1
|
Robinson JM, Barnes AD, Fickling N, Costin S, Sun X, Breed MF. Food webs in food webs: the micro-macro interplay of multilayered networks. Trends Ecol Evol 2024; 39:913-922. [PMID: 38960756 DOI: 10.1016/j.tree.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 06/10/2024] [Accepted: 06/14/2024] [Indexed: 07/05/2024]
Abstract
Food webs are typically defined as being macro-organism-based (e.g., plants, mammals, birds) or microbial (e.g., bacteria, fungi, viruses). However, these characterizations have limits. We propose a multilayered food web conceptual model where microbial food webs are nested within food webs composed of macro-organisms. Nesting occurs through host-microbe interactions, which influence the health and behavior of host macro-organisms, such that host microbiomes likely alter population dynamics of interacting macro-organisms and vice versa. Here, we explore the theoretical underpinnings of multilayered food webs and the implications of this new conceptual model on food web ecology. Our framework opens avenues for new empirical investigations into complex ecological networks and provides a new lens through which to view a network's response to ecosystem changes.
Collapse
Affiliation(s)
- Jake M Robinson
- College of Science and Engineering, Flinders University, Bedford Park, SA, 5042, Australia; The Aerobiome Innovation and Research Hub, College of Science and Engineering, Flinders University, Bedford Park, SA, 5042, Australia.
| | - Andrew D Barnes
- School of Science, University of Waikato, Hamilton, New Zealand
| | - Nicole Fickling
- College of Science and Engineering, Flinders University, Bedford Park, SA, 5042, Australia; The Aerobiome Innovation and Research Hub, College of Science and Engineering, Flinders University, Bedford Park, SA, 5042, Australia
| | - Sofie Costin
- College of Science and Engineering, Flinders University, Bedford Park, SA, 5042, Australia
| | - Xin Sun
- The Aerobiome Innovation and Research Hub, College of Science and Engineering, Flinders University, Bedford Park, SA, 5042, Australia; Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China.
| | - Martin F Breed
- College of Science and Engineering, Flinders University, Bedford Park, SA, 5042, Australia; The Aerobiome Innovation and Research Hub, College of Science and Engineering, Flinders University, Bedford Park, SA, 5042, Australia.
| |
Collapse
|
2
|
Thompson C, Silva R, Gibran FZ, Bacha L, de Freitas MAM, Thompson M, Landuci F, Tschoeke D, Zhang XH, Wang X, Zhao W, Gatts PV, de Almeida MG, de Rezende CE, Thompson F. The Abrolhos Nominally Herbivorous Coral Reef Fish Acanthurus chirurgus, Kyphosus sp., Scarus trispinosus, and Sparisoma axillare Have Similarities in Feeding But Species-Specific Microbiomes. MICROBIAL ECOLOGY 2024; 87:110. [PMID: 39215820 PMCID: PMC11365853 DOI: 10.1007/s00248-024-02423-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024]
Abstract
Coral reefs rely heavily on reef fish for their health, yet overfishing has resulted in their decline, leading to an increase in fast-growing algae and changes in reef ecosystems, a phenomenon described as the phase-shift. A clearer understanding of the intricate interplay between herbivorous, their food, and their gut microbiomes could enhance reef health. This study examines the gut microbiome and isotopic markers (δ13C and δ15N) of four key nominally herbivorous reef fish species (Acanthurus chirurgus, Kyphosus sp., Scarus trispinosus, and Sparisoma axillare) in the Southwestern Atlantic's Abrolhos Reef systems. Approximately 16.8 million 16S rRNA sequences were produced for the four fish species, with an average of 317,047 ± 57,007 per species. Bacteria such as Proteobacteria, Firmicutes, and Cyanobacteria were prevalent in their microbiomes. These fish show unique microbiomes that result from co-diversification, diet, and restricted movement. Coral-associated bacteria (Endozoicomonas, Rhizobia, and Ruegeria) were found in abundance in the gut contents of the parrotfish species Sc. trispinosus and Sp. axillare. These parrotfishes could aid coral health by disseminating such beneficial bacteria across the reef. Meanwhile, Kyphosus sp. predominantly had Pirellulaceae and Rhodobacteraceae. Four fish species had a diet composed of turf components (filamentous Cyanobacteria) and brown algae (Dictyopteris). They also had similar isotopic niches, suggesting they shared food sources. A significant difference was observed between the isotopic signature of fish muscular gut tissue and gut contents, pointing to the role that host genetics and gut microbes play in differentiating fish tissues.
