1
|
König J, Blusch A, Fatoba O, Gold R, Saft C, Ellrichmann-Wilms G. Examination of Anti-Inflammatory Effects After Propionate Supplementation in the R6/2 Mouse Model of Huntington's Disease. Int J Mol Sci 2025; 26:3318. [PMID: 40244185 DOI: 10.3390/ijms26073318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/23/2025] [Accepted: 03/28/2025] [Indexed: 04/18/2025] Open
Abstract
Huntington's disease is a progressive, untreatable neurodegenerative disorder caused by a mutation in the Huntingtin gene. Next to neurodegeneration, altered immune activation is involved in disease progression. Since central nervous system inflammation and dysfunction of immune cells are recognized as driving characteristics, immunomodulation might represent an additional therapeutic strategy. Short-chain fatty acids were known to have immunomodulatory effects in neuroinflammatory diseases, such as multiple sclerosis. In this study, R6/2 mice were treated daily with 150 mM propionate. Survival range, body weight, and motor abilities were monitored. In striatal and cortical samples, neuronal survival was analyzed by immunofluorescence staining of NeuN-positive cells and expression levels of BDNF mRNA by real-time polymerase chain reaction. As inflammatory marker TNFα mRNA and IL-6 mRNA were quantified by rtPCR, iNOS-expressing cells were counted in immunologically stained brain slides. Microglial activation was evaluated by immunofluorescent staining of IBA1-positive cells and total IBA1 protein by Western Blot, in addition, SPI1 mRNA expression was quantified by rtPCR. Except for clasping behavior, propionate treatment did neither improve the clinical course nor mediated neuronal protection in R6/2 mice. Yet there was a mild anti-inflammatory effect in the CNS, with (i) reduction in SPI1-mRNA levels, (ii) reduced iNOS positive cells in the motor cortex, and (iii) normalized TNFα-mRNA in the motor cortex of propionate-treated R6/2 mice. Thus, Short-chain fatty acids, as an environmental factor in the diet, may slightly alleviate symptoms by down-regulating inflammatory factors in the central nervous system. However, they cannot prevent clinical disease progression or neuronal loss.
Collapse
Affiliation(s)
- Jennifer König
- Department of Neurology, St. Josef-Hospital, Ruhr-University Bochum, 44791 Bochum, Germany
- Department of Physiology and Pathophysiology, Center of Biomedical Education and Research (ZBAF), Faculty of Health, School of Medicine, Witten/Herdecke University, 58453 Witten, Germany
| | - Alina Blusch
- Department of Neurology, St. Josef-Hospital, Ruhr-University Bochum, 44791 Bochum, Germany
- Brain Disease Biomarker Unit, Wallenberg Neuroscience Center, Department of Experimental Medical Science, Lund University, BMC A10, 221 84 Lund, Sweden
| | - Oluwaseun Fatoba
- Department of Neurology, St. Josef-Hospital, Ruhr-University Bochum, 44791 Bochum, Germany
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, Suita 565-0871, Japan
| | - Ralf Gold
- Department of Neurology, St. Josef-Hospital, Ruhr-University Bochum, 44791 Bochum, Germany
| | - Carsten Saft
- Department of Neurology, St. Josef-Hospital, Ruhr-University Bochum, 44791 Bochum, Germany
| | - Gisa Ellrichmann-Wilms
- Department of Neurology, St. Josef-Hospital, Ruhr-University Bochum, 44791 Bochum, Germany
- Faculty of Health, School of Medicine, Chair of Neurology II, Witten/Herdecke University, 58448 Witten, Germany
| |
Collapse
|
2
|
Mühlbäck A, Hoffmann R, Pozzi NG, Marziniak M, Brieger P, Dose M, Priller J. [Psychiatric symptoms of Huntington's disease]. DER NERVENARZT 2024; 95:871-884. [PMID: 39212681 PMCID: PMC11374876 DOI: 10.1007/s00115-024-01728-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/30/2024] [Indexed: 09/04/2024]
Abstract
Huntington's disease (HD) is an autosomal dominant inherited disease, which leads to motor, cognitive and psychiatric symptoms. The diagnosis can be confirmed by genetic testing for extended CAG repeats in the Huntingtin gene. Mental and behavioral symptoms are common in HD and can appear several years before the onset of motor symptoms. The psychiatric symptoms include apathy, depression, anxiety, obsessive-compulsive symptoms and, in some cases, psychoses and aggression. These are currently restricted to symptomatic treatment as disease-modifying treatment approaches are still under investigation. The current clinical practice is based on expert opinions as well as experience with the treatment of similar symptoms in other neurological and mental health diseases. This article provides an overview of the complex psychiatric manifestations of HD, the diagnostic options and the established pharmacological and nonpharmacological treatment approaches.
