1
|
Karanfil AS, Louis F, Sowa Y, Matsusaki M. Cationic polymer effect on brown adipogenic induction of dedifferentiated fat cells. Mater Today Bio 2024; 27:101157. [PMID: 39113911 PMCID: PMC11304885 DOI: 10.1016/j.mtbio.2024.101157] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/12/2024] [Accepted: 07/12/2024] [Indexed: 08/10/2024] Open
Abstract
Obesity and its associated comorbidities place a substantial burden on public health. Given the considerable potential of brown adipose tissue in addressing metabolic disorders that contribute to dysregulation of the body's energy balance, this area is an intriguing avenue for research. This study aimed to assess the impact of various polymers, including collagen type I, fibronectin, laminin, gelatin, gellan gum, and poly-l-lysine (PLL), on the in vitro brown adipogenic differentiation of dedifferentiated fat cells within a fibrin gel matrix. The findings, obtained through RT-qPCR, immunofluorescent imaging, ELISA assay, and mitochondria assessment, revealed that PLL exhibited a significant browning-inducing effect. Compared to fibrin-only brown-like drops after two weeks of incubation in brown adipogenic medium, PLL showed 6 (±3) times higher UCP1 gene expression, 5 (±2) times higher UCP1 concentration by ELISA assay, and 2 (±1) times higher mitochondrial content. This effect can be attributed to PLL's electrostatic properties, which potentially facilitate the cellular uptake of crucial brown adipogenic inducers such as the thyroid hormone, triiodothyronine (T3), and insulin from the induction medium.
Collapse
Affiliation(s)
- Aslı Sena Karanfil
- Department of Applied Chemistry, Graduate School of Osaka University, Japan
| | - Fiona Louis
- Joint Research Laboratory (TOPPAN) for Advanced Cell Regulatory Chemistry, Graduate School of Osaka University, Japan
| | - Yoshihiro Sowa
- Department of Plastic Surgery, Jichi Medical University, Shimotsuke, Tochigi, Japan
- Department of Plastic and Reconstructive Surgery, Graduate School of Medical Sciences, Kyoto Prefectural University of Medicine, Japan
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, Kyoto University, Japan
| | - Michiya Matsusaki
- Department of Applied Chemistry, Graduate School of Osaka University, Japan
- Joint Research Laboratory (TOPPAN) for Advanced Cell Regulatory Chemistry, Graduate School of Osaka University, Japan
| |
Collapse
|
2
|
Mora I, Puiggròs F, Serras F, Gil-Cardoso K, Escoté X. Emerging models for studying adipose tissue metabolism. Biochem Pharmacol 2024; 223:116123. [PMID: 38484851 DOI: 10.1016/j.bcp.2024.116123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/11/2024] [Accepted: 03/11/2024] [Indexed: 03/17/2024]
Abstract
Understanding adipose metabolism is essential for addressing obesity and related health concerns. However, the ethical and scientific pressure to animal testing, aligning with the 3Rs, has triggered the implementation of diverse alternative models for analysing anomalies in adipose metabolism. In this review, we will address this issue from various perspectives. Traditional adipocyte cell cultures, whether animal or human-derived, offer a fundamental starting point. These systems have their merits but may not fully replicate in vivo complexity. Established cell lines are valuable for high-throughput screening but may lack the authenticity of primary-derived adipocytes, which closely mimic native tissue. To enhance model sophistication, spheroids have been introduced. These three-dimensional cultures better mimicking the in vivo microenvironment, enabling the study of intricate cell-cell interactions, gene expression, and metabolic pathways. Organ-on-a-chip (OoC) platforms take this further by integrating multiple cell types into microfluidic devices, simulating tissue-level functions. Adipose-OoC (AOoC) provides dynamic environments with applications spanning drug testing to personalized medicine and nutrition. Beyond in vitro models, genetically amenable organisms (Caenorhabditis elegans, Drosophila melanogaster, and zebrafish larvae) have become powerful tools for investigating fundamental molecular mechanisms that govern adipose tissue functions. Their genetic tractability allows for efficient manipulation and high-throughput studies. In conclusion, a diverse array of research models is crucial for deciphering adipose metabolism. By leveraging traditional adipocyte cell cultures, primary-derived cells, spheroids, AOoCs, and lower organism models, we bridge the gap between animal testing and a more ethical, scientifically robust, and human-relevant approach, advancing our understanding of adipose tissue metabolism and its impact on health.
Collapse
Affiliation(s)
- Ignasi Mora
- Brudy Technology S.L., 08006 Barcelona, Spain
| | - Francesc Puiggròs
- Eurecat, Centre Tecnològic de Catalunya, Biotechnology Area, 43204 Reus, Spain
| | - Florenci Serras
- Department of Genetics, Microbiology and Statistics, School of Biology, University of Barcelona and Institute of Biomedicine of the University of Barcelona, Diagonal 643, 08028 Barcelona, Spain
| | - Katherine Gil-Cardoso
- Eurecat, Centre Tecnològic de Catalunya, Nutrition and Health Unit, 43204 Reus, Spain
| | - Xavier Escoté
- Eurecat, Centre Tecnològic de Catalunya, Nutrition and Health Unit, 43204 Reus, Spain.
| |
Collapse
|
3
|
Cianciosi A, Stecher S, Löffler M, Bauer‐Kreisel P, Lim KS, Woodfield TBF, Groll J, Blunk T, Jungst T. Flexible Allyl-Modified Gelatin Photoclick Resin Tailored for Volumetric Bioprinting of Matrices for Soft Tissue Engineering. Adv Healthc Mater 2023; 12:e2300977. [PMID: 37699146 PMCID: PMC11468070 DOI: 10.1002/adhm.202300977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 08/11/2023] [Indexed: 09/14/2023]
Abstract
Volumetric bioprinting (VBP) is a light-based 3D printing platform, which recently prompted a paradigm shift for additive manufacturing (AM) techniques considering its capability to enable the fabrication of complex cell-laden geometries in tens of seconds with high spatiotemporal control and pattern accuracy. A flexible allyl-modified gelatin (gelAGE)-based photoclick resin is developed in this study to fabricate matrices with exceptionally soft polymer networks (0.2-1.0 kPa). The gelAGE-based resin formulations are designed to exploit the fast thiol-ene crosslinking in combination with a four-arm thiolated polyethylene glycol (PEG4SH) in the presence of a photoinitiator. The flexibility of the gelAGE biomaterial platform allows one to tailor its concentration spanning from 2.75% to 6% and to vary the allyl to thiol ratio without hampering the photocrosslinking efficiency. The thiol-ene crosslinking enables the production of viable cell-material constructs with a high throughput in tens of seconds. The suitability of the gelAGE-based resins is demonstrated by adipogenic differentiation of adipose-derived stromal cells (ASC) after VBP and by the printing of more fragile adipocytes as a proof-of-concept. Taken together, this study introduces a soft photoclick resin which paves the way for volumetric printing applications toward soft tissue engineering.