Collapse
Affiliation(s)
- Cristiane Thompson
- Laboratory of Microbiology, Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Av. Carlos Chagas Filho 373, Sala 102, Bloco A, CCS/IB/BIOMAR, Lab. de Microbiologia, Cidade Universitária, Rio de Janeiro, RJ, CEP 21941-599, Brazil.
| | - Raphael Silva
- Laboratory of Microbiology, Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Av. Carlos Chagas Filho 373, Sala 102, Bloco A, CCS/IB/BIOMAR, Lab. de Microbiologia, Cidade Universitária, Rio de Janeiro, RJ, CEP 21941-599, Brazil
| | - Fernando Z Gibran
- Centro de Ciências Naturais e Humanas (CCNH), Universidade Federal do ABC (UFABC), São Bernardo Do Campo, São Paulo, Brazil
| | - Leonardo Bacha
- Laboratory of Microbiology, Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Av. Carlos Chagas Filho 373, Sala 102, Bloco A, CCS/IB/BIOMAR, Lab. de Microbiologia, Cidade Universitária, Rio de Janeiro, RJ, CEP 21941-599, Brazil
| | - Mayanne A M de Freitas
- Laboratory of Microbiology, Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Av. Carlos Chagas Filho 373, Sala 102, Bloco A, CCS/IB/BIOMAR, Lab. de Microbiologia, Cidade Universitária, Rio de Janeiro, RJ, CEP 21941-599, Brazil
| | - Mateus Thompson
- Laboratory of Microbiology, Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Av. Carlos Chagas Filho 373, Sala 102, Bloco A, CCS/IB/BIOMAR, Lab. de Microbiologia, Cidade Universitária, Rio de Janeiro, RJ, CEP 21941-599, Brazil
| | - Felipe Landuci
- Laboratory of Microbiology, Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Av. Carlos Chagas Filho 373, Sala 102, Bloco A, CCS/IB/BIOMAR, Lab. de Microbiologia, Cidade Universitária, Rio de Janeiro, RJ, CEP 21941-599, Brazil
| | - Diogo Tschoeke
- Laboratory of Microbiology, Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Av. Carlos Chagas Filho 373, Sala 102, Bloco A, CCS/IB/BIOMAR, Lab. de Microbiologia, Cidade Universitária, Rio de Janeiro, RJ, CEP 21941-599, Brazil
- Biomedical Engineer Program, COPPE, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Xiao-Hua Zhang
- Microbial Oceanography Lab, Ocean University of China, Qingdao, China
| | - Xiaolei Wang
- Microbial Oceanography Lab, Ocean University of China, Qingdao, China
| | - Wenbin Zhao
- Microbial Oceanography Lab, Ocean University of China, Qingdao, China
| | - Pedro Vianna Gatts
- Laboratory of Environmental Sciences (LCA), Center of Biosciences and Biotechnology (CBB), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos Dos Goytacazes, Brazil
| | - Marcelo Gomes de Almeida
- Laboratory of Environmental Sciences (LCA), Center of Biosciences and Biotechnology (CBB), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos Dos Goytacazes, Brazil
| | - Carlos Eduardo de Rezende
- Laboratory of Environmental Sciences (LCA), Center of Biosciences and Biotechnology (CBB), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos Dos Goytacazes, Brazil
| | - Fabiano Thompson
- Laboratory of Microbiology, Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Av. Carlos Chagas Filho 373, Sala 102, Bloco A, CCS/IB/BIOMAR, Lab. de Microbiologia, Cidade Universitária, Rio de Janeiro, RJ, CEP 21941-599, Brazil.
| |
Collapse
|
3
|
Voolstra CR, Raina JB, Dörr M, Cárdenas A, Pogoreutz C, Silveira CB, Mohamed AR, Bourne DG, Luo H, Amin SA, Peixoto RS. The coral microbiome in sickness, in health and in a changing world. Nat Rev Microbiol 2024; 22:460-475. [PMID: 38438489 DOI: 10.1038/s41579-024-01015-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2024] [Indexed: 03/06/2024]
Abstract
Stony corals, the engines and engineers of reef ecosystems, face unprecedented threats from anthropogenic environmental change. Corals are holobionts that comprise the cnidarian animal host and a diverse community of bacteria, archaea, viruses and eukaryotic microorganisms. Recent research shows that the bacterial microbiome has a pivotal role in coral biology. A healthy bacterial assemblage contributes to nutrient cycling and stress resilience, but pollution, overfishing and climate change can break down these symbiotic relationships, which results in disease, bleaching and, ultimately, coral death. Although progress has been made in characterizing the spatial-temporal diversity of bacteria, we are only beginning to appreciate their functional contribution. In this Review, we summarize the ecological and metabolic interactions between bacteria and other holobiont members, highlight the biotic and abiotic factors influencing the structure of bacterial communities and discuss the impact of climate change on these communities and their coral hosts. We emphasize how microbiome-based interventions can help to decipher key mechanisms underpinning coral health and promote reef resilience. Finally, we explore how recent technological developments may be harnessed to address some of the most pressing challenges in coral microbiology, providing a road map for future research in this field.
