1
|
Klinhom S, Kunasol C, Sriwichaiin S, Kerdphoo S, Chattipakorn N, Chattipakorn SC, Thitaram C. Characteristics of gut microbiota profiles in Asian elephants (Elephas maximus) with gastrointestinal disorders. Sci Rep 2025; 15:1327. [PMID: 39779898 PMCID: PMC11711614 DOI: 10.1038/s41598-025-85495-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 01/03/2025] [Indexed: 01/11/2025] Open
Abstract
Colic and diarrhea are common gastrointestinal (GI) disorders in captive Asian elephants, which can severely impact health and lead to mortality. Gut dysbiosis, indicated by alterations in gut microbiome composition, can be observed in individuals with GI disorders. However, changes in gut microbial profiles of elephants with GI disorders have never been investigated. Thus, this study aimed to elucidate the profiles of gut microbiota in captive elephants with different GI symptoms. Fecal samples were collected from eighteen elephants in Chiang Mai, Thailand, including seven healthy individuals, seven with impaction colic, and four with diarrhea. The samples were subjected to DNA extraction and amplification targeting the V3-V4 region of 16S rRNA gene for next-generation sequencing analysis. Elephants with GI symptoms exhibited a decreased microbial stability, as characterized by a significant reduction in microbiota diversity within individual guts and notable differences in microbial community composition when compared with healthy elephants. These changes included a decrease in the relative abundance of specific bacterial taxa, in elephants with GI symptoms such as a reduction in genera Rubrobacter, Rokubacteria, UBA1819, Nitrospira, and MND1. Conversely, an increase in genera Lysinibacillus, Bacteroidetes_BD2-2, and the family Marinifilaceae was observed when, compared with the healthy group. Variations in taxa of gut microbiota among elephants with GI disorders indicated diverse microbial characteristics associated with different GI symptoms. This study suggests that exploring gut microbiota dynamics in elephant health and GI disorders can lead to a better understanding of food and water management for maintaining a healthy gut and ensuring the longevity of the elephants.
Collapse
Affiliation(s)
- Sarisa Klinhom
- Center of Elephant and Wildlife Health, Animal Hospital, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, 50100, Thailand
| | - Chanon Kunasol
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Neurophysiology Unit, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Sirawit Sriwichaiin
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Neurophysiology Unit, Chiang Mai University, Chiang Mai, 50200, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Sasiwan Kerdphoo
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Neurophysiology Unit, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Nipon Chattipakorn
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Neurophysiology Unit, Chiang Mai University, Chiang Mai, 50200, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Siriporn C Chattipakorn
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand.
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Neurophysiology Unit, Chiang Mai University, Chiang Mai, 50200, Thailand.
- Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, 50200, Thailand.
| | - Chatchote Thitaram
- Center of Elephant and Wildlife Health, Animal Hospital, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, 50100, Thailand.
- Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, 50100, Thailand.
- Elephant, Wildlife and Companion Animals Research Group, Chiang Mai University, Chiang Mai, 50100, Thailand.
| |
Collapse
|
2
|
Wang Y, Wang Y, Zhou J, Bao M, Shah T, Yang S, Zheng J, Li Q, Hou Y, Wang B, Yuan R. Exploring the gut microbiota of healthy captive Asian elephants from various locations in Yunnan, China. Front Microbiol 2024; 15:1403930. [PMID: 39397790 PMCID: PMC11468275 DOI: 10.3389/fmicb.2024.1403930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 08/19/2024] [Indexed: 10/15/2024] Open
Abstract
Introduction The Asian elephant (Elephas maximus) is a giant herbivore classified as an endangered wildlife species by the International Union for Conservation of Threatened Species.This study aims to investigate and compare the core gut microbiota of captive Asian elephants from three different locations in Yunnan Province, China, to explore the impact of environmental and husbandry factors on microbial diversity. Methods We collected fecal samples from 29 captive Asian elephants from three locations and performed full-length 16S rRNA gene sequencing. Microbial diversity was assessed using alpha diversity (Chao1 and Shannon indexes) and beta diversity (Bray-Curtis and Euclidean distance metrics). Principal coordinate analysis (PCoA) was used to visualize microbial variation among groups. Results Alpha diversity analysis showed that the microbial diversity in the Yexianggu group was higher than that in the other groups. Bray-Curtis and Euclidean metrics revealed significant differences among the microbial communities. Bacteroidetes and Firmicutes, which are key cellulose-degrading bacteria, were the dominant phyla in all groups. Synergistaceae was the most abundant family in the Menghai group, while Lachnospiraceae and Pirellulaceae were more abundant in the Yexianggu and Yuantongshan groups, respectively. Genus p-1008-a5-gut-group was more abundant in Yexianggu, and Prevotella was predominant in Menghai. Discussion These results indicate that habitat and husbandry practices significantly influence the gut microbiota of captive Asian elephants. The identification of bacterial species such as Lactobacillus fermentum, Clostridium neonatale, Enterococcus mundtii, Klebsiella huaxiensis, Corynebacterium nasicanis, and Streptococcus equinus highlights the potential role of specific microbes in maintaining host-microbial interactions. Promoting microbial diversity through improved captive conditions could enhance the health of these endangered animals.