Collapse
Affiliation(s)
- Alessandro Cianciosi
- Department of Functional Materials in Medicine and DentistryInstitute of Biofabrication and Functional MaterialsUniversity of Würzburg and KeyLab Polymers for Medicine of the Bavarian Polymer Institute (BPI)Pleicherwall 297070WürzburgGermany
| | - Sabrina Stecher
- Department of TraumaHandPlastic and Reconstructive SurgeryUniversity Hospital Würzburg97080WürzburgGermany
| | - Maxi Löffler
- Department of Functional Materials in Medicine and DentistryInstitute of Biofabrication and Functional MaterialsUniversity of Würzburg and KeyLab Polymers for Medicine of the Bavarian Polymer Institute (BPI)Pleicherwall 297070WürzburgGermany
| | - Petra Bauer‐Kreisel
- Department of TraumaHandPlastic and Reconstructive SurgeryUniversity Hospital Würzburg97080WürzburgGermany
| | - Khoon S. Lim
- School of Medical SciencesUniversity of SydneySydney2006Australia
| | - Tim B. F. Woodfield
- Department of Orthopaedic Surgery and Musculoskeletal MedicineCentre for Bioengineering and NanomedicineUniversity of OtagoChristchurch8011New Zealand
| | - Jürgen Groll
- Department of Functional Materials in Medicine and DentistryInstitute of Biofabrication and Functional MaterialsUniversity of Würzburg and KeyLab Polymers for Medicine of the Bavarian Polymer Institute (BPI)Pleicherwall 297070WürzburgGermany
| | - Torsten Blunk
- Department of TraumaHandPlastic and Reconstructive SurgeryUniversity Hospital Würzburg97080WürzburgGermany
| | - Tomasz Jungst
- Department of Functional Materials in Medicine and DentistryInstitute of Biofabrication and Functional MaterialsUniversity of Würzburg and KeyLab Polymers for Medicine of the Bavarian Polymer Institute (BPI)Pleicherwall 297070WürzburgGermany
| |
Collapse
|
4
|
Avtanski D, Hadzi-Petrushev N, Josifovska S, Mladenov M, Reddy V. Emerging technologies in adipose tissue research. Adipocyte 2023; 12:2248673. [PMID: 37599422 PMCID: PMC10443968 DOI: 10.1080/21623945.2023.2248673] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 08/03/2023] [Accepted: 08/07/2023] [Indexed: 08/22/2023] Open
Abstract
Technologies are transforming the understanding of adipose tissue as a complex and dynamic tissue that plays a critical role in energy homoeostasis and metabolic health. This mini-review provides a brief overview of the potential impact of novel technologies in biomedical research and aims to identify areas where these technologies can make the most significant contribution to adipose tissue research. It discusses the impact of cutting-edge technologies such as single-cell sequencing, multi-omics analyses, spatial transcriptomics, live imaging, 3D tissue engineering, microbiome analysis, in vivo imaging, and artificial intelligence/machine learning. As these technologies continue to evolve, we can expect them to play an increasingly important role in advancing our understanding of adipose tissue and improving the treatment of related diseases.
Collapse
Affiliation(s)
- Dimiter Avtanski
- Friedman Diabetes Institute, Lenox Hill Hospital, New York, NY, USA
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Nikola Hadzi-Petrushev
- Faculty of Natural Sciences and Mathematics, Institute of Biology, “Ss. Cyril and Methodius” University, Skopje, North Macedonia
| | - Slavica Josifovska
- Faculty of Natural Sciences and Mathematics, Institute of Biology, “Ss. Cyril and Methodius” University, Skopje, North Macedonia
| | - Mitko Mladenov
- Faculty of Natural Sciences and Mathematics, Institute of Biology, “Ss. Cyril and Methodius” University, Skopje, North Macedonia
| | - Varun Reddy
- New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, USA
| |
Collapse
|
5
|
Karanfil AS, Louis F, Matsusaki M. Biofabrication of vascularized adipose tissues and their biomedical applications. MATERIALS HORIZONS 2023; 10:1539-1558. [PMID: 36789675 DOI: 10.1039/d2mh01391f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Recent advances in adipose tissue engineering and cell biology have led to the development of innovative therapeutic strategies in regenerative medicine for adipose tissue reconstruction. To date, the many in vitro and in vivo models developed for vascularized adipose tissue engineering cover a wide range of research areas, including studies with cells of various origins and types, polymeric scaffolds of natural and synthetic derivation, models presented using decellularized tissues, and scaffold-free approaches. In this review, studies on adipose tissue types with different functions, characteristics and body locations have been summarized with 3D in vitro fabrication approaches. The reason for the particular focus on vascularized adipose tissue models is that current liposuction and fat transplantation methods are unsuitable for adipose tissue reconstruction as the lack of blood vessels results in inadequate nutrient and oxygen delivery, leading to necrosis in situ. In the first part of this paper, current studies and applications of white and brown adipose tissues are presented according to the polymeric materials used, focusing on the studies which could show vasculature in vitro and after in vivo implantation, and then the research on adipose tissue fabrication and applications are explained.
Collapse
Affiliation(s)
- Aslı Sena Karanfil
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Japan.
| | - Fiona Louis
- Joint Research Laboratory (TOPPAN) for Advanced Cell Regulatory Chemistry, Graduate School of Engineering, Osaka University, Japan
| | - Michiya Matsusaki
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Japan.
- Joint Research Laboratory (TOPPAN) for Advanced Cell Regulatory Chemistry, Graduate School of Engineering, Osaka University, Japan
| |
Collapse
|
6
|
White U. Adipose tissue expansion in obesity, health, and disease. Front Cell Dev Biol 2023; 11:1188844. [PMID: 37181756 PMCID: PMC10169629 DOI: 10.3389/fcell.2023.1188844] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 04/14/2023] [Indexed: 05/16/2023] Open
Abstract
White adipose tissue (WAT) expands under physiological conditions via an increase in adipocyte size (hypertrophy) and/or number (hyperplasia; adipogenesis), and the ability of WAT to expand to accommodate energy demands is a significant determinant of metabolic health status. Obesity is associated with impaired WAT expansion and remodeling, which results in the deposition of lipids to other non-adipose organs, leading to metabolic derangements. Although increased hyperplasia has been implicated as a cornerstone in promoting healthy WAT expansion, recent developments suggest that the role of adipogenesis as a contributing factor in the transition from impaired subcutaneous WAT expansion to impaired metabolic health remains up for debate. This mini-review will summarize recent developments and highlight emerging concepts on the features of WAT expansion and turnover, and the significance in obesity, health, and disease.
