1
|
Doubková M, Knitlová J, Vondrášek D, Eckhardt A, Novotný T, Ošt’ádal M, Filová E, Bačáková L. Harnessing the Biomimetic Effect of Macromolecular Crowding in the Cell-Derived Model of Clubfoot Fibrosis. Biomacromolecules 2024; 25:6485-6502. [PMID: 39214607 PMCID: PMC11480992 DOI: 10.1021/acs.biomac.4c00653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/21/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
Fibrotic changes in pediatric clubfoot provide an opportunity to improve corrective therapy and prevent relapses with targeted drugs. This study defines the parameters of clubfoot fibrosis and presents a unique analysis of a simple pseudo-3D in vitro model for disease-specific high-throughput drug screening experiments. The model combines clubfoot-derived fibroblasts with a biomimetic cultivation environment induced by the water-soluble polymers Ficoll and Polyvinylpyrrolidone, utilizing the principle of macromolecular crowding. We achieved higher conversion of soluble collagen into insoluble collagen, accelerated formation of the extracellular matrix layer and upregulated fibrosis-related genes in the mixed Ficoll environment. To test the model, we evaluated the effect of a potential antifibrotic drug, minoxidil, emphasizing collagen content and cross-linking. While the model amplified overall collagen deposition, minoxidil effectively blocked the expression of lysyl hydroxylases, which are responsible for the increased occurrence of specific collagen cross-linking in various fibrotic tissues. This limited the formation of collagen cross-link in both the model and control environments. Our findings provide a tool for expanding preclinical research for clubfoot and similar fibroproliferative conditions.
Collapse
Affiliation(s)
- Martina Doubková
- Laboratory
of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 00 Prague 4, Czech Republic
- Second
Faculty of Medicine, Charles University, V Uvalu 84, 150 06 Prague 5, Czech Republic
| | - Jarmila Knitlová
- Laboratory
of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 00 Prague 4, Czech Republic
- Faculty
of Science, Charles University, Albertov 6, 128 00 Prague 2, Czech Republic
| | - David Vondrášek
- Laboratory
of Biomathematics, Institute of Physiology
of the Czech Academy of Sciences, Videnska 1083, 142 00 Prague 4, Czech Republic
| | - Adam Eckhardt
- Laboratory
of Translational Metabolism, Institute of
Physiology of the Czech Academy of Sciences, Videnska 1083, 142
00 Prague 4, Czech
Republic
| | - Tomáš Novotný
- Department
of Orthopaedics, Masaryk Hospital, Socialni Pece 3316/12A, 401 13 Usti nad Labem, Czech Republic
- Department
of Histology and Embryology, Second Faculty of Medicine, Charles University, V Uvalu 84, 150 06 Prague 5, Czech Republic
| | - Martin Ošt’ádal
- Department
of Orthopaedics, University Hospital Bulovka,
Charles University, Budinova
67/2, 180 81 Prague
8, Czech Republic
| | - Elena Filová
- Laboratory
of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 00 Prague 4, Czech Republic
| | - Lucie Bačáková
- Laboratory
of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 00 Prague 4, Czech Republic
| |
Collapse
|
2
|
Li R, Colombo M, Wang G, Rodriguez-Romera A, Benlabiod C, Jooss NJ, O’Sullivan J, Brierley CK, Clark SA, Pérez Sáez JM, Aragón Fernández P, Schoof EM, Porse B, Meng Y, Khan AO, Wen S, Dong P, Zhou W, Sousos N, Murphy L, Clarke M, Olijnik AA, C. Wong Z, Karali CS, Sirinukunwattana K, Ryou H, Norfo R, Cheng Q, Carrelha J, Ren Z, Thongjuea S, Rathinam VA, Krishnan A, Royston D, Rabinovich GA, Mead AJ, Psaila B. A proinflammatory stem cell niche drives myelofibrosis through a targetable galectin-1 axis. Sci Transl Med 2024; 16:eadj7552. [PMID: 39383242 PMCID: PMC7616771 DOI: 10.1126/scitranslmed.adj7552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 07/01/2024] [Accepted: 09/16/2024] [Indexed: 10/11/2024]
Abstract
Myeloproliferative neoplasms are stem cell-driven cancers associated with a large burden of morbidity and mortality. Most patients present with early-stage disease, but a substantial proportion progress to myelofibrosis or secondary leukemia, advanced cancers with a poor prognosis and high symptom burden. Currently, it remains difficult to predict progression, and therapies that reliably prevent or reverse fibrosis are lacking. A major bottleneck to the discovery of disease-modifying therapies has been an incomplete understanding of the interplay between perturbed cellular and molecular states. Several cell types have individually been implicated, but a comprehensive analysis of myelofibrotic bone marrow is lacking. We therefore mapped the cross-talk between bone marrow cell types in myelofibrotic bone marrow. We found that inflammation and fibrosis are orchestrated by a "quartet" of immune and stromal cell lineages, with basophils and mast cells creating a TNF signaling hub, communicating with megakaryocytes, mesenchymal stromal cells, and proinflammatory fibroblasts. We identified the β-galactoside-binding protein galectin-1 as a biomarker of progression to myelofibrosis and poor survival in multiple patient cohorts and as a promising therapeutic target, with reduced myeloproliferation and fibrosis in vitro and in vivo and improved survival after galectin-1 inhibition. In human bone marrow organoids, TNF increased galectin-1 expression, suggesting a feedback loop wherein the proinflammatory myeloproliferative neoplasm clone creates a self-reinforcing niche, fueling progression to advanced disease. This study provides a resource for studying hematopoietic cell-niche interactions, with relevance for cancer-associated inflammation and disorders of tissue fibrosis.