Collapse
Affiliation(s)
| | - Jean-Baptiste Raina
- Climate Change Cluster, University of Technology Sydney, Ultimo, New South Wales, Australia.
| | - Melanie Dörr
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Anny Cárdenas
- Department of Biology, American University, Washington, DC, USA
| | - Claudia Pogoreutz
- PSL Université Paris: EPHE-UPVD-CNRS, UAR 3278 CRIOBE, Université de Perpignan, Perpignan, France
| | | | - Amin R Mohamed
- Marine Microbiomics Laboratory, Biology Program, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - David G Bourne
- Australian Institute of Marine Science, Townsville, Queensland, Australia
- College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
| | - Haiwei Luo
- Simon F.S. Li Marine Science Laboratory, School of Life Sciences, State Key Laboratory of Agrobiotechnology and Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Shady A Amin
- Marine Microbiomics Laboratory, Biology Program, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
- Center for Genomics and Systems Biology (CGSB), New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Raquel S Peixoto
- Red Sea Research Center (RSRC) and Computational Biology Research Center (CBRC), Biological, Environmental Sciences, and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
| |
Collapse
|
4
|
Evans KM, Larouche O, Gartner SM, Faucher RE, Dee SG, Westneat MW. Beaks promote rapid morphological diversification along distinct evolutionary trajectories in labrid fishes (Eupercaria: Labridae). Evolution 2023; 77:2000-2014. [PMID: 37345732 DOI: 10.1093/evolut/qpad115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 06/09/2023] [Accepted: 06/20/2023] [Indexed: 06/23/2023]
Abstract
The upper and lower jaws of some wrasses (Eupercaria: Labridae) possess teeth that have been coalesced into a strong durable beak that they use to graze on hard coral skeletons, hard-shelled prey, and algae, allowing many of these species to function as important ecosystem engineers in their respective marine habitats. While the ecological impact of the beak is well understood, questions remain about its evolutionary history and the effects of this innovation on the downstream patterns of morphological evolution. Here we analyze 3D cranial shape data in a phylogenetic comparative framework and use paleoclimate modeling to reconstruct the evolution of the labrid beak across 205 species. We find that wrasses evolved beaks three times independently, once within odacines and twice within parrotfishes in the Pacific and Atlantic Oceans. We find an increase in the rate of shape evolution in the Scarus+Chlorurus+Hipposcarus (SCH) clade of parrotfishes likely driven by the evolution of the intramandibular joint. Paleoclimate modeling shows that the SCH clade of parrotfishes rapidly morphologically diversified during the middle Miocene. We hypothesize that possession of a beak in the SCH clade coupled with favorable environmental conditions allowed these species to rapidly morphologically diversify.