Collapse
Affiliation(s)
- Ursula White
- Clinical Science Division, LSU Pennington Biomedical Research Center, Baton Rouge, LA, United States
| |
Collapse
|
7
|
Moreno-Castellanos N, Cuartas-Gómez E, Vargas-Ceballos O. Collagen microgel to simulate the adipocyte microenvironment for in vitro research on obesity. Integr Biol (Camb) 2023; 15:zyad011. [PMID: 37591513 DOI: 10.1093/intbio/zyad011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/27/2023] [Accepted: 07/19/2023] [Indexed: 08/19/2023]
Abstract
Obesity is linked to adipose tissue dysfunction, a dynamic endocrine organ. Two-dimensional cultures present technical hurdles hampering their ability to follow individual or cell groups for metabolic disease research. Three-dimensional type I collagen microgels with embedded adipocytes have not been thoroughly investigated to evaluate adipogenic maintenance as instrument for studying metabolic disorders. We aimed to develop a novel tunable Col-I microgel simulating the adipocyte microenvironment to maintain differentiated cells with only insulin as in vitro model for obesity research. Adipocytes were cultured and encapsulated in collagen microgels at different concentrations (2, 3 and 4 mg/mL). Collagen microgels at 3 and 4 mg/mL were more stable after 8 days of culture. However, cell viability and metabolic activity were maintained at 2 and 3 mg/mL, respectively. Cell morphology, lipid mobilization and adipogenic gene expression demonstrated the maintenance of adipocyte phenotype in an in vitro microenvironment. We demonstrated the adequate stability and biocompatibility of the collagen microgel at 3 mg/mL. Cell and molecular analysis confirmed that adipocyte phenotype is maintained over time in the absence of adipogenic factors. These findings will help better understand and open new avenues for research on adipocyte metabolism and obesity. Insight box In the context of adipose tissue dysfunction research, new struggles have arisen owing to the difficulty of cellular maintenance in 2D cultures. Herein, we sought a novel approach using a 3D type I collagen-based biomaterial to adipocyte culture with only insulin. This component was tailored as a microgel in different concentrations to support the growth and survival of adipocytes. We demonstrate that adipocyte phenotype is maintained and key adipogenesis regulators and markers are over time. The cumulative results unveil the practical advantage of this microgel platform as an in vitro model to study adipocyte dysfunction and obesity.
Collapse
Affiliation(s)
- Natalia Moreno-Castellanos
- Centro de Cromatografía y Espectrometría de Masas-CROM-MASS research group, Departamento de Ciencias básicas, Escuela de Medicina, Facultad de Salud, Universidad Industrial de Santander, Bucaramanga, Colombia
| | - Elías Cuartas-Gómez
- Centro de Cromatografía y Espectrometría de Masas-CROM-MASS research group, Departamento de Ciencias básicas, Escuela de Medicina, Facultad de Salud, Universidad Industrial de Santander, Bucaramanga, Colombia
| | - Oscar Vargas-Ceballos
- GIMAT research group, Escuela de Ingeniería Metalúrgica y Ciencia de Materiales, Universidad Industrial de Santander, Bucaramanga, Colombia
| |
Collapse
|
8
|
Robledo F, González-Hodar L, Tapia P, Figueroa AM, Ezquer F, Cortés V. Spheroids derived from the stromal vascular fraction of adipose tissue self-organize in complex adipose organoids and secrete leptin. Stem Cell Res Ther 2023; 14:70. [PMID: 37024989 PMCID: PMC10080976 DOI: 10.1186/s13287-023-03262-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 03/06/2023] [Indexed: 04/08/2023] Open
Abstract
BACKGROUND Adipose tissue-derived stromal vascular fraction (SVF) harbors multipotent cells with potential therapeutic relevance. We developed a method to form adipose spheroids (AS) from the SVF with complex organoid structure and enhanced leptin secretion upon insulin stimulation. METHODS SVF was generated from the interscapular brown adipose tissue of newborn mice. Immunophenotype and stemness of cultured SVF were determined by flow cytometry and in vitro differentiation, respectively. Spheroids were generated in hanging drops and non-adherent plates and compared by morphometric methods. The adipogenic potential was compared between preadipocyte monolayers and spheroids. Extracellular leptin was quantified by immunoassay. Lipolysis was stimulated with isoprenaline and quantified by colorimetric methods. AS viability and ultrastructure were determined by confocal and transmission electron microscopy analyses. RESULTS Cultured SVF contained Sca1 + CD29 + CD44 + CD11b- CD45- CD90- cells with adipogenic and chondrogenic but no osteogenic potential. Culture on non-adherent plates yielded the highest quantity and biggest size of spheroids. Differentiation of AS for 15 days in a culture medium supplemented with insulin and rosiglitazone resulted in greater Pparg, Plin1, and Lep expression compared to differentiated adipocytes monolayers. AS were viable and maintained leptin secretion even in the absence of adipogenic stimulation. Glycerol release after isoprenaline stimulation was higher in AS compared to adipocytes in monolayers. AS were composed of outer layers of unilocular mature adipocytes and an inner structure composed of preadipocytes, immature adipocytes and an abundant loose extracellular matrix. CONCLUSION Newborn mice adipose SVF can be efficiently differentiated into leptin-secreting AS. Prolonged stimulation with insulin and rosiglitazone allows the formation of structurally complex adipose organoids able to respond to adrenergic lipolytic stimulation.
Collapse
Affiliation(s)
- Fermín Robledo
- Department of Nutrition, Diabetes, and Metabolism, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Lila González-Hodar
- Department of Nutrition, Diabetes, and Metabolism, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pablo Tapia
- Department of Nutrition, Diabetes, and Metabolism, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Ana-María Figueroa
- Department of Nutrition, Diabetes, and Metabolism, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Fernando Ezquer
- Center for Regenerative Medicine, School of Medicine, Clínica Alemana Universidad del Desarrollo, Santiago, Chile
| | - Víctor Cortés
- Department of Nutrition, Diabetes, and Metabolism, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
9
|
Fairfield H, Condruti R, Farrell M, Di Iorio R, Gartner CA, Vary C, Reagan MR. Development and characterization of three cell culture systems to investigate the relationship between primary bone marrow adipocytes and myeloma cells. Front Oncol 2023; 12:912834. [PMID: 36713534 PMCID: PMC9874147 DOI: 10.3389/fonc.2022.912834] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 11/21/2022] [Indexed: 01/12/2023] Open
Abstract
The unique properties of the bone marrow (BM) allow for migration and proliferation of multiple myeloma (MM) cells while also providing the perfect environment for development of quiescent, drug-resistant MM cell clones. BM adipocytes (BMAds) have recently been identified as important contributors to systemic adipokine levels, bone strength, hematopoiesis, and progression of metastatic and primary BM cancers, such as MM. Recent studies in myeloma suggest that BMAds can be reprogrammed by tumor cells to contribute to myeloma-induced bone disease, and, reciprocally, BMAds support MM cells in vitro. Importantly, most data investigating BMAds have been generated using adipocytes generated by differentiating BM-derived mesenchymal stromal cells (BMSCs) into adipocytes in vitro using adipogenic media, due to the extreme technical challenges associated with isolating and culturing primary adipocytes. However, if studies could be performed with primary adipocytes, then they likely will recapitulate in vivo biology better than BMSC-derived adipocytes, as the differentiation process is artificial and differs from in vivo differentiation, and progenitor cell(s) of the primary BMAd (pBMAds) may not be the same as the BMSCs precursors used for adipogenic differentiation in vitro. Therefore, we developed and refined three methods for culturing pBMAds: two-dimensional (2D) coverslips, 2D transwells, and three-dimensional (3D) silk scaffolds, all of which can be cultured alone or with MM cells to investigate bidirectional tumor-host signaling. To develop an in vitro model with a tissue-like structure to mimic the BM microenvironment, we developed the first 3D, tissue engineered model utilizing pBMAds derived from human BM. We found that pBMAds, which are extremely fragile, can be isolated and stably cultured in 2D for 10 days and in 3D for up to 4 week in vitro. To investigate the relationship between pBMAds and myeloma, MM cells can be added to investigate physical relationships through confocal imaging and soluble signaling molecules via mass spectrometry. In summary, we developed three in vitro cell culture systems to study pBMAds and myeloma cells, which could be adapted to investigate many diseases and biological processes involving the BM, including other bone-homing tumor types.