Collapse
Affiliation(s)
- Rong Li
- CAMS Oxford Institute; University of Oxford; Oxford, United Kingdom (UK)
- Medical Research Council Weatherall Institute of Molecular Medicine (MRC WIMM) and NIHR Biomedical Research Centre Hematology Theme; University of Oxford; Oxford, UK
| | - Michela Colombo
- Medical Research Council Weatherall Institute of Molecular Medicine (MRC WIMM) and NIHR Biomedical Research Centre Hematology Theme; University of Oxford; Oxford, UK
- Human Technopole; Milan, Italy
| | - Guanlin Wang
- Medical Research Council Weatherall Institute of Molecular Medicine (MRC WIMM) and NIHR Biomedical Research Centre Hematology Theme; University of Oxford; Oxford, UK
- MRC WIMM Centre for Computational Biology, University of Oxford; Oxford, United Kingdom
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology; Fudan University, Shanghai, China
- Qizhi Institute, Shanghai, China
| | - Antonio Rodriguez-Romera
- Medical Research Council Weatherall Institute of Molecular Medicine (MRC WIMM) and NIHR Biomedical Research Centre Hematology Theme; University of Oxford; Oxford, UK
| | - Camelia Benlabiod
- Medical Research Council Weatherall Institute of Molecular Medicine (MRC WIMM) and NIHR Biomedical Research Centre Hematology Theme; University of Oxford; Oxford, UK
| | - Natalie J. Jooss
- Medical Research Council Weatherall Institute of Molecular Medicine (MRC WIMM) and NIHR Biomedical Research Centre Hematology Theme; University of Oxford; Oxford, UK
| | - Jennifer O’Sullivan
- Medical Research Council Weatherall Institute of Molecular Medicine (MRC WIMM) and NIHR Biomedical Research Centre Hematology Theme; University of Oxford; Oxford, UK
| | - Charlotte K. Brierley
- Medical Research Council Weatherall Institute of Molecular Medicine (MRC WIMM) and NIHR Biomedical Research Centre Hematology Theme; University of Oxford; Oxford, UK
| | - Sally-Ann Clark
- Medical Research Council Weatherall Institute of Molecular Medicine (MRC WIMM) and NIHR Biomedical Research Centre Hematology Theme; University of Oxford; Oxford, UK
| | - Juan M. Pérez Sáez
- Laboratorio de Glicomedicina, Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | | | - Erwin M. Schoof
- Department of Biotechnology and Biomedicine, Technical University of Denmark; Denmark
| | - Bo Porse
- The Finsen Laboratory, Copenhagen University Hospital; Copenhagen, Denmark
- Biotech Research and Innovation Centre, Faculty of Health Sciences, University of Copenhagen; Denmark
- Department of Clinical Medicine, University of Copenhagen; Copenhagen, Denmark
| | - Yiran Meng
- Medical Research Council Weatherall Institute of Molecular Medicine (MRC WIMM) and NIHR Biomedical Research Centre Hematology Theme; University of Oxford; Oxford, UK
| | - Abdullah O. Khan
- Medical Research Council Weatherall Institute of Molecular Medicine (MRC WIMM) and NIHR Biomedical Research Centre Hematology Theme; University of Oxford; Oxford, UK
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences; University of Birmingham; Birmingham, UK
| | - Sean Wen
- Medical Research Council Weatherall Institute of Molecular Medicine (MRC WIMM) and NIHR Biomedical Research Centre Hematology Theme; University of Oxford; Oxford, UK
| | - Pengwei Dong
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology; Fudan University, Shanghai, China
| | - Wenjiang Zhou
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology; Fudan University, Shanghai, China
| | - Nikolaos Sousos
- Medical Research Council Weatherall Institute of Molecular Medicine (MRC WIMM) and NIHR Biomedical Research Centre Hematology Theme; University of Oxford; Oxford, UK
| | - Lauren Murphy
- Medical Research Council Weatherall Institute of Molecular Medicine (MRC WIMM) and NIHR Biomedical Research Centre Hematology Theme; University of Oxford; Oxford, UK
| | - Matthew Clarke
- Medical Research Council Weatherall Institute of Molecular Medicine (MRC WIMM) and NIHR Biomedical Research Centre Hematology Theme; University of Oxford; Oxford, UK
| | - Aude-Anais Olijnik
- Medical Research Council Weatherall Institute of Molecular Medicine (MRC WIMM) and NIHR Biomedical Research Centre Hematology Theme; University of Oxford; Oxford, UK
| | - Zoë C. Wong
- Medical Research Council Weatherall Institute of Molecular Medicine (MRC WIMM) and NIHR Biomedical Research Centre Hematology Theme; University of Oxford; Oxford, UK
| | - Christina Simoglou Karali
- Medical Research Council Weatherall Institute of Molecular Medicine (MRC WIMM) and NIHR Biomedical Research Centre Hematology Theme; University of Oxford; Oxford, UK
| | - Korsuk Sirinukunwattana
- Oxford Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford; Oxford, UK
| | - Hosuk Ryou
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford; Oxford, UK
| | - Ruggiero Norfo
- Medical Research Council Weatherall Institute of Molecular Medicine (MRC WIMM) and NIHR Biomedical Research Centre Hematology Theme; University of Oxford; Oxford, UK
| | - Qian Cheng
- Medical Research Council Weatherall Institute of Molecular Medicine (MRC WIMM) and NIHR Biomedical Research Centre Hematology Theme; University of Oxford; Oxford, UK
| | - Joana Carrelha
- Haematopoietic Stem Cell Laboratory, MRC Weatherall Institute of Molecular Medicine, University of Oxford; Oxford, UK
| | - Zemin Ren
- Medical Research Council Weatherall Institute of Molecular Medicine (MRC WIMM) and NIHR Biomedical Research Centre Hematology Theme; University of Oxford; Oxford, UK
| | - Supat Thongjuea