Collapse
Affiliation(s)
- Alzbeta Mühlbäck
- Huntington-Zentrum-Süd, kbo-Isar-Amper-Klinikum, Region München, Taufkirchen (Vils), Deutschland.
- Klinik und Poliklinik für Psychiatrie und Psychotherapie, Klinikum rechts der Isar, School of Medicine and Health, TU München, Ismaninger Str. 22, 81675, München, Deutschland.
| | - Rainer Hoffmann
- Huntington-Zentrum-Süd, kbo-Isar-Amper-Klinikum, Region München, Taufkirchen (Vils), Deutschland
| | - Nicolo Gabriele Pozzi
- Huntington-Zentrum-Süd, kbo-Isar-Amper-Klinikum, Region München, Taufkirchen (Vils), Deutschland
- Neurologische Klinik und Poliklinik, Universitätsklinikum Würzburg, Würzburg, Deutschland
| | - Martin Marziniak
- Klinik für Neurologie und Intensivmedizin, kbo-Isar-Amper-Klinikum, Region München, Akademisches Lehrkrankenhaus der LMU München, Haar, Deutschland
| | - Peter Brieger
- kbo-Isar-Amper-Klinikum, Region München, Akademisches Lehrkrankenhaus der LMU München, Haar, Deutschland
| | - Matthias Dose
- Huntington-Zentrum-Süd, kbo-Isar-Amper-Klinikum, Region München, Taufkirchen (Vils), Deutschland
| | - Josef Priller
- Klinik und Poliklinik für Psychiatrie und Psychotherapie, Klinikum rechts der Isar, School of Medicine and Health, TU München, Ismaninger Str. 22, 81675, München, Deutschland
- Deutsches Zentrum für Psychische Gesundheit (DZPG), Standort München, München, Deutschland
- Universität Edinburgh und UK DRI, Edinburgh, Großbritannien
- Neuropsychiatrie und Labor für Molekulare Psychiatrie, Charité-Universitätsmedizin Berlin, Berlin, Deutschland
- DZNE, Berlin, Deutschland
| |
Collapse
|
4
|
Giardina E, Mandich P, Ghidoni R, Ticozzi N, Rossi G, Fenoglio C, Tiziano FD, Esposito F, Capellari S, Nacmias B, Mineri R, Campopiano R, Di Pilla L, Sammarone F, Zampatti S, Peconi C, De Angelis F, Palmieri I, Galandra C, Nicodemo E, Origone P, Gotta F, Ponti C, Nicsanu R, Benussi L, Peverelli S, Ratti A, Ricci M, Di Fede G, Magri S, Serpente M, Lattante S, Domi T, Carrera P, Saltimbanco E, Bagnoli S, Ingannato A, Albanese A, Tagliavini F, Lodi R, Caltagirone C, Gambardella S, Valente EM, Silani V. Distribution of the C9orf72 hexanucleotide repeat expansion in healthy subjects: a multicenter study promoted by the Italian IRCCS network of neuroscience and neurorehabilitation. Front Neurol 2024; 15:1284459. [PMID: 38356886 PMCID: PMC10865370 DOI: 10.3389/fneur.2024.1284459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 01/05/2024] [Indexed: 02/16/2024] Open
Abstract
Introduction High repeat expansion (HRE) alleles in C9orf72 have been linked to both amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD); ranges for intermediate allelic expansions have not been defined yet, and clinical interpretation of molecular data lacks a defined genotype-phenotype association. In this study, we provide results from a large multicenter epidemiological study reporting the distribution of C9orf72 repeats in healthy elderly from the Italian population. Methods A total of 967 samples were collected from neurologically evaluated healthy individuals over 70 years of age in the 13 institutes participating in the RIN (IRCCS Network of Neuroscience and Neurorehabilitation) based in Italy. All samples were genotyped using the AmplideXPCR/CE C9orf72 Kit (Asuragen, Inc.), using standardized protocols that have been validated through blind proficiency testing. Results All samples carried hexanucleotide G4C2 expansion alleles in the normal range. All samples were characterized by alleles with less than 25 repeats. In particular, 93.7% of samples showed a number of repeats ≤10, 99.9% ≤20 repeats, and 100% ≤25 repeats. Conclusion This study describes the distribution of hexanucleotide G4C2 expansion alleles in an Italian healthy population, providing a definition of alleles associated with the neurological healthy phenotype. Moreover, this study provides an effective model of federation between institutes, highlighting the importance of sharing genomic data and standardizing analysis techniques, promoting translational research. Data derived from the study may improve genetic counseling and future studies on ALS/FTD.