Collapse
Affiliation(s)
- Heather Fairfield
- MaineHealth Institute for Research, Scarborough, ME, United States,University of Maine Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, United States,Tufts University School of Medicine, Boston, MA, United States
| | | | - Mariah Farrell
- MaineHealth Institute for Research, Scarborough, ME, United States,University of Maine Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, United States,Tufts University School of Medicine, Boston, MA, United States
| | - Reagan Di Iorio
- MaineHealth Institute for Research, Scarborough, ME, United States,University of New England, Biddeford, ME, United States
| | - Carlos A. Gartner
- MaineHealth Institute for Research, Scarborough, ME, United States,University of Maine Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, United States,Tufts University School of Medicine, Boston, MA, United States
| | - Calvin Vary
- MaineHealth Institute for Research, Scarborough, ME, United States,University of Maine Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, United States,Tufts University School of Medicine, Boston, MA, United States
| | - Michaela R. Reagan
- MaineHealth Institute for Research, Scarborough, ME, United States,University of Maine Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, United States,Tufts University School of Medicine, Boston, MA, United States,*Correspondence: Michaela R. Reagan,
| |
Collapse
|
10
|
Abstract
Metabolic diseases, including obesity, diabetes mellitus and cardiovascular disease, are a major threat to health in the modern world, but efforts to understand the underlying mechanisms and develop rational treatments are limited by the lack of appropriate human model systems. Notably, advances in stem cell and organoid technology allow the generation of cellular models that replicate the histological, molecular and physiological properties of human organs. Combined with marked improvements in gene editing tools, human stem cells and organoids provide unprecedented systems for studying mechanisms of metabolic diseases. Here, we review progress made over the past decade in the generation and use of stem cell-derived metabolic cell types and organoids in metabolic disease research, especially obesity and liver diseases. In particular, we discuss the limitations of animal models and the advantages of stem cells and organoids, including their application to metabolic diseases. We also discuss mechanisms of drug action, understanding the efficacy and toxicity of existing therapies, screening for new treatments and pursuing personalized therapies. We highlight the potential of combining stem cell-derived organoids with gene editing and functional genomics to revolutionize the approach to finding treatments for metabolic diseases.
Collapse
Affiliation(s)
- Wenxiang Hu
- Department of Basic Research, Guangzhou Laboratory, Guangdong, China.
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| | - Mitchell A Lazar
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
11
|
Sugii S, Wong CYQ, Lwin AKO, Chew LJM. Alternative fat: redefining adipocytes for biomanufacturing cultivated meat. Trends Biotechnol 2022; 41:686-700. [PMID: 36117023 DOI: 10.1016/j.tibtech.2022.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/03/2022] [Accepted: 08/22/2022] [Indexed: 11/11/2022]
Abstract
Cellular agriculture provides a potentially sustainable way of producing cultivated meat as an alternative protein source. In addition to muscle and connective tissue, fat is an important component of animal meat that contributes to taste, texture, tenderness, and nutritional profiles. However, while the biology of fat cells (adipocytes) is well studied, there is a lack of investigation on how adipocytes from agricultural species are isolated, produced, and incorporated as food constituents. Recently we compiled all protocols related to generation and analysis of adipose progenitors from bovine, porcine, chicken, other livestock and seafood species. In this review we summarize recent developments and present key scientific questions and challenges that need to be addressed in order to advance the biomanufacture of 'alternative fat'.
Collapse
Affiliation(s)
- Shigeki Sugii
- Bioengineering Systems Division, Institute of Bioengineering and Bioimaging (IBB), A*STAR, 31 Biopolis Way #07-01, Singapore 138669; Current address: Cell Biology and Therapies Division, Institute of Molecular and Cell Biology (IMCB), A*STAR, 61 Biopolis Drive #07-04 Proteos, Singapore 138673; Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, 8 College Road, Singapore 169857.
| | - Cheryl Yeh Qi Wong
- Bioengineering Systems Division, Institute of Bioengineering and Bioimaging (IBB), A*STAR, 31 Biopolis Way #07-01, Singapore 138669; Current address: Cell Biology and Therapies Division, Institute of Molecular and Cell Biology (IMCB), A*STAR, 61 Biopolis Drive #07-04 Proteos, Singapore 138673
| | - Angela Khin Oo Lwin
- Bioengineering Systems Division, Institute of Bioengineering and Bioimaging (IBB), A*STAR, 31 Biopolis Way #07-01, Singapore 138669; Current address: Cell Biology and Therapies Division, Institute of Molecular and Cell Biology (IMCB), A*STAR, 61 Biopolis Drive #07-04 Proteos, Singapore 138673
| | - Lamony Jian Ming Chew
- Bioengineering Systems Division, Institute of Bioengineering and Bioimaging (IBB), A*STAR, 31 Biopolis Way #07-01, Singapore 138669; Current address: Cell Biology and Therapies Division, Institute of Molecular and Cell Biology (IMCB), A*STAR, 61 Biopolis Drive #07-04 Proteos, Singapore 138673
| |
Collapse
|
12
|
Xue W, Yu SY, Kuss MA, Kong Y, Shi W, Chung S, Kim SY, Duan B. 3D bioprinted white adipose model for in vitro study of cancer-associated cachexia induced adipose tissue remodeling. Biofabrication 2022; 14. [PMID: 35504266 DOI: 10.1088/1758-5090/ac6c4b] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 05/03/2022] [Indexed: 11/11/2022]
Abstract
Cancer-associated cachexia (CAC) is a complex metabolic and behavioral syndrome with multiple manifestations that involve systemic inflammation, weight loss, and adipose lipolysis. It impacts the quality of life of patients and is the direct cause of death in 20-30% of cancer patients. The severity of fat loss and adipose tissue remodeling negatively correlate with patients' survival outcomes. To address the mechanism of fat loss and design potential approaches to prevent the process, it will be essential to understand CAC pathophysiology through white adipose tissue models. In the present study, an engineered human white adipose tissue (eWAT) model based on three-dimensional (3D) bioprinting was developed and treated with pancreatic cancer cell-conditioned medium (CM) to mimic the status of CAC in vitro. We found that the CM treatment significantly increased the lipolysis and accumulation of the extracellular matrix (ECM). The 3D eWATs were further vascularized to study the influence of vascularization on lipolysis and CAC progression, which was largely unknown. Results demonstrated that CM treatment improved the angiogenesis of vascularized eWATs (veWATs), and veWATs demonstrated decreased glycerol release but increased Ucp1 expression, compared to eWATs. Many unique inflammatory cytokines (IL-8, CXCL-1, GM-CSF, etc) from the CM were detected and supposed to contribute to eWAT lipolysis, Ucp1 up-regulation, and ECM development. In response to CM treatment, eWATs also secreted inflammatory adipokines related to the metastatic ability of cancer, muscle atrophy, and vascularization (NGAL, CD54, IGFBP-2, etc). Our work demonstrated that the eWAT is a robust model for studying cachectic fat loss and the accompanying remodeling of adipose tissue. It is therefore a useful tool for future research exploring CAC physiologies and developing potential therapies.