- Medical Research Council Weatherall Institute of Molecular Medicine (MRC WIMM) and NIHR Biomedical Research Centre Hematology Theme; University of Oxford; Oxford, UK
| | - Vijay A Rathinam
- Department of Immunology, University of Connecticut Health School of Medicine; Farmington, ConnecticutUSA
| | - Anandi Krishnan
- Stanford Cancer Institute, Stanford University School of Medicine; Stanford, California, USA
| | - Daniel Royston
- Biotech Research and Innovation Centre, Faculty of Health Sciences, University of Copenhagen; Denmark
- Oxford University Hospitals NHS Trust; Oxford, UK
| | - Gabriel A. Rabinovich
- Laboratorio de Glicomedicina, Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
- Facultad de Ciencias Exactas, Físicas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Adam J Mead
- Medical Research Council Weatherall Institute of Molecular Medicine (MRC WIMM) and NIHR Biomedical Research Centre Hematology Theme; University of Oxford; Oxford, UK
- Oxford University Hospitals NHS Trust; Oxford, UK
| | - Bethan Psaila
- Medical Research Council Weatherall Institute of Molecular Medicine (MRC WIMM) and NIHR Biomedical Research Centre Hematology Theme; University of Oxford; Oxford, UK
- Oxford University Hospitals NHS Trust; Oxford, UK
- Ludwig Institute for Cancer Research, University of Oxford, Oxford, UK
| |
Collapse
|
3
|
Spina JS, Carr TL, Phillips LA, Knight HL, Crosbie NE, Lloyd SM, Jhala MA, Lam TJ, Karman J, Clements ME, Day TA, Crane JD, Housley WJ. Modulating in vitro lung fibroblast activation via senolysis of senescent human alveolar epithelial cells. Aging (Albany NY) 2024; 16:10694-10723. [PMID: 38976646 PMCID: PMC11272128 DOI: 10.18632/aging.205994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 04/18/2024] [Indexed: 07/10/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is an age-related disease with poor prognosis and limited therapeutic options. Activation of lung fibroblasts and differentiation to myofibroblasts are the principal effectors of disease pathology, but damage and senescence of alveolar epithelial cells, specifically type II (ATII) cells, has recently been identified as a potential trigger event for the progressive disease cycle. Targeting ATII senescence and the senescence-associated secretory phenotype (SASP) is an attractive therapeutic strategy; however, translatable primary human cell models that enable mechanistic studies and drug development are lacking. Here, we describe a novel system of conditioned medium (CM) transfer from bleomycin-induced senescent primary alveolar epithelial cells (AEC) onto normal human lung fibroblasts (NHLF) that demonstrates an enhanced fibrotic transcriptional and secretory phenotype compared to non-senescent AEC CM treatment or direct bleomycin damage of the NHLFs. In this system, the bleomycin-treated AECs exhibit classical hallmarks of cellular senescence, including SASP and a gene expression profile that resembles aberrant epithelial cells of the IPF lung. Fibroblast activation by CM transfer is attenuated by pre-treatment of senescent AECs with the senolytic Navitoclax and AD80, but not with the standard of care agent Nintedanib or senomorphic JAK-targeting drugs (e.g., ABT-317, ruxolitinib). This model provides a relevant human system for profiling novel senescence-targeting therapeutics for IPF drug development.
Collapse
Affiliation(s)
- Joseph S. Spina
- AbbVie Bioresearch Center, Worcester, MA 01605, USA
- Department of Biology, Northeastern University, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | - Jozsef Karman
- AbbVie Bioresearch Center, Worcester, MA 01605, USA
- Current address: Merck, Cambridge, MA 02141, USA
| | | | - Tovah A. Day
- Department of Biology, Northeastern University, Boston, MA 02115, USA
| | - Justin D. Crane
- Department of Biology, Northeastern University, Boston, MA 02115, USA
- Current address: Pfizer Inc., Cambridge, MA 02139, USA
| | | |
Collapse
|
4
|
Trujillo Cubillo L, Gurdal M, Zeugolis DI. Corneal fibrosis: From in vitro models to current and upcoming drug and gene medicines. Adv Drug Deliv Rev 2024; 209:115317. [PMID: 38642593 DOI: 10.1016/j.addr.2024.115317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 02/29/2024] [Accepted: 04/18/2024] [Indexed: 04/22/2024]
Abstract
Fibrotic diseases are characterised by myofibroblast differentiation, uncontrolled pathological extracellular matrix accumulation, tissue contraction, scar formation and, ultimately tissue / organ dysfunction. The cornea, the transparent tissue located on the anterior chamber of the eye, is extremely susceptible to fibrotic diseases, which cause loss of corneal transparency and are often associated with blindness. Although topical corticosteroids and antimetabolites are extensively used in the management of corneal fibrosis, they are associated with glaucoma, cataract formation, corneoscleral melting and infection, imposing the need of far more effective therapies. Herein, we summarise and discuss shortfalls and recent advances in in vitro models (e.g. transforming growth factor-β (TGF-β) / ascorbic acid / interleukin (IL) induced) and drug (e.g. TGF-β inhibitors, epigenetic modulators) and gene (e.g. gene editing, gene silencing) therapeutic strategies in the corneal fibrosis context. Emerging therapeutical agents (e.g. neutralising antibodies, ligand traps, receptor kinase inhibitors, antisense oligonucleotides) that have shown promise in clinical setting but have not yet assessed in corneal fibrosis context are also discussed.