Collapse
Affiliation(s)
- Yuhan Wang
- Yunnan Academy of Forestry and Grassland, Kunming, China
- Southwest Forestry University, Kunming, China
| | - Yixuan Wang
- Yunnan Academy of Forestry and Grassland, Kunming, China
| | - Jiuxuan Zhou
- Yunnan Academy of Forestry and Grassland, Kunming, China
| | - Mingwei Bao
- Xishuangbanna Wild Elephant Valley, Kunming, China
| | - Taif Shah
- Kunming University of Science and Technology, Kunming, China
| | - Song Yang
- Southwest Forestry University, Kunming, China
| | - Jing Zheng
- Southwest Forestry University, Kunming, China
| | - Qian Li
- Kunming University of Science and Technology, Kunming, China
| | - Yutong Hou
- Kunming University of Science and Technology, Kunming, China
| | - Binghui Wang
- School of Public Health, Kunming Medical University, Kunming, China
| | - Ruiling Yuan
- Yunnan Academy of Forestry and Grassland, Kunming, China
| |
Collapse
|
3
|
DeCandia AL, Adeduro L, Thacher P, Crosier A, Marinari P, Bortner R, Garelle D, Livieri T, Santymire R, Comizzoli P, Maslanka M, Maldonado JE, Koepfli KP, Muletz-Wolz C, Bornbusch SL. Gut bacterial composition shows sex-specific shifts during breeding season in ex situ managed black-footed ferrets. J Hered 2024; 115:385-398. [PMID: 37886904 DOI: 10.1093/jhered/esad065] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/16/2023] [Accepted: 10/26/2023] [Indexed: 10/28/2023] Open
Abstract
The gut microbiome of mammals engages in a dynamic relationship with the body and contributes to numerous physiological processes integral to overall health. Understanding the factors shaping animal-associated bacterial communities is therefore paramount to the maintenance and management in ex situ wildlife populations. Here, we characterized the gut microbiome of 48 endangered black-footed ferrets (Mustela nigripes) housed at Smithsonian's National Zoo and Conservation Biology Institute (Front Royal, Virginia, USA). We collected longitudinal fecal samples from males and females across two distinct reproductive seasons to consider the role of host sex and reproductive physiology in shaping bacterial communities, as measured using 16S rRNA amplicon sequencing. Within each sex, gut microbial composition differed between breeding and non-breeding seasons, with five bacterial taxa emerging as differentially abundant. Between sexes, female and male microbiomes were similar during non-breeding season but significantly different during breeding season, which may result from sex-specific physiological changes associated with breeding. Finally, we found low overall diversity consistent with other mammalian carnivores alongside high relative abundances of potentially pathogenic microbes such as Clostridium, Escherichia, Paeniclostridium, and (to a lesser degree) Enterococcus-all of which have been associated with gastrointestinal or reproductive distress in mammalian hosts, including black-footed ferrets. We recommend further study of these microbes and possible therapeutic interventions to promote more balanced microbial communities. These results have important implications for ex situ management practices that can improve the gut microbial health and long-term viability of black-footed ferrets.