Collapse
Affiliation(s)
- Wen Xue
- University of Nebraska Medical Center, DRCII, Omaha, 68198-7400, UNITED STATES
| | - Seok-Yeong Yu
- Regenerative Medicine, University of Nebraska Medical Center, DRCII R6035, Omaha, Nebraska, 68198-7400, UNITED STATES
| | - Mitchell A Kuss
- Regenerative Medicine, University of Nebraska Medical Center, DRCII, Omaha, Nebraska, 68106, UNITED STATES
| | - Yunfan Kong
- University of Nebraska Medical Center, DRCII, Omaha, 68198-7400, UNITED STATES
| | - Wen Shi
- University of Nebraska Medical Center, DRCII, Omaha, Nebraska, 68106, UNITED STATES
| | - Soonkyu Chung
- University of Massachusetts Amherst, UMA, Amherst, Massachusetts, 01003, UNITED STATES
| | - So-Youn Kim
- Regenerative Medicine, University of Nebraska Medical Center, DRCII R6035, Omaha, Nebraska, 68198-7400, UNITED STATES
| | - Bin Duan
- Regenerative Medicine, University of Nebraska Medical Center, DRCII R6035, Omaha, Nebraska, 68198-7400, UNITED STATES
| |
Collapse
|
13
|
Dohmen RGJ, Hubalek S, Melke J, Messmer T, Cantoni F, Mei A, Hueber R, Mitic R, Remmers D, Moutsatsou P, Post MJ, Jackisch L, Flack JE. Muscle-derived fibro-adipogenic progenitor cells for production of cultured bovine adipose tissue. NPJ Sci Food 2022; 6:6. [PMID: 35075125 PMCID: PMC8786866 DOI: 10.1038/s41538-021-00122-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/20/2021] [Indexed: 12/30/2022] Open
Abstract
Cultured meat is an emergent technology with the potential for significant environmental and animal welfare benefits. Accurate mimicry of traditional meat requires fat tissue; a key contributor to both the flavour and texture of meat. Here, we show that fibro-adipogenic progenitor cells (FAPs) are present in bovine muscle, and are transcriptionally and immunophenotypically distinct from satellite cells. These two cell types can be purified from a single muscle sample using a simple fluorescence-activated cell sorting (FACS) strategy. FAPs demonstrate high levels of adipogenic potential, as measured by gene expression changes and lipid accumulation, and can be proliferated for a large number of population doublings, demonstrating their suitability for a scalable cultured meat production process. Crucially, FAPs reach a mature level of adipogenic differentiation in three-dimensional, edible hydrogels. The resultant tissue accurately mimics traditional beef fat in terms of lipid profile and taste, and FAPs thus represent a promising candidate cell type for the production of cultured fat.
Collapse
Affiliation(s)
- Richard G J Dohmen
- Mosa Meat B.V., Maastricht, The Netherlands
- Department of Physiology, Maastricht University, Maastricht, The Netherlands
| | - Sophie Hubalek
- Mosa Meat B.V., Maastricht, The Netherlands
- Department of Physiology, Maastricht University, Maastricht, The Netherlands
| | | | - Tobias Messmer
- Mosa Meat B.V., Maastricht, The Netherlands
- Department of Physiology, Maastricht University, Maastricht, The Netherlands
| | | | | | - Rui Hueber
- Mosa Meat B.V., Maastricht, The Netherlands
| | - Rada Mitic
- Mosa Meat B.V., Maastricht, The Netherlands
- Department of Physiology, Maastricht University, Maastricht, The Netherlands
| | | | | | - Mark J Post
- Mosa Meat B.V., Maastricht, The Netherlands
- Department of Physiology, Maastricht University, Maastricht, The Netherlands
| | | | | |
Collapse
|
14
|
Acosta FM, Stojkova K, Zhang J, Garcia Huitron EI, Jiang JX, Rathbone CR, Brey EM. Engineering Functional Vascularized Beige Adipose Tissue from Microvascular Fragments of Models of Healthy and Type II Diabetes Conditions. J Tissue Eng 2022; 13:20417314221109337. [PMID: 35782994 PMCID: PMC9248044 DOI: 10.1177/20417314221109337] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 06/08/2022] [Indexed: 01/10/2023] Open
Abstract
Engineered beige adipose tissues could be used for screening therapeutic strategies or as a direct treatment for obesity and metabolic disease. Microvascular fragments are vessel structures that can be directly isolated from adipose tissue and may contain cells capable of differentiation into thermogenic, or beige, adipocytes. In this study, culture conditions were investigated to engineer three-dimensional, vascularized functional beige adipose tissue using microvascular fragments isolated from both healthy animals and a model of type II diabetes (T2D). Vascularized beige adipose tissues were engineered and exhibited increased expression of beige adipose markers, enhanced function, and improved cellular respiration. While microvascular fragments isolated from both lean and diabetic models were able to generate functional tissues, differences were observed in regard to vessel assembly and tissue function. This study introduces an approach that could be employed to engineer vascularized beige adipose tissues from a single, potentially autologous source of cells.