Collapse
Affiliation(s)
- Laura Trujillo Cubillo
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Charles Institute of Dermatology, Conway Institute of Biomolecular & Biomedical Research and School of Mechanical & Materials Engineering, University College Dublin (UCD), Dublin, Ireland
| | - Mehmet Gurdal
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Charles Institute of Dermatology, Conway Institute of Biomolecular & Biomedical Research and School of Mechanical & Materials Engineering, University College Dublin (UCD), Dublin, Ireland
| | - Dimitrios I Zeugolis
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Charles Institute of Dermatology, Conway Institute of Biomolecular & Biomedical Research and School of Mechanical & Materials Engineering, University College Dublin (UCD), Dublin, Ireland.
| |
Collapse
|
5
|
Humbert MV, Spalluto CM, Bell J, Blume C, Conforti F, Davies ER, Dean LSN, Elkington P, Haitchi HM, Jackson C, Jones MG, Loxham M, Lucas JS, Morgan H, Polak M, Staples KJ, Swindle EJ, Tezera L, Watson A, Wilkinson TMA. Towards an artificial human lung: modelling organ-like complexity to aid mechanistic understanding. Eur Respir J 2022; 60:2200455. [PMID: 35777774 DOI: 10.1183/13993003.00455-2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 06/11/2022] [Indexed: 11/05/2022]
Abstract
Respiratory diseases account for over 5 million deaths yearly and are a huge burden to healthcare systems worldwide. Murine models have been of paramount importance to decode human lung biology in vivo, but their genetic, anatomical, physiological and immunological differences with humans significantly hamper successful translation of research into clinical practice. Thus, to clearly understand human lung physiology, development, homeostasis and mechanistic dysregulation that may lead to disease, it is essential to develop models that accurately recreate the extraordinary complexity of the human pulmonary architecture and biology. Recent advances in micro-engineering technology and tissue engineering have allowed the development of more sophisticated models intending to bridge the gap between the native lung and its replicates in vitro Alongside advanced culture techniques, remarkable technological growth in downstream analyses has significantly increased the predictive power of human biology-based in vitro models by allowing capture and quantification of complex signals. Refined integrated multi-omics readouts could lead to an acceleration of the translational pipeline from in vitro experimental settings to drug development and clinical testing in the future. This review highlights the range and complexity of state-of-the-art lung models for different areas of the respiratory system, from nasal to large airways, small airways and alveoli, with consideration of various aspects of disease states and their potential applications, including pre-clinical drug testing. We explore how development of optimised physiologically relevant in vitro human lung models could accelerate the identification of novel therapeutics with increased potential to translate successfully from the bench to the patient's bedside.
Collapse
Affiliation(s)
- Maria Victoria Humbert
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Cosma Mirella Spalluto
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
- M.V. Humbert and C.M. Spalluto are co-first authors and contributed equally to this work
| | - Joseph Bell
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
| | - Cornelia Blume
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
- Institute for Life Sciences, University of Southampton, Southampton, UK
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Franco Conforti
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
| | - Elizabeth R Davies
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, UK
| | - Lareb S N Dean
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
| | - Paul Elkington
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
- Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Hans Michael Haitchi
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
- Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Claire Jackson
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
| | - Mark G Jones
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
| | - Matthew Loxham
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
- Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Jane S Lucas
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
| | - Hywel Morgan
- Institute for Life Sciences, University of Southampton, Southampton, UK
- Electronics and Computer Science, Faculty of Physical Sciences and Engineering, University of Southampton, Southampton, UK
| | - Marta Polak
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
- Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Karl J Staples
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
| | - Emily J Swindle
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
- Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Liku Tezera
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- Department of Infection and Immunity, Faculty of Medicine, University College London, London, UK
| | - Alastair Watson
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
- College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- School of Clinical Medicine, University of Cambridge, Cambridge, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Tom M A Wilkinson
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
| |
Collapse
|
6
|
Søndergaard RH, Højgaard LD, Reese-Petersen AL, Hoeeg C, Mathiasen AB, Haack-Sørensen M, Follin B, Genovese F, Kastrup J, Juhl M, Ekblond A. Adipose-derived stromal cells increase the formation of collagens through paracrine and juxtacrine mechanisms in a fibroblast co-culture model utilizing macromolecular crowding. Stem Cell Res Ther 2022; 13:250. [PMID: 35690799 PMCID: PMC9188050 DOI: 10.1186/s13287-022-02923-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 05/29/2022] [Indexed: 11/24/2022] Open
Abstract
Background Adipose-derived stromal cells (ASCs) possess a multitude of regenerative capabilities, which include immunomodulation, angiogenesis, and stimulation of extracellular matrix (ECM) remodeling. However, the underlying mechanisms leading to ECM remodeling remain largely elusive and highlight the need for functional in vitro models for mode of action studies. Therefore, the purpose of this study was to develop an in vitro co-culture model to investigate the capabilities of ASCs to modulate fibroblasts and ECM. Methods An ECM in vitro model with ASCs and normal human dermal fibroblasts (NHDFs) was established utilizing macromolecular crowding, ascorbic acid, and TGF-β stimulation. Paracrine and juxtacrine co-cultures were created using transwell inserts and cell cultures with direct cell–cell contacts. The cultures were screened using RT2 PCR Profiler Arrays; the protein levels of myofibroblast differentiation marker alpha smooth muscle actin (αSMA) and ECM remodeling enzymes were analyzed using western blot on cell lysates; the formation of collagen type I, III, VI, and fibronectin was investigated using ELISA on culture supernatants; and the deposition of collagens was analyzed using immunocytochemistry. Results TGF-β stimulation of NHDF monocultures increased the expression of 18 transcripts relevant for ECM formation and remodeling, the protein levels of αSMA and matrix metalloproteinase-2 (MMP-2), the formation of collagen type I, III, VI, and fibronectin, and the deposition of collagen type I and VI and decreased the protein levels of MMP-14. Inclusion of ASCs in the ECM co-culture model increased the formation of collagen type I and III through paracrine mechanisms and the formation of collagen type VI through juxtacrine mechanisms. Conclusions The co-culture model provides effective stimulation of NHDF monocultures by TGF-β for enhanced formation and deposition of ECM. In the model, ASCs induce changes in ECM by increasing formation of collagen type I, III and VI. The obtained results could guide further investigations of ASCs’ capabilities and underlying mechanisms related to ECM formation and remodeling. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02923-y.