Collapse
Affiliation(s)
- Kory M Evans
- Department of Biosciences, Rice University, Houston, TX, United States
| | - Olivier Larouche
- Department of Biology and Biochemistry, University of Houston, Houston, TX, United States
| | - Samantha M Gartner
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, United States
| | - Rose E Faucher
- Department of Biosciences, Rice University, Houston, TX, United States
| | - Sylvia G Dee
- Department of Earth, Environmental, and Planetary Sciences, Rice University, Houston, TX, United States
| | - Mark W Westneat
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, United States
| |
Collapse
|
5
|
Williams SD, Klinges JG, Zinman S, Clark AS, Bartels E, Villoch Diaz Maurino M, Muller EM. Geographically driven differences in microbiomes of Acropora cervicornis originating from different regions of Florida's Coral Reef. PeerJ 2022; 10:e13574. [PMID: 35729906 PMCID: PMC9206844 DOI: 10.7717/peerj.13574] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 05/22/2022] [Indexed: 01/17/2023] Open
Abstract
Effective coral restoration must include comprehensive investigations of the targeted coral community that consider all aspects of the coral holobiont-the coral host, symbiotic algae, and microbiome. For example, the richness and composition of microorganisms associated with corals may be indicative of the corals' health status and thus help guide restoration activities. Potential differences in microbiomes of restoration corals due to differences in host genetics, environmental condition, or geographic location, may then influence outplant success. The objective of the present study was to characterize and compare the microbiomes of apparently healthy Acropora cervicornis genotypes that were originally collected from environmentally distinct regions of Florida's Coral Reef and sampled after residing within Mote Marine Laboratory's in situ nursery near Looe Key, FL (USA) for multiple years. By using 16S rRNA high-throughput sequencing, we described the microbial communities of 74 A. cervicornis genotypes originating from the Lower Florida Keys (n = 40 genotypes), the Middle Florida Keys (n = 15 genotypes), and the Upper Florida Keys (n = 19 genotypes). Our findings demonstrated that the bacterial communities of A. cervicornis originating from the Lower Keys were significantly different from the bacterial communities of those originating from the Upper and Middle Keys even after these corals were held within the same common garden nursery for an average of 3.4 years. However, the bacterial communities of corals originating in the Upper Keys were not significantly different from those in the Middle Keys. The majority of the genotypes, regardless of collection region, were dominated by Alphaproteobacteria, namely an obligate intracellular parasite of the genus Ca. Aquarickettsia. Genotypes from the Upper and Middle Keys also had high relative abundances of Spirochaeta bacteria. Several genotypes originating from both the Lower and Upper Keys had lower abundances of Aquarickettsia, resulting in significantly higher species richness and diversity. Low abundance of Aquarickettsia has been previously identified as a signature of disease resistance. While the low-Aquarickettsia corals from both the Upper and Lower Keys had high abundances of an unclassified Proteobacteria, the genotypes in the Upper Keys were also dominated by Spirochaeta. The results of this study suggest that the abundance of Aquarickettsia and Spirochaeta may play an important role in distinguishing bacterial communities among A. cervicornis populations and compositional differences of these bacterial communities may be driven by regional processes that are influenced by both the environmental history and genetic relatedness of the host. Additionally, the high microbial diversity of low-Aquarickettsia genotypes may provide resilience to their hosts, and these genotypes may be a potential resource for restoration practices and management.
Collapse
Affiliation(s)
| | - J. Grace Klinges
- Mote Marine Laboratory, Elizabeth Moore International Center for Coral Reef Research & Restoration, Summerland Key, FL, United States of America
| | - Samara Zinman
- Nova Southeastern University, Dania Beach, FL, United States of America
| | - Abigail S. Clark
- Mote Marine Laboratory, Elizabeth Moore International Center for Coral Reef Research & Restoration, Summerland Key, FL, United States of America,The College of the Florida Keys, Key West, FL, United States of America
| | - Erich Bartels
- Mote Marine Laboratory, Elizabeth Moore International Center for Coral Reef Research & Restoration, Summerland Key, FL, United States of America
| | - Marina Villoch Diaz Maurino
- Mote Marine Laboratory, Elizabeth Moore International Center for Coral Reef Research & Restoration, Summerland Key, FL, United States of America
| | - Erinn M. Muller
- Mote Marine Laboratory, Sarasota, FL, United States of America
| |
Collapse
|
6
|
Evensen NR, Vanwonterghem I, Doropoulos C, Gouezo M, Botté ES, Webster NS, Mumby PJ. Benthic micro- and macro-community succession and coral recruitment under overfishing and nutrient enrichment. Ecology 2021; 102:e03536. [PMID: 34514590 DOI: 10.1002/ecy.3536] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 06/10/2021] [Indexed: 01/20/2023]
Abstract
Herbivory and nutrient availability are fundamental drivers of benthic community succession in shallow marine systems, including coral reefs. Despite the importance of early community succession for coral recruitment and recovery, studies characterizing the impact of top-down and bottom-up drivers on micro- and macrobenthic communities at scales relevant to coral recruitment are lacking. Here, a combination of tank and field experiments were used to assess the effects of herbivore exclusion and nutrient enrichment on micro- to macrobenthic community succession and subsequent coral recruitment success. Herbivore exclusion had the strongest effect on micro- and macrobenthic community succession, including a community shift toward copiotrophic and potentially opportunistic/pathogenic microorganisms, an increased cover of turf and macroalgae, and decreased cover of crustose coralline algae. Yet, when corals settled prior to the development of a macrobenthic community, rates of post-settlement survival increased when herbivores were excluded, benefiting from the predation refugia provided by cages during their vulnerable early post-settlement stage. Interestingly, survival on open tiles was negatively correlated with the relative abundance of the bacterial order Rhodobacterales, an opportunistic microbial group previously associated with stressed and diseased corals. Development of micro- and macrobenthic communities in the absence of herbivory, however, led to reduced coral settlement. In turn, there were no differences in post-settlement survival between open and caged treatments for corals settled on tiles with established benthic communities. As a result, open tiles experienced marginally higher recruitment rates, driven primarily by the higher initial number of settlers on open tiles compared to caged tiles. Overall, we reveal that the primary interaction driving coral recruitment is the positive effect of herbivory in creating crustose coralline algae (CCA)-dominated habitats, free of fleshy algae and associated opportunistic microbes, to enhance coral settlement. The negative direct and indirect impact of fish predation on newly settled corals was outweighed by the positive effect of herbivory on the initial rate of coral settlement. In turn, the addition of nutrients further altered benthic community succession in the absence of herbivory, reducing coral post-settlement survival. However, the overall impact of nutrients on coral recruitment dynamics was minor relative to herbivory.