Collapse
Affiliation(s)
- Francisca M. Acosta
- Department of Biomedical Engineering
and Chemical Engineering, University of Texas at San Antonio, San Antonio, TX,
USA
- UTSA-UTHSCSA Joint Graduate Program in
Biomedical Engineering, San Antonio, TX, USA
- Department of Biochemistry and
Structural Biology, University of Texas Health Science Center, San Antonio, TX,
USA
| | - Katerina Stojkova
- Department of Biomedical Engineering
and Chemical Engineering, University of Texas at San Antonio, San Antonio, TX,
USA
| | - Jingruo Zhang
- Department of Biochemistry and
Structural Biology, University of Texas Health Science Center, San Antonio, TX,
USA
| | - Eric Ivan Garcia Huitron
- Department of Biomedical Engineering
and Chemical Engineering, University of Texas at San Antonio, San Antonio, TX,
USA
| | - Jean X. Jiang
- Department of Biochemistry and
Structural Biology, University of Texas Health Science Center, San Antonio, TX,
USA
| | - Christopher R. Rathbone
- Department of Biomedical Engineering
and Chemical Engineering, University of Texas at San Antonio, San Antonio, TX,
USA
- UTSA-UTHSCSA Joint Graduate Program in
Biomedical Engineering, San Antonio, TX, USA
| | - Eric M. Brey
- Department of Biomedical Engineering
and Chemical Engineering, University of Texas at San Antonio, San Antonio, TX,
USA
- UTSA-UTHSCSA Joint Graduate Program in
Biomedical Engineering, San Antonio, TX, USA
| |
Collapse
|
15
|
Gorenkova N, Maitz MF, Böhme G, Alhadrami HA, Jiffri EH, Totten JD, Werner C, Carswell HVO, Seib FP. The innate immune response of self-assembling silk fibroin hydrogels. Biomater Sci 2021; 9:7194-7204. [PMID: 34553708 DOI: 10.1039/d1bm00936b] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Silk has a long track record of use in humans, and recent advances in silk fibroin processing have opened up new material formats. However, these new formats and their applications have subsequently created a need to ascertain their biocompatibility. Therefore, the present aim was to quantify the haemocompatibility and inflammatory response of silk fibroin hydrogels. This work demonstrated that self-assembled silk fibroin hydrogels, as one of the most clinically relevant new formats, induced very low blood coagulation and platelet activation but elevated the inflammatory response of human whole blood in vitro. In vivo bioluminescence imaging of neutrophils and macrophages showed an acute, but mild, local inflammatory response which was lower than or similar to that induced by polyethylene glycol, a benchmark material. The time-dependent local immune response in vivo was corroborated by histology, immunofluorescence and murine whole blood analyses. Overall, this study confirms that silk fibroin hydrogels induce a similar immune response to that of PEG hydrogels, while also demonstrating the power of non-invasive bioluminescence imaging for monitoring tissue responses.
Collapse
Affiliation(s)
- Natalia Gorenkova
- King Fahd Medical Research Center, King Abdulaziz University, P.O. BOX 80402, Jeddah 21589, Saudi Arabia.,Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, UK. .,I.M. Sechenov First Moscow State Medical University, 8-2 Trubetskaya street, Moscow, 119991, Russian Federation
| | - Manfred F Maitz
- Leibniz Institute of Polymer Research Dresden, Max Bergmann Center of Biomaterials Dresden, Hohe Straße 6, 01069 Dresden, Germany
| | - Georg Böhme
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, UK. .,Leibniz Institute of Polymer Research Dresden, Max Bergmann Center of Biomaterials Dresden, Hohe Straße 6, 01069 Dresden, Germany
| | - Hani A Alhadrami
- King Fahd Medical Research Center, King Abdulaziz University, P.O. BOX 80402, Jeddah 21589, Saudi Arabia.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, P.O. BOX 80402, Jeddah 21589, Saudi Arabia
| | - Essam H Jiffri
- King Fahd Medical Research Center, King Abdulaziz University, P.O. BOX 80402, Jeddah 21589, Saudi Arabia.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, P.O. BOX 80402, Jeddah 21589, Saudi Arabia
| | - John D Totten
- King Fahd Medical Research Center, King Abdulaziz University, P.O. BOX 80402, Jeddah 21589, Saudi Arabia.,Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, UK.
| | - Carsten Werner
- Leibniz Institute of Polymer Research Dresden, Max Bergmann Center of Biomaterials Dresden, Hohe Straße 6, 01069 Dresden, Germany.,Technische Universität Dresden, Center for Regenerative Therapies Dresden (CRTD), Fetscherstraße 105, 01307 Dresden, Germany
| | - Hilary V O Carswell
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, UK.
| | - F Philipp Seib
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, UK. .,Leibniz Institute of Polymer Research Dresden, Max Bergmann Center of Biomaterials Dresden, Hohe Straße 6, 01069 Dresden, Germany.,EPSRC Future Manufacturing Research Hub for Continuous Manufacturing and Advanced Crystallisation (CMAC), University of Strathclyde, Technology and Innovation Centre, Glasgow G1 1RD, UK
| |
Collapse
|
16
|
Shafiei M, Ansari MNM, Razak SIA, Khan MUA. A Comprehensive Review on the Applications of Exosomes and Liposomes in Regenerative Medicine and Tissue Engineering. Polymers (Basel) 2021; 13:2529. [PMID: 34372132 PMCID: PMC8347192 DOI: 10.3390/polym13152529] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 12/12/2022] Open
Abstract
Tissue engineering and regenerative medicine are generally concerned with reconstructing cells, tissues, or organs to restore typical biological characteristics. Liposomes are round vesicles with a hydrophilic center and bilayers of amphiphiles which are the most influential family of nanomedicine. Liposomes have extensive research, engineering, and medicine uses, particularly in a drug delivery system, genes, and vaccines for treatments. Exosomes are extracellular vesicles (EVs) that carry various biomolecular cargos such as miRNA, mRNA, DNA, and proteins. As exosomal cargo changes with adjustments in parent cells and position, research of exosomal cargo constituents provides a rare chance for sicknesses prognosis and care. Exosomes have a more substantial degree of bioactivity and immunogenicity than liposomes as they are distinctly chiefly formed by cells, which improves their steadiness in the bloodstream, and enhances their absorption potential and medicinal effectiveness in vitro and in vivo. In this review, the crucial challenges of exosome and liposome science and their functions in disease improvement and therapeutic applications in tissue engineering and regenerative medicine strategies are prominently highlighted.
Collapse
Affiliation(s)
- Mojtaba Shafiei
- Bioinspired Device and Tissue Engineering Research Group, School of Biomedical Engineering and Health Sciences, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai 81300, Johor, Malaysia; (M.S.); (M.U.A.K.)
| | | | - Saiful Izwan Abd Razak
- Bioinspired Device and Tissue Engineering Research Group, School of Biomedical Engineering and Health Sciences, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai 81300, Johor, Malaysia; (M.S.); (M.U.A.K.)
| | - Muhammad Umar Aslam Khan
- Bioinspired Device and Tissue Engineering Research Group, School of Biomedical Engineering and Health Sciences, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai 81300, Johor, Malaysia; (M.S.); (M.U.A.K.)
