1
|
Zhou Z, Mei H, Li R, Wang C, Fang K, Wang W, Tang Y, Dai Z. Progresses of animal robots: A historical review and perspectiveness. Heliyon 2022; 8:e11499. [PMID: 36411898 PMCID: PMC9674511 DOI: 10.1016/j.heliyon.2022.e11499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 08/12/2022] [Accepted: 11/01/2022] [Indexed: 11/13/2022] Open
Abstract
Animal robots have remarkable advantages over traditional mechatronic ones in terms of energy supply, self-orientation, and natural concealment and can provide remarkable theoretical and practical values for scientific investigation, community service, military detection and other fields. Given these features, animal robots have become high-profile research objects and have recently attracted extensive attention. Herein, we have defined animal robots, reviewed the main types of animal robots, and discussed the potential developing directions. We have also detailed the mechanisms underlying the regulation of animal robots and introduced key methods for manipulating them. We have further proposed several application prospects for different types of animal robots. Finally, we have presented research directions for their further improvement.
Collapse
Affiliation(s)
- Zhengyue Zhou
- Institute of Bio-inspired Structure and Surface Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu, China
| | - Hao Mei
- Institute of Bio-inspired Structure and Surface Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu, China
| | - Rongxun Li
- Institute of Bio-inspired Structure and Surface Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu, China
| | - Chenyuan Wang
- Institute of Bio-inspired Structure and Surface Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu, China
| | - Ke Fang
- Institute of Bio-inspired Structure and Surface Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu, China
| | - Wenbo Wang
- Institute of Bio-inspired Structure and Surface Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu, China
| | - Yezhong Tang
- Institute of Bio-inspired Structure and Surface Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu, China
- Chengdu Institute of Biology, Chinese Academy of Sciences. No.9 Section 4, Renmin Nan Road, 610041, Chengdu, Sichuan, China
| | - Zhendong Dai
- Institute of Bio-inspired Structure and Surface Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu, China
| |
Collapse
|
2
|
Fang K, Mei H, Song Y, Wang Z, Dai Z. 动物机器人:研究基础、关键技术及发展预测. CHINESE SCIENCE BULLETIN-CHINESE 2022. [DOI: 10.1360/tb-2021-1314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
3
|
DeCosta-Fortune TM, Ramshur JT, Li CX, de Jongh Curry A, Pellicer-Morata V, Wang L, Waters RS. Repetitive microstimulation in rat primary somatosensory cortex (SI) strengthens the connection between homotopic sites in the opposite SI and leads to expression of previously ineffective input from the ipsilateral forelimb. Brain Res 2020; 1732:146694. [PMID: 32017899 PMCID: PMC7237062 DOI: 10.1016/j.brainres.2020.146694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 01/06/2020] [Accepted: 01/29/2020] [Indexed: 10/25/2022]
Abstract
The primary somatosensory cortex (SI) receives input from the contralateral forelimb and projects to homotopic sites in the opposite SI. Since homotopic sites in SI are linked by a callosal pathway, we proposed that repetitive intracortical microstimulation (ICMSr) of neurons in layer V of SI forelimb cortex would increase spike firing in the opposite SI cortex thereby strengthening the callosal pathway sufficiently to allow normally ineffective stimuli from the ipsilateral forelimb to excite cells in the ipsilateral SI. The forelimb representation in SI in one hemisphere was mapped using mechanical and electrical stimulation of the contralateral forelimb, a homotopic site was similarly identified in the opposite SI, the presence of ipsilateral peripheral input was tested in both homotopic sites, and ICMS was used to establish an interhemispheric connection between the two homotopic recording sites. The major findings are: (1) each homotopic forelimb site in SI initially received short latency input only from the contralateral forelimb; (2) homotopic sites in layer V in each SI were interconnected by a callosal pathway; (3) ICMSr delivered to layer V of the homotopic SI in one hemisphere generally increased evoked response spike firing in layer V in the opposite homotopic site; (4) increased spike firing was often followed by the expression of a longer latency normally ineffective input from the ipsilateral forelimb; (5) these longer latency ipsilateral responses are consistent with a delay time sufficient to account for travel across the callosal pathway; (6) increased spike firing and the resulting ipsilateral peripheral input were also corroborated using in-vivo intracellular recording; and (7) inactivation of the stimulating site in SI by lidocaine injection or local surface cooling abolished the ipsilateral response, suggesting that the ipsilateral response was very likely relayed across the callosal pathway. These results suggest that repetitive microstimulation can do more than expand receptive fields in the territory adjacent to the stimulating electrode but in addition can also alter receptive fields in homotopic sites in the opposite SI to bring about the expression of previously ineffective input from the ipsilateral forelimb.
Collapse
Affiliation(s)
- Tina M DeCosta-Fortune
- Department of Biomedical Engineering, University of Memphis, Herff College of Engineering, 3815 Central Avenue, Memphis, TN 38152, USA
| | - John T Ramshur
- Department of Biomedical Engineering, University of Memphis, Herff College of Engineering, 3815 Central Avenue, Memphis, TN 38152, USA
| | - Cheng X Li
- Department of Biomedical Engineering, University of Memphis, Herff College of Engineering, 3815 Central Avenue, Memphis, TN 38152, USA; Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, College of Medicine, 855 Monroe Avenue, Memphis, TN 38163, USA
| | - Amy de Jongh Curry
- Department of Biomedical Engineering, University of Memphis, Herff College of Engineering, 3815 Central Avenue, Memphis, TN 38152, USA
| | - Violeta Pellicer-Morata
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, College of Medicine, 855 Monroe Avenue, Memphis, TN 38163, USA
| | - Lie Wang
- Department of Neurology, University of Tennessee Health Science Center, College of Medicine, 855 Monroe Avenue, Memphis, TN 38163, USA
| | - Robert S Waters
- Department of Biomedical Engineering, University of Memphis, Herff College of Engineering, 3815 Central Avenue, Memphis, TN 38152, USA; Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, College of Medicine, 855 Monroe Avenue, Memphis, TN 38163, USA.
| |
Collapse
|