Collapse
Affiliation(s)
- Nicolas R Evensen
- Marine Spatial Ecology Lab, ARC Centre of Excellence for Coral Reef Studies and School of Biological Sciences, The University of Queensland, St Lucia, Queensland, 4072, Australia.,Department of Biological Sciences, Old Dominion University, Norfolk, Virginia, 23529, USA
| | - Inka Vanwonterghem
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, 4072, Australia
| | | | - Marine Gouezo
- Palau International Coral Reef Center, P.O. Box 7086, Koror, 96940, Republic of Palau
| | - Emmanuelle S Botté
- Australian Institute of Marine Science, Townsville, Queensland, Australia.,Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Nicole S Webster
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, 4072, Australia.,Australian Institute of Marine Science, Townsville, Queensland, Australia
| | - Peter J Mumby
- Marine Spatial Ecology Lab, ARC Centre of Excellence for Coral Reef Studies and School of Biological Sciences, The University of Queensland, St Lucia, Queensland, 4072, Australia.,Palau International Coral Reef Center, P.O. Box 7086, Koror, 96940, Republic of Palau
| |
Collapse
|
7
|
Nutrient Enrichment Predominantly Affects Low Diversity Microbiomes in a Marine Trophic Symbiosis between Algal Farming Fish and Corals. Microorganisms 2021; 9:microorganisms9091873. [PMID: 34576770 PMCID: PMC8471015 DOI: 10.3390/microorganisms9091873] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 01/04/2023] Open
Abstract
While studies show that nutrient pollution shifts reef trophic interactions between fish, macroalgae, and corals, we know less about how the microbiomes associated with these organisms react to such disturbances. To investigate how microbiome dynamics are affected during nutrient pollution, we exposed replicate Porites lobata corals colonized by the fish Stegastes nigricans, which farm an algal matrix on the coral, to a pulse of nutrient enrichment over a two-month period and examined the microbiome of each partner using 16S amplicon analysis. We found 51 amplicon sequence variants (ASVs) shared among the three hosts. Coral microbiomes had the lowest diversity with over 98% of the microbiome dominated by a single genus, Endozoicomonas. Fish and algal matrix microbiomes were ~20 to 70× more diverse and had higher evenness compared to the corals. The addition of nutrients significantly increased species richness and community variability between samples of coral microbiomes but not the fish or algal matrix microbiomes, demonstrating that coral microbiomes are less resistant to nutrient pollution than their trophic partners. Furthermore, the 51 common ASVs within the 3 hosts indicate microbes that may be shared or transmitted between these closely associated organisms, including Vibrionaceae bacteria, many of which can be pathogenic to corals.