| |
Collapse
|
17
|
Bokobza E, Hinault C, Tiroille V, Clavel S, Bost F, Chevalier N. The Adipose Tissue at the Crosstalk Between EDCs and Cancer Development. Front Endocrinol (Lausanne) 2021; 12:691658. [PMID: 34354670 PMCID: PMC8329539 DOI: 10.3389/fendo.2021.691658] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 06/30/2021] [Indexed: 12/02/2022] Open
Abstract
Obesity is a major public health concern at the origin of many pathologies, including cancers. Among them, the incidence of gastro-intestinal tract cancers is significantly increased, as well as the one of hormone-dependent cancers. The metabolic changes caused by overweight mainly with the development of adipose tissue (AT), insulin resistance and chronic inflammation induce hormonal and/or growth factor imbalances, which impact cell proliferation and differentiation. AT is now considered as the main internal source of endocrine disrupting chemicals (EDCs) representing a low level systemic chronic exposure. Some EDCs are non-metabolizable and can accumulate in AT for a long time. We are chronically exposed to low doses of EDCs able to interfere with the endocrine metabolism of the body. Importantly, several EDCs have been involved in the genesis of obesity affecting profoundly the physiology of AT. In parallel, EDCs have been implicated in the development of cancers, in particular hormone-dependent cancers (prostate, testis, breast, endometrium, thyroid). While it is now well established that AT secretes adipocytokines that promote tumor progression, it is less clear whether they can initiate cancer. Therefore, it is important to better understand the effects of EDCs, and to investigate the buffering effect of AT in the context of progression but also initiation of cancer cells using adequate models recommended to uncover and validate these mechanisms for humans. We will review and argument here the potential role of AT as a crosstalk between EDCs and hormone-dependent cancer development, and how to assess it.
Collapse
Affiliation(s)
- Emma Bokobza
- Université Côte d’Azur, INSERM U1065, C3M, Nice, France
| | - Charlotte Hinault
- Université Côte d’Azur, INSERM U1065, C3M, Nice, France
- Université Côte d’Azur, CHU, INSERM U1065, C3M, Nice, France
| | | | | | - Frédéric Bost
- Université Côte d’Azur, INSERM U1065, C3M, Nice, France
| | - Nicolas Chevalier
- Université Côte d’Azur, INSERM U1065, C3M, Nice, France
- Université Côte d’Azur, CHU, INSERM U1065, C3M, Nice, France
- *Correspondence: Nicolas Chevalier, ;
| |
Collapse
|
18
|
Generation of immune cell containing adipose organoids for in vitro analysis of immune metabolism. Sci Rep 2020; 10:21104. [PMID: 33273595 PMCID: PMC7713299 DOI: 10.1038/s41598-020-78015-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 11/19/2020] [Indexed: 12/12/2022] Open
Abstract
Adipose tissue is an organized endocrine organ with important metabolic and immunological functions and immune cell-adipocyte crosstalk is known to drive various disease pathologies. Suitable 3D adipose tissue organoid models often lack resident immune cell populations and therefore require the addition of immune cells isolated from other organs. We have created the first 3D adipose tissue organoid model which could contain and maintain resident immune cell populations of the stromal vascular fraction (SVF) and proved to be effective in studying adipose tissue biology in a convenient manner. Macrophage and mast cell populations were successfully confirmed within our organoid model and were maintained in culture without the addition of growth factors. We demonstrated the suitability of our model for monitoring the lipidome during adipocyte differentiation in vitro and confirmed that this model reflects the physiological lipidome better than standard 2D cultures. In addition, we applied mass spectrometry-based lipidomics to track lipidomic changes in the lipidome upon dietary and immunomodulatory interventions. We conclude that this model represents a valuable tool for immune-metabolic research.
Collapse
|
19
|
Pias SC. How does oxygen diffuse from capillaries to tissue mitochondria? Barriers and pathways. J Physiol 2020; 599:1769-1782. [PMID: 33215707 DOI: 10.1113/jp278815] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 11/11/2020] [Indexed: 12/17/2022] Open
Abstract
Timely delivery of oxygen (O2 ) to tissue mitochondria is so essential that elaborate circulatory systems have evolved to minimize diffusion distances within tissue. Yet, knowledge is surprisingly limited regarding the diffusion pathway between blood capillaries and tissue mitochondria. An established and growing body of work examines the influence cellular and extracellular structures may have on subcellular oxygen availability. This brief review discusses the physiological and pathophysiological significance of oxygen availability, highlights recent computer modelling studies of transport at the cell-membrane level, and considers alternative diffusion pathways within tissue. Experimental and computer modelling studies suggest that oxygen diffusion may be accelerated by cellular lipids, relative to cytosolic and interstitial fluids. Such acceleration, or 'channelling', would occur due to greatly enhanced oxygen solubility in lipids, especially near the midplane of lipid bilayers. Rapid long-range movement would be promoted by anisotropically enhanced lateral diffusion of oxygen along the midplane and by junctions holding lipid structures in close proximity to one another throughout the tissue. Clarifying the biophysical mechanism of oxygen transport within tissue will shed light on limitations and opportunities in tumour radiotherapy and tissue engineering.
Collapse
Affiliation(s)
- Sally C Pias
- Department of Chemistry, New Mexico Institute of Mining and Technology (New Mexico Tech), Socorro, NM, USA
| |
Collapse
|
20
|
Bahmad HF, Daouk R, Azar J, Sapudom J, Teo JCM, Abou-Kheir W, Al-Sayegh M. Modeling Adipogenesis: Current and Future Perspective. Cells 2020; 9:cells9102326. [PMID: 33092038 PMCID: PMC7590203 DOI: 10.3390/cells9102326] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/07/2020] [Accepted: 10/16/2020] [Indexed: 02/07/2023] Open
Abstract
Adipose tissue is contemplated as a dynamic organ that plays key roles in the human body. Adipogenesis is the process by which adipocytes develop from adipose-derived stem cells to form the adipose tissue. Adipose-derived stem cells’ differentiation serves well beyond the simple goal of producing new adipocytes. Indeed, with the current immense biotechnological advances, the most critical role of adipose-derived stem cells remains their tremendous potential in the field of regenerative medicine. This review focuses on examining the physiological importance of adipogenesis, the current approaches that are employed to model this tightly controlled phenomenon, and the crucial role of adipogenesis in elucidating the pathophysiology and potential treatment modalities of human diseases. The future of adipogenesis is centered around its crucial role in regenerative and personalized medicine.
Collapse
Affiliation(s)
- Hisham F. Bahmad
- Department of Anatomy, Cell Biology, and Physiological Sciences, Faculty of Medicine, American University of Beirut, 1107 2260 Beirut, Lebanon; (H.F.B.); (R.D.); (J.A.)
| | - Reem Daouk
- Department of Anatomy, Cell Biology, and Physiological Sciences, Faculty of Medicine, American University of Beirut, 1107 2260 Beirut, Lebanon; (H.F.B.); (R.D.); (J.A.)
| | - Joseph Azar
- Department of Anatomy, Cell Biology, and Physiological Sciences, Faculty of Medicine, American University of Beirut, 1107 2260 Beirut, Lebanon; (H.F.B.); (R.D.); (J.A.)
| | - Jiranuwat Sapudom
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, 2460 Abu Dhabi, UAE;
| | - Jeremy C. M. Teo
- Laboratory for Immuno Bioengineering Research and Applications, Division of Engineering, New York University Abu Dhabi, 2460 Abu Dhabi, UAE;
- Correspondence: (J.C.M.T.); (W.A.-K.); (M.A.-S.); Tel.: +97126286689 (J.C.M.T.); +9611350000 (ext. 4778) (W.A.-K.); +97126284560 (M.A.-S.)
| | - Wassim Abou-Kheir
- Department of Anatomy, Cell Biology, and Physiological Sciences, Faculty of Medicine, American University of Beirut, 1107 2260 Beirut, Lebanon; (H.F.B.); (R.D.); (J.A.)