Collapse
Affiliation(s)
- Rebekka Harary Søndergaard
- Cardiology Stem Cell Centre, The Heart Centre, Copenhagen University Hospital Rigshospitalet, Henrik Harpestrengs vej 4C, Dept. 9302, 2100, Copenhagen, Denmark.
| | - Lisbeth Drozd Højgaard
- Cardiology Stem Cell Centre, The Heart Centre, Copenhagen University Hospital Rigshospitalet, Henrik Harpestrengs vej 4C, Dept. 9302, 2100, Copenhagen, Denmark
| | | | - Cecilie Hoeeg
- Cardiology Stem Cell Centre, The Heart Centre, Copenhagen University Hospital Rigshospitalet, Henrik Harpestrengs vej 4C, Dept. 9302, 2100, Copenhagen, Denmark
| | - Anders Bruun Mathiasen
- Department of Cardiology, The Heart Centre, Copenhagen University Hospital Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark
| | - Mandana Haack-Sørensen
- Cardiology Stem Cell Centre, The Heart Centre, Copenhagen University Hospital Rigshospitalet, Henrik Harpestrengs vej 4C, Dept. 9302, 2100, Copenhagen, Denmark
| | - Bjarke Follin
- Cardiology Stem Cell Centre, The Heart Centre, Copenhagen University Hospital Rigshospitalet, Henrik Harpestrengs vej 4C, Dept. 9302, 2100, Copenhagen, Denmark
| | - Federica Genovese
- Nordic Bioscience A/S, Herlev Hovedgade 205-207, 2730, Herlev, Denmark
| | - Jens Kastrup
- Cardiology Stem Cell Centre, The Heart Centre, Copenhagen University Hospital Rigshospitalet, Henrik Harpestrengs vej 4C, Dept. 9302, 2100, Copenhagen, Denmark
| | - Morten Juhl
- Cardiology Stem Cell Centre, The Heart Centre, Copenhagen University Hospital Rigshospitalet, Henrik Harpestrengs vej 4C, Dept. 9302, 2100, Copenhagen, Denmark
| | - Annette Ekblond
- Cardiology Stem Cell Centre, The Heart Centre, Copenhagen University Hospital Rigshospitalet, Henrik Harpestrengs vej 4C, Dept. 9302, 2100, Copenhagen, Denmark
| |
Collapse
|
7
|
Robinson S, Parigoris E, Chang J, Hecker L, Takayama S. Contracting scars from fibrin drops. Integr Biol (Camb) 2022; 14:1-12. [PMID: 35184163 PMCID: PMC8934703 DOI: 10.1093/intbio/zyac001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Indexed: 11/13/2022]
Abstract
This paper describes a microscale fibroplasia and contraction model that is based on fibrin-embedded lung fibroblasts and provides a convenient visual readout of fibrosis. Cell-laden fibrin microgel drops are formed by aqueous two-phase microprinting. The cells deposit extracellular matrix (ECM) molecules such as collagen while fibrin is gradually degraded. Ultimately, the cells contract the collagen-rich matrix to form a compact cell-ECM spheroid. The size of the spheroid provides the visual readout of the extent of fibroplasia. Stimulation of this wound-healing model with the profibrotic cytokine TGF-β1 leads to an excessive scar formation response that manifests as increased collagen production and larger cell-ECM spheroids. Addition of drugs also shifted the scarring profile: the FDA-approved fibrosis drugs (nintedanib and pirfenidone) and a PAI-1 inhibitor (TM5275) significantly reduced cell-ECM spheroid size. Not only is the assay useful for evaluation of antifibrotic drug effects, it is relatively sensitive; one of the few in vitro fibroplasia assays that can detect pirfenidone effects at submillimolar concentrations. Although this paper focuses on lung fibrosis, the approach opens opportunities for studying a broad range of fibrotic diseases and for evaluating antifibrotic therapeutics.
Collapse
Affiliation(s)
| | - Eric Parigoris
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory School of Medicine, Atlanta, GA, USA,The Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Jonathan Chang
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory School of Medicine, Atlanta, GA, USA,The Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Louise Hecker
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Shuichi Takayama
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory School of Medicine, Atlanta, GA, USA,The Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
8
|
Li W, Chen JY, Sun C, Sparks RP, Pantano L, Rahman RU, Moran SP, Pondick JV, Kirchner R, Wrobel D, Bieler M, Sauer A, Ho Sui SJ, Doerner JF, Rippmann JF, Mullen AC. Nanchangmycin regulates FYN, PTK2, and MAPK1/3 to control the fibrotic activity of human hepatic stellate cells. eLife 2022; 11:74513. [PMID: 35617485 PMCID: PMC9135407 DOI: 10.7554/elife.74513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 05/06/2022] [Indexed: 01/19/2023] Open
Abstract
Chronic liver injury causes fibrosis, characterized by the formation of scar tissue resulting from excessive accumulation of extracellular matrix (ECM) proteins. Hepatic stellate cell (HSC) myofibroblasts are the primary cell type responsible for liver fibrosis, yet there are currently no therapies directed at inhibiting the activity of HSC myofibroblasts. To search for potential anti-fibrotic compounds, we performed a high-throughput compound screen in primary human HSC myofibroblasts and identified 19 small molecules that induce HSC inactivation, including the polyether ionophore nanchangmycin (NCMC). NCMC induces lipid re-accumulation while reducing collagen expression, deposition of collagen in the extracellular matrix, cell proliferation, and migration. We find that NCMC increases cytosolic Ca2+ and reduces the phosphorylated protein levels of FYN, PTK2 (FAK), MAPK1/3 (ERK2/1), HSPB1 (HSP27), and STAT5B. Further, depletion of each of these kinases suppress COL1A1 expression. These studies reveal a signaling network triggered by NCMC to inactivate HSC myofibroblasts and reduce expression of proteins that compose the fibrotic scar. Identification of the antifibrotic effects of NCMC and the elucidation of pathways by which NCMC inhibits fibrosis provide new tools and therapeutic targets that could potentially be utilized to combat the development and progression of liver fibrosis.