Collapse
|
8
|
Ladd MC, Winslow EM, Burkepile DE, Lenihan HS. Corallivory varies with water depth to influence the growth of
Acropora hyacinthus
, a reef‐forming coral. Ecosphere 2021. [DOI: 10.1002/ecs2.3623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Mark C. Ladd
- Department of Ecology, Evolution and Marine Biology University of California Santa Barbara Santa Barbara California 93106 USA
| | - Erin M. Winslow
- Bren School of Environmental Science and Management University of California Santa Barbara Santa Barbara California 93106 USA
| | - Deron E. Burkepile
- Department of Ecology, Evolution and Marine Biology University of California Santa Barbara Santa Barbara California 93106 USA
- Marine Science Institute University of California Santa Barbara Santa Barbara California 93106 USA
| | - Hunter S. Lenihan
- Bren School of Environmental Science and Management University of California Santa Barbara Santa Barbara California 93106 USA
| |
Collapse
|
9
|
Examining the development of a parrotfish fishery in The Bahamas: Social considerations & management implications. Glob Ecol Conserv 2021. [DOI: 10.1016/j.gecco.2021.e01677] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
10
|
Microbial dysbiosis reflects disease resistance in diverse coral species. Commun Biol 2021; 4:679. [PMID: 34083722 PMCID: PMC8175568 DOI: 10.1038/s42003-021-02163-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 04/28/2021] [Indexed: 01/28/2023] Open
Abstract
Disease outbreaks have caused significant declines of keystone coral species. While forecasting disease outbreaks based on environmental factors has progressed, we still lack a comparative understanding of susceptibility among coral species that would help predict disease impacts on coral communities. The present study compared the phenotypic and microbial responses of seven Caribbean coral species with diverse life-history strategies after exposure to white plague disease. Disease incidence and lesion progression rates were evaluated over a seven-day exposure. Coral microbiomes were sampled after lesion appearance or at the end of the experiment if no disease signs appeared. A spectrum of disease susceptibility was observed among the coral species that corresponded to microbial dysbiosis. This dysbiosis promotes greater disease susceptiblity in coral perhaps through different tolerant thresholds for change in the microbiome. The different disease susceptibility can affect coral’s ecological function and ultimately shape reef ecosystems. MacKnight et al. compared the phenotypic and microbial responses of seven Caribbean coral species with diverse life-history strategies after exposure to white plague disease. The different species exhibited a spectrum of disease susceptibility and associated mortality that corresponded with their tolerances to microbial change, indicating that coral disease and microbial dysbiosis may ultimately shape reef ecosystems.
Collapse
|
11
|
Ezzat L, Merolla S, Clements CS, Munsterman KS, Landfield K, Stensrud C, Schmeltzer ER, Burkepile DE, Vega Thurber R. Thermal Stress Interacts With Surgeonfish Feces to Increase Coral Susceptibility to Dysbiosis and Reduce Tissue Regeneration. Front Microbiol 2021; 12:620458. [PMID: 33841351 PMCID: PMC8027513 DOI: 10.3389/fmicb.2021.620458] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 02/28/2021] [Indexed: 01/04/2023] Open
Abstract
Dysbiosis of coral microbiomes results from various biotic and environmental stressors, including interactions with important reef fishes which may act as vectors of opportunistic microbes via deposition of fecal material. Additionally, elevated sea surface temperatures have direct effects on coral microbiomes by promoting growth and virulence of opportunists and putative pathogens, thereby altering host immunity and health. However, interactions between these biotic and abiotic factors have yet to be evaluated. Here, we used a factorial experiment to investigate the combined effects of fecal pellet deposition by the widely distributed surgeonfish Ctenochaetus striatus and elevated sea surface temperatures on microbiomes associated with the reef-building coral Porites lobata. Our results showed that regardless of temperature, exposure of P. lobata to C. striatus feces increased alpha diversity, dispersion, and lead to a shift in microbial community composition – all indicative of microbial dysbiosis. Although elevated temperature did not result in significant changes in alpha and beta diversity, we noted an increasing number of differentially abundant taxa in corals exposed to both feces and thermal stress within the first 48h of the experiment. These included opportunistic microbial lineages and taxa closely related to potential coral pathogens (i.e., Vibrio vulnificus, Photobacterium rosenbergii). Some of these taxa were absent in controls but present in surgeonfish feces under both temperature regimes, suggesting mechanisms of microbial transmission and/or enrichment from fish feces to corals. Importantly, the impact to coral microbiomes by fish feces under higher temperatures appeared to inhibit wound healing in corals, as percentages of tissue recovery at the site of feces deposition were lower at 30°C compared to 26°C. Lower percentages of tissue recovery were associated with greater relative abundance of several bacterial lineages, with some of them found in surgeonfish feces (i.e., Rhodobacteraceae, Bdellovibrionaceae, Crocinitomicaceae). Our findings suggest that fish feces interact with elevated sea surface temperatures to favor microbial opportunism and enhance dysbiosis susceptibility in P. lobata. As the frequency and duration of thermal stress related events increase, the ability of coral microbiomes to recover from biotic stressors such as deposition of fish feces may be greatly affected, ultimately compromising coral health and resilience.