- Correspondence: (J.C.M.T.); (W.A.-K.); (M.A.-S.); Tel.: +97126286689 (J.C.M.T.); +9611350000 (ext. 4778) (W.A.-K.); +97126284560 (M.A.-S.)
| | - Mohamed Al-Sayegh
- Biology Division, New York University Abu Dhabi, 2460 Abu Dhabi, UAE
- Correspondence: (J.C.M.T.); (W.A.-K.); (M.A.-S.); Tel.: +97126286689 (J.C.M.T.); +9611350000 (ext. 4778) (W.A.-K.); +97126284560 (M.A.-S.)
| |
Collapse
|
21
|
Munteanu R, Onaciu A, Moldovan C, Zimta AA, Gulei D, Paradiso AV, Lazar V, Berindan-Neagoe I. Adipocyte-Based Cell Therapy in Oncology: The Role of Cancer-Associated Adipocytes and Their Reinterpretation as Delivery Platforms. Pharmaceutics 2020; 12:E402. [PMID: 32354024 PMCID: PMC7284545 DOI: 10.3390/pharmaceutics12050402] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/22/2020] [Accepted: 04/23/2020] [Indexed: 12/24/2022] Open
Abstract
Cancer-associated adipocytes have functional roles in tumor development through secreted adipocyte-derived factors and exosomes and also through metabolic symbiosis, where the malignant cells take up the lactate, fatty acids and glutamine produced by the neighboring adipocytes. Recent research has demonstrated the value of adipocytes as cell-based delivery platforms for drugs (or prodrugs), nucleic acids or loaded nanoparticles for cancer therapy. This strategy takes advantage of the biocompatibility of the delivery system, its ability to locate the tumor site and also the predisposition of cancer cells to come in functional contact with the adipocytes from the tumor microenvironment for metabolic sustenance. Also, their exosomal content can be used in the context of cancer stem cell reprogramming or as a delivery vehicle for different cargos, like non-coding nucleic acids. Moreover, the process of adipocytes isolation, processing and charging is quite straightforward, with minimal economical expenses. The present review comprehensively presents the role of adipocytes in cancer (in the context of obese and non-obese individuals), the main methods for isolation and characterization and also the current therapeutic applications of these cells as delivery platforms in the oncology sector.
Collapse
Affiliation(s)
- Raluca Munteanu
- Research Center for Advanced Medicine-Medfuture, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania
| | - Anca Onaciu
- Research Center for Advanced Medicine-Medfuture, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania
| | - Cristian Moldovan
- Research Center for Advanced Medicine-Medfuture, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania
| | - Alina-Andreea Zimta
- Research Center for Advanced Medicine-Medfuture, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania
| | - Diana Gulei
- Research Center for Advanced Medicine-Medfuture, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania
| | - Angelo V. Paradiso
- Oncologia Sperimentale, Istituto Tumori G Paolo II, IRCCS, 70125 Bari, Italy
| | - Vladimir Lazar
- Worldwide Innovative Network for Personalized Cancer Therapy, 94800 Villejuif, France
| | - Ioana Berindan-Neagoe
- Research Center for Advanced Medicine-Medfuture, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania
- Department of Functional Genomics and Experimental Pathology, The Oncology Institute “Prof. Dr. Ion Chiricuta”, 34-36 Republicii Street, 400015 Cluj-Napoca, Romania
| |
Collapse
|
22
|
Abstract
PURPOSE OF THE REVIEW The purpose of this review is to describe the in vitro and in vivo methods that researchers use to model and investigate bone marrow adipocytes (BMAds). RECENT FINDINGS The bone marrow (BM) niche is one of the most interesting and dynamic tissues of the human body. Relatively little is understood about BMAds, perhaps in part because these cells do not easily survive flow cytometry and histology processing and hence have been overlooked. Recently, researchers have developed in vitro and in vivo models to study normal function and dysfunction in the BM niche. Using these models, scientists and clinicians have noticed that BMAds, which form bone marrow adipose tissue (BMAT), are able to respond to numerous signals and stimuli, and communicate with local cells and distant tissues in the body. This review provides an overview of how BMAds are modeled and studied in vitro and in vivo.
Collapse
Affiliation(s)
- Michaela R Reagan
- Center for Molecular Medicine and Center for Translational Research, Maine Medical Center Research Institute, 81 Research Drive, Scarborough, ME, 04074, USA.
- University of Maine Graduate School of Biomedical Science and Engineering, Orono, ME, USA.
- School of Medicine and Graduate School of Biomedical Sciences, Tufts University, Boston, MA, USA.
| |
Collapse
|
23
|
Samuelson I, Vidal-Puig A. Studying Brown Adipose Tissue in a Human in vitro Context. Front Endocrinol (Lausanne) 2020; 11:629. [PMID: 33042008 PMCID: PMC7523498 DOI: 10.3389/fendo.2020.00629] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 08/04/2020] [Indexed: 12/16/2022] Open
Abstract
New treatments for obesity and associated metabolic disease are increasingly warranted with the growth of the obesity pandemic. Brown adipose tissue (BAT) may represent a promising therapeutic target to treat obesity, as this tissue has been shown to regulate energy expenditure through non-shivering thermogenesis. Three different strategies could be employed for therapeutic targeting of human thermogenic adipocytes: increasing BAT mass through stimulation of BAT progenitors, increasing BAT function through regulatory pathways, and increasing WAT browning through promotion of beige adipocyte formation. However, these strategies require deeper understanding of human brown and beige adipocytes. While murine studies have greatly increased our understanding of BAT, it is becoming clear that human BAT does not exactly resemble that of the mouse, highlighting the need for human in vitro models of brown adipocytes. Several different human brown adipocyte models will be discussed here, along with the potential to improve brown adipocyte culture through recreation of the BAT microenvironment.
Collapse
Affiliation(s)
- Isabella Samuelson
- Metabolic Research Laboratories, University of Cambridge, Cambridge, United Kingdom
- Department of Cellular Genetics, Wellcome Sanger Institute (WT), Hinxton, United Kingdom
- *Correspondence: Isabella Samuelson
| | - Antonio Vidal-Puig
- Metabolic Research Laboratories, University of Cambridge, Cambridge, United Kingdom
- Department of Cellular Genetics, Wellcome Sanger Institute (WT), Hinxton, United Kingdom
| |
Collapse
|