Collapse
Affiliation(s)
- Wenyang Li
- Division of Gastroenterology, Massachusetts General HospitalBostonUnited States,Harvard Medical SchoolBostonUnited States
| | - Jennifer Y Chen
- Division of Gastroenterology, Massachusetts General HospitalBostonUnited States,Harvard Medical SchoolBostonUnited States
| | - Cheng Sun
- Division of Gastroenterology, Massachusetts General HospitalBostonUnited States,Harvard Medical SchoolBostonUnited States
| | - Robert P Sparks
- Division of Gastroenterology, Massachusetts General HospitalBostonUnited States,Harvard Medical SchoolBostonUnited States
| | - Lorena Pantano
- Harvard T.H. Chan School of Public HealthBostonUnited States
| | - Raza-Ur Rahman
- Division of Gastroenterology, Massachusetts General HospitalBostonUnited States,Harvard Medical SchoolBostonUnited States
| | - Sean P Moran
- Division of Gastroenterology, Massachusetts General HospitalBostonUnited States,Harvard Medical SchoolBostonUnited States
| | - Joshua V Pondick
- Division of Gastroenterology, Massachusetts General HospitalBostonUnited States,Harvard Medical SchoolBostonUnited States
| | - Rory Kirchner
- Harvard T.H. Chan School of Public HealthBostonUnited States
| | | | | | - Achim Sauer
- Boehringer Ingelheim Pharma GmbH & CoBiberachGermany
| | | | | | | | - Alan C Mullen
- Division of Gastroenterology, Massachusetts General HospitalBostonUnited States,Harvard Medical SchoolBostonUnited States,Harvard Stem Cell InstituteCambridgeUnited States
| |
Collapse
|
9
|
Coentro JQ, May U, Prince S, Zwaagstra J, Ritvos O, Järvinen TAH, Zeugolis DI. Adapting the Scar-in-a-Jar to Skin Fibrosis and Screening Traditional and Contemporary Anti-Fibrotic Therapies. Front Bioeng Biotechnol 2021; 9:756399. [PMID: 34765594 PMCID: PMC8576412 DOI: 10.3389/fbioe.2021.756399] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/11/2021] [Indexed: 12/14/2022] Open
Abstract
Skin fibrosis still constitutes an unmet clinical need. Although pharmacological strategies are at the forefront of scientific and technological research and innovation, their clinical translation is hindered by the poor predictive capacity of the currently available in vitro fibrosis models. Indeed, customarily utilised in vitro scarring models are conducted in a low extracellular matrix milieu, which constitutes an oxymoron for the in-hand pathophysiology. Herein, we coupled macromolecular crowding (enhances and accelerates extracellular matrix deposition) with transforming growth factor β1 (TGFβ1; induces trans-differentiation of fibroblasts to myofibroblasts) in human dermal fibroblast cultures to develop a skin fibrosis in vitro model and to screen a range of anti-fibrotic families (corticosteroids, inhibitors of histone deacetylases, inhibitors of collagen crosslinking, inhibitors of TGFβ1 and pleiotropic inhibitors of fibrotic activation). Data obtained demonstrated that macromolecular crowding combined with TGFβ1 significantly enhanced collagen deposition and myofibroblast transformation. Among the anti-fibrotic compounds assessed, trichostatin A (inhibitors of histone deacetylases); serelaxin and pirfenidone (pleiotropic inhibitors of fibrotic activation); and soluble TGFβ receptor trap (inhibitor of TGFβ signalling) resulted in the highest decrease of collagen type I deposition (even higher than triamcinolone acetonide, the gold standard in clinical practice). This study further advocates the potential of macromolecular crowding in the development of in vitro pathophysiology models.
Collapse
Affiliation(s)
- João Q Coentro
- Regenerative, Modular and Developmental Engineering Laboratory (REMODEL) and Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Ulrike May
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Stuart Prince
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - John Zwaagstra
- Human Health Therapeutics Research Centre, National Research Council Canada, Montreal, QC, Canada
| | | | - Tero A H Järvinen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,Tampere University Hospital, Tampere, Finland
| | - Dimitrios I Zeugolis
- Regenerative, Modular and Developmental Engineering Laboratory (REMODEL) and Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway (NUI Galway), Galway, Ireland.,Regenerative, Modular and Developmental Engineering Laboratory (REMODEL), Charles Institute of Dermatology, Conway Institute of Biomolecular and Biomedical Research and School of Mechanical and Materials Engineering, University College Dublin (UCD), Dublin, Ireland
| |
Collapse
|
10
|
It is time to crowd your cell culture media - Physicochemical considerations with biological consequences. Biomaterials 2021; 275:120943. [PMID: 34139505 DOI: 10.1016/j.biomaterials.2021.120943] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 05/24/2021] [Accepted: 05/29/2021] [Indexed: 12/12/2022]
Abstract
In vivo, the interior and exterior of cells is populated by various macromolecules that create an extremely crowded milieu. Yet again, in vitro eukaryotic cell culture is conducted in dilute culture media that hardly imitate the native tissue density. Herein, the concept of macromolecular crowding is discussed in both intracellular and extracellular context. Particular emphasis is given on how the physicochemical properties of the crowding molecules govern and determine kinetics, equilibria and mechanism of action of biochemical and biological reactions, processes and functions. It is evidenced that we are still at the beginning of appreciating, let alone effectively implementing, the potential of macromolecular crowding in permanently differentiated and stem cell culture systems.
Collapse
|
11
|
Raghunath M, Zeugolis DI. Transforming eukaryotic cell culture with macromolecular crowding. Trends Biochem Sci 2021; 46:805-811. [PMID: 33994289 DOI: 10.1016/j.tibs.2021.04.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/07/2021] [Accepted: 04/16/2021] [Indexed: 01/10/2023]
Abstract
In multicellular organisms, the intracellular and extracellular spaces are considerably packed with a diverse range of macromolecular species. Yet, standard eukaryotic cell culture is performed in dilute, and deprived of macromolecules culture media, that barely imitate the density and complex macromolecular composition of tissues. Essentially, we drown cells in a sea of media and then expect them to perform physiologically. Herein, we argue the use of macromolecular crowding (MMC) in eukaryotic cell culture for regenerative medicine and drug discovery purposes.