Collapse
Affiliation(s)
- Alexandra L DeCandia
- Biology Department, Georgetown University, Washington, DC, United States
- Center for Conservation Genomics, Smithsonian's National Zoo and Conservation Biology Institute, Washington, DC, United States
| | - Laura Adeduro
- Biology Department, Georgetown University, Washington, DC, United States
| | - Piper Thacher
- Center for Conservation Genomics, Smithsonian's National Zoo and Conservation Biology Institute, Washington, DC, United States
- Smithsonian-Mason School of Conservation, George Mason University, Front Royal, VA, United States
| | - Adrienne Crosier
- Center for Animal Care Sciences, Smithsonian's National Zoo and Conservation Biology Institute, Front Royal, VA, United States
| | - Paul Marinari
- Center for Animal Care Sciences, Smithsonian's National Zoo and Conservation Biology Institute, Front Royal, VA, United States
| | - Robyn Bortner
- National Black-Footed Ferret Conservation Center, Carr, CO, United States
| | - Della Garelle
- National Black-Footed Ferret Conservation Center, Carr, CO, United States
| | - Travis Livieri
- Prairie Wildlife Research, Stevens Point, WI, United States
| | - Rachel Santymire
- Biology Department, Georgia State University, Atlanta, GA, United States
| | - Pierre Comizzoli
- Center for Species Survival, Smithsonian's National Zoo and Conservation Biology Institute, Front Royal, VA, United States
| | - Michael Maslanka
- Department of Nutrition Science, Smithsonian's National Zoo and Conservation Biology Institute, Washington, DC, United States
| | - Jesús E Maldonado
- Center for Conservation Genomics, Smithsonian's National Zoo and Conservation Biology Institute, Washington, DC, United States
| | - Klaus-Peter Koepfli
- Smithsonian-Mason School of Conservation, George Mason University, Front Royal, VA, United States
- Center for Species Survival, Smithsonian's National Zoo and Conservation Biology Institute, Front Royal, VA, United States
| | - Carly Muletz-Wolz
- Center for Conservation Genomics, Smithsonian's National Zoo and Conservation Biology Institute, Washington, DC, United States
| | - Sally L Bornbusch
- Center for Conservation Genomics, Smithsonian's National Zoo and Conservation Biology Institute, Washington, DC, United States
- Department of Nutrition Science, Smithsonian's National Zoo and Conservation Biology Institute, Washington, DC, United States
| |
Collapse
|
4
|
Martin LC, O'Hare MA, Ghielmetti G, Twesigomwe D, Kerr TJ, Gumbo R, Buss PE, Kitchin N, Hemmings SMJ, Miller MA, Goosen WJ. Short-read full-length 16S rRNA amplicon sequencing for characterisation of the respiratory bacteriome of captive and free-ranging African elephants (Loxodonta africana). Sci Rep 2024; 14:14768. [PMID: 38926469 PMCID: PMC11208578 DOI: 10.1038/s41598-024-65841-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 06/24/2024] [Indexed: 06/28/2024] Open
Abstract
Hypervariable region sequencing of the 16S ribosomal RNA (rRNA) gene plays a critical role in microbial ecology by offering insights into bacterial communities within specific niches. While providing valuable genus-level information, its reliance on data from targeted genetic regions limits its overall utility. Recent advances in sequencing technologies have enabled characterisation of the full-length 16S rRNA gene, enhancing species-level classification. Although current short-read platforms are cost-effective and precise, they lack full-length 16S rRNA amplicon sequencing capability. This study aimed to evaluate the feasibility of a modified 150 bp paired-end full-length 16S rRNA amplicon short-read sequencing technique on the Illumina iSeq 100 and 16S rRNA amplicon assembly workflow by utilising a standard mock microbial community and subsequently performing exploratory characterisation of captive (zoo) and free-ranging African elephant (Loxodonta africana) respiratory microbiota. Our findings demonstrate that, despite generating assembled amplicons averaging 869 bp in length, this sequencing technique provides taxonomic assignments consistent with the theoretical composition of the mock community and respiratory microbiota of other mammals. Tentative bacterial signatures, potentially representing distinct respiratory tract compartments (trunk and lower respiratory tract) were visually identified, necessitating further investigation to gain deeper insights into their implication for elephant physiology and health.
