgeryBeijing TianTan Hospital, Capital Medical UniversityBeijingChina
| | - Jiajie Mo
- Department of NeurosurgeryBeijing TianTan Hospital, Capital Medical UniversityBeijingChina
| | - Zhihao Guo
- Department of NeurosurgeryBeijing TianTan Hospital, Capital Medical UniversityBeijingChina
| | - Bowen Yang
- Department of NeurosurgeryBeijing TianTan Hospital, Capital Medical UniversityBeijingChina
| | - Zilin Li
- Department of NeurosurgeryBeijing TianTan Hospital, Capital Medical UniversityBeijingChina
| | - Xiuliang Fan
- Department of NeurosurgeryBeijing TianTan Hospital, Capital Medical UniversityBeijingChina
| | - Du Cai
- Department of NeurosurgeryBeijing TianTan Hospital, Capital Medical UniversityBeijingChina
| | - Lin Sang
- Department of NeurosurgeryBeijing FengTai HospitalBeijingChina
| | - Zhong Zheng
- Department of NeurosurgeryBeijing FengTai HospitalBeijingChina
| | - Xiaoqiu Shao
- Department of NeurologyBeijing TianTan Hospital, Capital Medical UniversityBeijingChina
| | - Lin Ai
- Department of Nuclear MedicineBeijing TianTan Hospital, Capital Medical UniversityBeijingChina
| | - Wenhan Hu
- Beijing Neurosurgical InstituteCapital Medical UniversityBeijingChina
| | - Chao Zhang
- Department of NeurosurgeryBeijing TianTan Hospital, Capital Medical UniversityBeijingChina
| | - Kai Zhang
- Department of NeurosurgeryBeijing TianTan Hospital, Capital Medical UniversityBeijingChina
| |
Collapse
|