Collapse
Affiliation(s)
- Michael Raghunath
- Center for Cell Biology and Tissue Engineering, Institute for Chemistry and Biotechnology, Zurich University of Applied Sciences, Wädenswil, Switzerland
| | - Dimitrios I Zeugolis
- Regenerative, Modular, and Developmental Engineering Laboratory (REMODEL), National University of Ireland Galway (NUI Galway), Galway, Ireland; Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway (NUI Galway), Galway, Ireland; Regenerative, Modular, and Developmental Engineering Laboratory (REMODEL), Faculty of Biomedical Sciences, Università della Svizzera Italiana (USI), Lugano, Switzerland; Regenerative, Modular, and Developmental Engineering Laboratory (REMODEL), School of Mechanical and Materials Engineering, University College Dublin (UCD), Dublin, Ireland.
| |
Collapse
|
12
|
De Pieri A, Korman BD, Jüngel A, Wuertz-Kozak K. Engineering Advanced In Vitro Models of Systemic Sclerosis for Drug Discovery and Development. Adv Biol (Weinh) 2021; 5:e2000168. [PMID: 33852183 PMCID: PMC8717409 DOI: 10.1002/adbi.202000168] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 01/13/2021] [Accepted: 01/19/2021] [Indexed: 12/19/2022]
Abstract
Systemic sclerosis (SSc) is a complex multisystem disease with the highest case-specific mortality among all autoimmune rheumatic diseases, yet without any available curative therapy. Therefore, the development of novel therapeutic antifibrotic strategies that effectively decrease skin and organ fibrosis is needed. Existing animal models are cost-intensive, laborious and do not recapitulate the full spectrum of the disease and thus commonly fail to predict human efficacy. Advanced in vitro models, which closely mimic critical aspects of the pathology, have emerged as valuable platforms to investigate novel pharmaceutical therapies for the treatment of SSc. This review focuses on recent advancements in the development of SSc in vitro models, sheds light onto biological (e.g., growth factors, cytokines, coculture systems), biochemical (e.g., hypoxia, reactive oxygen species) and biophysical (e.g., stiffness, topography, dimensionality) cues that have been utilized for the in vitro recapitulation of the SSc microenvironment, and highlights future perspectives for effective drug discovery and validation.
Collapse
Affiliation(s)
- Andrea De Pieri
- Dr. A. De Pieri, Prof. K. Wuertz-Kozak, Department of Biomedical Engineering, Rochester Institute of Technology (RIT), 106 Lomb Memorial Rd., Rochester, NY, 14623, USA
| | - Benjamin D Korman
- Prof. B. D. Korman, Department of Medicine, Division of Allergy, Immunology and Rheumatology, University of Rochester Medical Center, Rochester, NY, 14623, USA
| | - Astrid Jüngel
- Prof. A. Jüngel, Center of Experimental Rheumatology, University Clinic of Rheumatology, Balgrist University Hospital, University Hospital Zurich, Zurich, 8008, Switzerland
- Prof. A. Jüngel, Department of Physical Medicine and Rheumatology, Balgrist University Hospital, University of Zurich, Zurich, 8008, Switzerland
| | - Karin Wuertz-Kozak
- Dr. A. De Pieri, Prof. K. Wuertz-Kozak, Department of Biomedical Engineering, Rochester Institute of Technology (RIT), 106 Lomb Memorial Rd., Rochester, NY, 14623, USA
- Prof. K. Wuertz-Kozak, Schön Clinic Munich Harlaching, Spine Center, Academic Teaching Hospital and Spine Research Institute of the Paracelsus Medical University Salzburg (Austria), Munich, 81547, Germany
| |
Collapse
|
13
|
Rønnow SR, Dabbagh RQ, Genovese F, Nanthakumar CB, Barrett VJ, Good RB, Brockbank S, Cruwys S, Jessen H, Sorensen GL, Karsdal MA, Leeming DJ, Sand JMB. Prolonged Scar-in-a-Jar: an in vitro screening tool for anti-fibrotic therapies using biomarkers of extracellular matrix synthesis. Respir Res 2020; 21:108. [PMID: 32381012 PMCID: PMC7203825 DOI: 10.1186/s12931-020-01369-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Accepted: 04/22/2020] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) is a rapidly progressing disease with challenging management. To find novel effective therapies, better preclinical models are needed for the screening of anti-fibrotic compounds. Activated fibroblasts drive fibrogenesis and are the main cells responsible for the accumulation of extracellular matrix (ECM). Here, a prolonged Scar-in-a-Jar assay was combined with clinically validated biochemical markers of ECM synthesis to evaluate ECM synthesis over time. To validate the model as a drug screening tool for novel anti-fibrotic compounds, two approved compounds for IPF, nintedanib and pirfenidone, and a compound in development, omipalisib, were tested. METHODS Primary human lung fibroblasts from healthy donors were cultured for 12 days in the presence of ficoll and were stimulated with TGF-β1 with or without treatment with an ALK5/TGF-β1 receptor kinase inhibitor (ALK5i), nintedanib, pirfenidone or the mTOR/PI3K inhibitor omipalisib (GSK2126458). Biomarkers of ECM synthesis were evaluated over time in cell supernatants using ELISAs to assess type I, III, IV, V and VI collagen formation (PRO-C1, PRO-C3, PRO-C4, PRO-C5, PRO-C6), fibronectin (FBN-C) deposition and α-smooth muscle actin (α-SMA) expression. RESULTS TGF-β1 induced synthesis of PRO-C1, PRO-C6 and FBN-C as compared with unstimulated fibroblasts at all timepoints, while PRO-C3 and α-SMA levels were not elevated until day 8. Elevated biomarkers were reduced by suppressing TGF-β1 signalling with ALK5i. Nintedanib and omipalisib were able to reduce all biomarkers induced by TGF-β1 in a concentration dependent manner, while pirfenidone had no effect on α-SMA. CONCLUSIONS TGF-β1 stimulated synthesis of type I, III and VI collagen, fibronectin and α-SMA but not type IV or V collagen. Synthesis was increased over time, although temporal profiles differed, and was modulated pharmacologically by ALK5i, nintedanib, pirfenidone and omipalisib. This prolonged 12-day Scar-in-a-Jar assay utilising biochemical markers of ECM synthesis provides a useful screening tool for novel anti-fibrotic compounds.