Collapse
Affiliation(s)
- Lauren C Martin
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 241, Cape Town, 8000, South Africa
- South African Medical Research Council/Stellenbosch University Genomics of Brain Disorders Unit, Cape Town, South Africa
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 241, Cape Town, 8000, South Africa
| | - Michaela A O'Hare
- South African Medical Research Council/Stellenbosch University Genomics of Brain Disorders Unit, Cape Town, South Africa
- Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 241, Cape Town, 8000, South Africa
| | - Giovanni Ghielmetti
- South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 241, Cape Town, 8000, South Africa
- Section of Veterinary Bacteriology, Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 270, 8057, Zurich, Switzerland
| | - David Twesigomwe
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Division of Human Genetics, National Health Laboratory Service, and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Tanya J Kerr
- South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 241, Cape Town, 8000, South Africa
| | - Rachiel Gumbo
- South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 241, Cape Town, 8000, South Africa
| | - Peter E Buss
- South African National Parks, Veterinary Wildlife Services, Kruger National Park, Skukuza, South Africa
| | - Natasha Kitchin
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 241, Cape Town, 8000, South Africa
- South African Medical Research Council/Stellenbosch University Genomics of Brain Disorders Unit, Cape Town, South Africa
| | - Sian M J Hemmings
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 241, Cape Town, 8000, South Africa
- South African Medical Research Council/Stellenbosch University Genomics of Brain Disorders Unit, Cape Town, South Africa
| | - Michele A Miller
- South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 241, Cape Town, 8000, South Africa
| | - Wynand J Goosen
- South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 241, Cape Town, 8000, South Africa.
| |
Collapse
|
5
|
Pasciu V, Nieddu M, Sotgiu FD, Baralla E, Berlinguer F. Fecal thyroid hormone metabolites in wild ungulates: a mini-review. Front Vet Sci 2024; 11:1407479. [PMID: 38840625 PMCID: PMC11150844 DOI: 10.3389/fvets.2024.1407479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/09/2024] [Indexed: 06/07/2024] Open
Abstract
This review aims to analyse the fluctuations of fecal thyroid hormone metabolites (FTMs) related to environmental and individual variables in different species of wild ungulates and provide a collection of assay methods. The great advantage of fecal sampling is being completely non-invasive. A systemic search was conducted from 2019 to 2024, using data sources PubMed, Scopus, Web of Science, and the World Wide Web, and ten studies were found on this topic. Three studies used the radioimmunoassay method for FTMs analysis, while the others used a less expensive enzyme-linked immunosorbent assay. Most of these papers validated the method for the species-specific matrix. Related to the studied variables, some authors analysed FTM fluctuations only concerning individual variables, and others in response to both. Temperature and fecal cortisol metabolites (FCMs) were the most studied environmental and individual variables, respectively. Since FTMs are an integrative measure of plasma thyroid hormones, the information obtained from a non-invasive-assay method regarding wild ungulate physiology is becoming of great interest to the scientific community.