Collapse
Affiliation(s)
- Emiliano Giardina
- Genomic Medicine Laboratory UILDM, IRCCS Santa Lucia Foundation, Rome, Italy
- Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy
| | - Paola Mandich
- IRCCS Ospedale Policlinico San Martino – UOC Genetica Medica, Genova, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal and Child Health, University of Genova, Genova, Italy
| | - Roberta Ghidoni
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Nicola Ticozzi
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
- Department of Pathophysiology and Transplantation, “Dino Ferrari” Center, Università degli Studi di Milano, Milan, Italy
| | - Giacomina Rossi
- Unit of Neurology V – Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Chiara Fenoglio
- Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Francesco Danilo Tiziano
- Section of Genomic Medicine, Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
- Unit of Medical Genetics, Department of Laboratory Science and Infectious Diseases, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Federica Esposito
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Laboratory of Human Genetics of Neurological Disorders, Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Sabina Capellari
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
- DIBINEM Università di Bologna, Bologna, Italy
| | - Benedetta Nacmias
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
- IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| | - Rossana Mineri
- Laboratory Medicine, Department of Cytogenetics and Molecular Genetics, IRCCS Humanitas Research Hospital, Milan, Italy
| | | | | | | | - Stefania Zampatti
- Genomic Medicine Laboratory UILDM, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Cristina Peconi
- Genomic Medicine Laboratory UILDM, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Flavio De Angelis
- Department of Mental, Physical Health and Preventive Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
- Department of Biology, California State University, Northridge, Northridge, CA, United States
| | | | | | | | - Paola Origone
- IRCCS Ospedale Policlinico San Martino – UOC Genetica Medica, Genova, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal and Child Health, University of Genova, Genova, Italy
| | - Fabio Gotta
- IRCCS Ospedale Policlinico San Martino – UOC Genetica Medica, Genova, Italy
| | - Clarissa Ponti
- IRCCS Ospedale Policlinico San Martino – UOC Genetica Medica, Genova, Italy
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal and Child Health, University of Genova, Genova, Italy
| | - Roland Nicsanu
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Luisa Benussi
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Silvia Peverelli
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Antonia Ratti
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
- Department of Medical Biotechnology and Molecular Medicine, Università degli Studi di Milano, Milan, Italy
| | - Martina Ricci
- Unit of Neurology V – Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Giuseppe Di Fede
- Unit of Neurology V – Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Stefania Magri
- Unit of Medical Genetics and Neurogenetics Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Maria Serpente
- Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Serena Lattante
- Section of Genomic Medicine, Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Teuta Domi
- Experimental Neuropathology Unit, Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Paola Carrera
- Laboratory of Clinical Molecular Biology, Unit of Genomics for Human Disease Diagnosis, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Elisa Saltimbanco
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Silvia Bagnoli
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
- IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| | - Assunta Ingannato
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
- IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| | - Alberto Albanese
- Department of Neurology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | | | - Raffaele Lodi
- Policlinico S. Orsola-Malpighi, Department of Biomedical and NeuroMotor Sciences (DiBiNeM), University of Bologna, Bologna, Italy
| | - Carlo Caltagirone
- Department of Clinical and Behavioral Neurology, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Stefano Gambardella
- IRCCS Neuromed, Pozzilli, Italy
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Urbino, Italy
| | - Enza Maria Valente
- IRCCS Mondino Foundation, Pavia, Italy
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Vincenzo Silani
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
- Department of Pathophysiology and Transplantation, “Dino Ferrari” Center, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|