Collapse
Affiliation(s)
- Sarah Rank Rønnow
- Nordic Bioscience A/S, Herlev, Herlev Hovedgade 205-207, DK-2730, Herlev, Denmark
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Rand Qais Dabbagh
- Nordic Bioscience A/S, Herlev, Herlev Hovedgade 205-207, DK-2730, Herlev, Denmark
| | - Federica Genovese
- Nordic Bioscience A/S, Herlev, Herlev Hovedgade 205-207, DK-2730, Herlev, Denmark
| | | | - Vikki J Barrett
- Department of Fibrosis DPU, Respiratory TA, GlaxoSmithKline, Stevenage, UK
| | - Robert B Good
- Department of Fibrosis DPU, Respiratory TA, GlaxoSmithKline, Stevenage, UK
| | - Sarah Brockbank
- Innovative Medicines Unit, Grünenthal Innovation, Aachen, Germany
- Present Address: Medicines Discovery Catapult, Alderley Edge, Cheshire, UK
| | - Simon Cruwys
- Innovative Medicines Unit, Grünenthal Innovation, Aachen, Germany
- Present Address: TherapeutAix AG, Aachen, Germany
| | - Henrik Jessen
- Nordic Bioscience A/S, Herlev, Herlev Hovedgade 205-207, DK-2730, Herlev, Denmark
| | - Grith Lykke Sorensen
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Morten Asser Karsdal
- Nordic Bioscience A/S, Herlev, Herlev Hovedgade 205-207, DK-2730, Herlev, Denmark
| | - Diana Julie Leeming
- Nordic Bioscience A/S, Herlev, Herlev Hovedgade 205-207, DK-2730, Herlev, Denmark
| | | |
Collapse
|
14
|
Bouet G, Cabanettes F, Bidron G, Guignandon A, Peyroche S, Bertrand P, Vico L, Dumas V. Laser-Based Hybrid Manufacturing of Endosseous Implants: Optimized Titanium Surfaces for Enhancing Osteogenic Differentiation of Human Mesenchymal Stem Cells. ACS Biomater Sci Eng 2019; 5:4376-4385. [PMID: 33438403 DOI: 10.1021/acsbiomaterials.9b00769] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Additive manufacturing (AM) is becoming increasingly important in the orthopedic and dental sectors thanks to two major advantages: the possibility of custom manufacturing and the integration of complex structures. However, at smaller scales, surface conditions of AM products are not mastered. Numerous non-fused powder particles give rise to roughness values (Sa) greater than 10 μm, thus limiting biomedical applications since the surface roughness of, e.g., metal implants plays a major role in the quality and rate of osseointegration. In this study, an innovative hybrid machine combining AM and a femtosecond laser (FS) was used to obtain Ti6Al4V parts with biofunctional surfaces. During the manufacturing process, the FS laser beam "neatly" ablates the surface, leaving in its path nanostructures created by the laser/matter interaction. This step decreases the Sa from 11 to 4 μm and increases the surface wettability. The behavior of human mesenchymal stem cells was evaluated on these new AM+FS surfaces and compared with that on AM surfaces and also on polished surfaces. The number of cells attached 24 h after plating is equivalent on all surfaces, but cell spreading is higher on AM+FS surfaces compared with their AM counterparts. In the longer term (days 7 and 14), fibronectin and collagen synthesis increase on AM+FS surfaces as opposed to AM alone. Alkaline phosphatase activity, osteocalcin production, and mineralization, markers of osteogenic differentiation, are significantly lower on raw AM surfaces, whereas on the AM+FS specimens they display a level equivalent to that on the polished surface. Overall, these results indicate that using an FS laser beam during the fabrication of AM parts optimizes surface morphology to favor osteoblastic differentiation. This new hybrid machine could make it possible to produce AM implants with functional surfaces directly at the end of AM, thereby limiting their post-treatments.
Collapse
Affiliation(s)
- Guenaelle Bouet
- Ecole Nationale d'Ingénieurs de Saint-Etienne, Laboratoire de Tribologie et Dynamique des Systèmes, UMR 5513 CNRS, University of Lyon, 58, rue Jean Parot, 42023 Saint-Etienne, France
| | - Frédéric Cabanettes
- Ecole Nationale d'Ingénieurs de Saint-Etienne, Laboratoire de Tribologie et Dynamique des Systèmes, UMR 5513 CNRS, University of Lyon, 58, rue Jean Parot, 42023 Saint-Etienne, France
| | - Guillaume Bidron
- GIE Manutech-USD (Ultrafast Surface Design), 20 Rue Professeur Benoît Lauras, 42000 Saint-Etienne, France
| | - Alain Guignandon
- INSERM U1059-SAINBIOSE, University of Lyon, 42270 Saint-Priest-en-Jarez, France
| | - Sylvie Peyroche
- INSERM U1059-SAINBIOSE, University of Lyon, 42270 Saint-Priest-en-Jarez, France
| | - Philippe Bertrand
- Ecole Nationale d'Ingénieurs de Saint-Etienne, Laboratoire de Tribologie et Dynamique des Systèmes, UMR 5513 CNRS, University of Lyon, 58, rue Jean Parot, 42023 Saint-Etienne, France
| | - Laurence Vico
- INSERM U1059-SAINBIOSE, University of Lyon, 42270 Saint-Priest-en-Jarez, France
| | - Virginie Dumas
- Ecole Nationale d'Ingénieurs de Saint-Etienne, Laboratoire de Tribologie et Dynamique des Systèmes, UMR 5513 CNRS, University of Lyon, 58, rue Jean Parot, 42023 Saint-Etienne, France
| |
Collapse
|