Collapse
Affiliation(s)
- Leïla Ezzat
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Sarah Merolla
- Bodega Marine Laboratory, University of California, Davis, Davis, CA, United States
| | - Cody S Clements
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, United States
| | - Katrina S Munsterman
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, United States
| | - Kaitlyn Landfield
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Colton Stensrud
- Department of Microbiology, Oregon State University, Corvallis, OR, United States
| | - Emily R Schmeltzer
- Department of Microbiology, Oregon State University, Corvallis, OR, United States
| | - Deron E Burkepile
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA, United States.,Marine Science Institute, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Rebecca Vega Thurber
- Department of Microbiology, Oregon State University, Corvallis, OR, United States
| |
Collapse
|
12
|
Grupstra CGB, Rabbitt KM, Howe-Kerr LI, Correa AMS. Fish predation on corals promotes the dispersal of coral symbionts. Anim Microbiome 2021; 3:25. [PMID: 33752761 PMCID: PMC7986512 DOI: 10.1186/s42523-021-00086-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 03/05/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The microbiomes of foundation (habitat-forming) species such as corals and sponges underpin the biodiversity, productivity, and stability of ecosystems. Consumers shape communities of foundation species through trophic interactions, but the role of consumers in dispersing the microbiomes of such species is rarely examined. For example, stony corals rely on a nutritional symbiosis with single-celled endosymbiotic dinoflagellates (family Symbiodiniaceae) to construct reefs. Most corals acquire Symbiodiniaceae from the environment, but the processes that make Symbiodiniaceae available for uptake are not resolved. Here, we provide the first comprehensive, reef-scale demonstration that predation by diverse coral-eating (corallivorous) fish species promotes the dispersal of Symbiodiniaceae, based on symbiont cell densities and community compositions from the feces of four obligate corallivores, three facultative corallivores, two grazer/detritivores as well as samples of reef sediment and water. RESULTS Obligate corallivore feces are environmental hotspots of Symbiodiniaceae cells: live symbiont cell concentrations in such feces are 5-7 orders of magnitude higher than sediment and water environmental reservoirs. Symbiodiniaceae community compositions in the feces of obligate corallivores are similar to those in two locally abundant coral genera (Pocillopora and Porites), but differ from Symbiodiniaceae communities in the feces of facultative corallivores and grazer/detritivores as well as sediment and water. Combining our data on live Symbiodiniaceae cell densities in feces with in situ observations of fish, we estimate that some obligate corallivorous fish species release over 100 million Symbiodiniaceae cells per 100 m2 of reef per day. Released corallivore feces came in direct contact with coral colonies in the fore reef zone following 91% of observed egestion events, providing a potential mechanism for the transfer of live Symbiodiniaceae cells among coral colonies. CONCLUSIONS Taken together, our findings show that fish predation on corals may support the maintenance of coral cover on reefs in an unexpected way: through the dispersal of beneficial coral symbionts in corallivore feces. Few studies examine the processes that make symbionts available to foundation species, or how environmental reservoirs of such symbionts are replenished. This work sets the stage for parallel studies of consumer-mediated microbiome dispersal and assembly in other sessile, habitat-forming species.
Collapse
Affiliation(s)
- Carsten G B Grupstra
- BioSciences at Rice, Rice University, 6100 Main St, MS-140, Houston, TX, 77005, USA.
| | - Kristen M Rabbitt
- BioSciences at Rice, Rice University, 6100 Main St, MS-140, Houston, TX, 77005, USA
| | - Lauren I Howe-Kerr
- BioSciences at Rice, Rice University, 6100 Main St, MS-140, Houston, TX, 77005, USA
| | - Adrienne M S Correa
- BioSciences at Rice, Rice University, 6100 Main St, MS-140, Houston, TX, 77005, USA
| |
Collapse
|
13
|
Nicholson GM, Clements KD. Ecomorphological divergence and trophic resource partitioning in 15 syntopic Indo-Pacific parrotfishes (Labridae: Scarini). Biol J Linn Soc Lond 2021. [DOI: 10.1093/biolinnean/blaa210] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Abstract
Adaptive diversification is a product of both phylogenetic constraint and ecological opportunity. The species-rich parrotfish genera Scarus and Chlorurus display considerable variation in trophic cranial morphology, but these parrotfishes are often described as generalist herbivores. Recent work has suggested that parrotfish partition trophic resources at very fine spatial scales, raising the question of whether interspecific differences in cranial morphology reflect trophic partitioning. We tested this hypothesis by comparing targeted feeding substrata with a previously published dataset of nine cranial morphological traits. We sampled feeding substrata of 15 parrotfish species at Lizard Island, Great Barrier Reef, Australia, by following individuals until focused biting was observed, then extracting a bite core 22 mm in diameter. Three indices were parameterized for each bite core: substratum taphonomy, maximum turf height and cover of crustose coralline algae. Parrotfish species were spread along a single axis of variation in feeding substrata: successional status of the substratum taphonomy and epilithic and endolithic biota. This axis of trophic variation was significantly correlated with cranial morphology, indicating that morphological disparity within this clade is associated with interspecific partitioning of feeding substrata. Phylogenetic signal and phylomorphospace analyses revealed that the evolution of this clade involved a hitherto-unrecognized level of trophic diversification.
Collapse
Affiliation(s)
| | - Kendall D Clements
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
14
|
Clements CS, Burns AS, Stewart FJ, Hay ME. Parasite-host ecology: the limited impacts of an intimate enemy on host microbiomes. Anim Microbiome 2020; 2:42. [PMID: 33499998 PMCID: PMC7807496 DOI: 10.1186/s42523-020-00061-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 10/16/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Impacts of biotic stressors, such as consumers, on coral microbiomes have gained attention as corals decline worldwide. Corallivore feeding can alter coral microbiomes in ways that contribute to dysbiosis, but feeding strategies are diverse - complicating generalizations about the nature of consumer impacts on coral microbiomes. RESULTS In field experiments, feeding by Coralliophila violacea, a parasitic snail that suppresses coral growth, altered the microbiome of its host, Porites cylindrica, but these impacts were spatially constrained. Alterations in microbial community composition and variability were largely restricted to snail feeding scars; basal or distal areas ~ 1.5 cm or 6-8 cm away, respectively, were largely unaltered. Feeding scars were enriched in taxa common to stressed corals (e.g. Flavobacteriaceae, Rhodobacteraceae) and depauperate in putative beneficial symbionts (e.g. Endozoicomonadaceae) compared to locations that lacked feeding. CONCLUSIONS Previous studies that assessed consumer impacts on coral microbiomes suggested that feeding disrupts microbial communities, potentially leading to dysbiosis, but those studies involved mobile corallivores that move across and among numerous individual hosts. Sedentary parasites like C. violacea that spend long intervals with individual hosts and are dependent on hosts for food and shelter may minimize damage to host microbiomes to assure continued host health and thus exploitation. More mobile consumers that forage across numerous hosts should not experience these constraints. Thus, stability or disruption of microbiomes on attacked corals may vary based on the foraging strategy of coral consumers.
Collapse
Affiliation(s)
- Cody S Clements
- Aquatic Chemical Ecology Center, and Center for Microbial Dynamics and Infection, School of Biological Sciences, Georgia Institute of Technology, 950 Atlantic Drive, Atlanta, GA, 30332-0230, USA.
| | - Andrew S Burns
- Aquatic Chemical Ecology Center, and Center for Microbial Dynamics and Infection, School of Biological Sciences, Georgia Institute of Technology, 950 Atlantic Drive, Atlanta, GA, 30332-0230, USA
- NIAID Microbiome Program, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Frank J Stewart
- Aquatic Chemical Ecology Center, and Center for Microbial Dynamics and Infection, School of Biological Sciences, Georgia Institute of Technology, 950 Atlantic Drive, Atlanta, GA, 30332-0230, USA
- Department of Microbiology & Immunology, Montana State University, Bozeman, MT, 59717-3520, USA
| | - Mark E Hay
- Aquatic Chemical Ecology Center, and Center for Microbial Dynamics and Infection, School of Biological Sciences, Georgia Institute of Technology, 950 Atlantic Drive, Atlanta, GA, 30332-0230, USA
| |
Collapse
|
15
|
Maher RL, Schmeltzer ER, Meiling S, McMinds R, Ezzat L, Shantz AA, Adam TC, Schmitt RJ, Holbrook SJ, Burkepile DE, Vega Thurber R. Coral Microbiomes Demonstrate Flexibility and Resilience Through a Reduction in Community Diversity Following a Thermal Stress Event. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.555698] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
16
|
|