Collapse
Affiliation(s)
- Valeria Pasciu
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy
| | - Maria Nieddu
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Sassari, Italy
| | | | - Elena Baralla
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy
| | | |
Collapse
|
6
|
Bornbusch SL, Bamford A, Thacher P, Crosier A, Marinari P, Bortner R, Garelle D, Livieri T, Santymire R, Comizzoli P, Maslanka M, Maldonado JE, Koepfli KP, Muletz-Wolz CR, DeCandia AL. Markers of fertility in reproductive microbiomes of male and female endangered black-footed ferrets (Mustela nigripes). Commun Biol 2024; 7:224. [PMID: 38396133 PMCID: PMC10891159 DOI: 10.1038/s42003-024-05908-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
Reproductive microbiomes contribute to reproductive health and success in humans. Yet data on reproductive microbiomes, and links to fertility, are absent for most animal species. Characterizing these links is pertinent to endangered species, such as black-footed ferrets (Mustela nigripes), whose populations show reproductive dysfunction and rely on ex-situ conservation husbandry. To understand microbial contributions to animal reproductive success, we used 16S rRNA amplicon sequencing to characterize male (prepuce) and female (vaginal) microbiomes of 59 black-footed ferrets at two ex-situ facilities and in the wild. We analyzed variation in microbiome structure according to markers of fertility such as numbers of viable and non-viable offspring (females) and sperm concentration (males). Ferret vaginal microbiomes showed lower inter-individual variation compared to prepuce microbiomes. In both sexes, wild ferrets harbored potential soil bacteria, perhaps reflecting their fossorial behavior and exposure to natural soil microbiomes. Vaginal microbiomes of ex-situ females that produced non-viable litters had greater phylogenetic diversity and distinct composition compared to other females. In males, sperm concentration correlated with varying abundances of bacterial taxa (e.g., Lactobacillus), mirroring results in humans and highlighting intriguing dynamics. Characterizing reproductive microbiomes across host species is foundational for understanding microbial biomarkers of reproductive success and for augmenting conservation husbandry.
Collapse
Affiliation(s)
- Sally L Bornbusch
- Center for Conservation Genomics, Smithsonian's National Zoo & Conservation Biology Institute, Washington, DC, USA.
- Department of Nutrition Science, Smithsonian's National Zoo & Conservation Biology Institute, Washington, DC, USA.
| | | | - Piper Thacher
- Center for Conservation Genomics, Smithsonian's National Zoo & Conservation Biology Institute, Washington, DC, USA
- Smithsonian-Mason School of Conservation, George Mason University, Front Royal, VA, USA
| | - Adrienne Crosier
- Center for Animal Care Services, Smithsonian's National Zoo & Conservation Biology Institute, Front Royal, VA, USA
| | - Paul Marinari
- Center for Animal Care Services, Smithsonian's National Zoo & Conservation Biology Institute, Front Royal, VA, USA
| | - Robyn Bortner
- National Black-Footed Ferret Conservation Center, US Fish and Wildlife Service, Carr, CO, USA
| | - Della Garelle
- National Black-Footed Ferret Conservation Center, US Fish and Wildlife Service, Carr, CO, USA
| | | | | | - Pierre Comizzoli
- Center for Species Survival, Smithsonian's National Zoo & Conservation Biology Institute, Front Royal, VA, USA
| | - Michael Maslanka
- Department of Nutrition Science, Smithsonian's National Zoo & Conservation Biology Institute, Washington, DC, USA
| | - Jesús E Maldonado
- Center for Conservation Genomics, Smithsonian's National Zoo & Conservation Biology Institute, Washington, DC, USA
| | - Klaus-Peter Koepfli
- Smithsonian-Mason School of Conservation, George Mason University, Front Royal, VA, USA
- Center for Species Survival, Smithsonian's National Zoo & Conservation Biology Institute, Front Royal, VA, USA
| | - Carly R Muletz-Wolz
- Center for Conservation Genomics, Smithsonian's National Zoo & Conservation Biology Institute, Washington, DC, USA
| | - Alexandra L DeCandia
- Center for Conservation Genomics, Smithsonian's National Zoo & Conservation Biology Institute, Washington, DC, USA
- Department of Biology, Georgetown University, Washington, DC, USA
| |
Collapse
|
7
|
van Bergeijk DA, Augustijn HE, Elsayed SS, Willemse J, Carrión VJ, Du C, Urem M, Grigoreva LV, Cheprasov MY, Grigoriev S, Jansen H, Wintermans B, Budding AE, Spaink HP, Medema MH, van Wezel GP. Taxonomic and metabolic diversity of Actinomycetota isolated from faeces of a 28,000-year-old mammoth. Environ Microbiol 2024; 26:e16589. [PMID: 38356049 DOI: 10.1111/1462-2920.16589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 01/25/2024] [Indexed: 02/16/2024]
Abstract
Ancient environmental samples, including permafrost soils and frozen animal remains, represent an archive with microbial communities that have barely been explored. This yet unexplored microbial world is a genetic resource that may provide us with new evolutionary insights into recent genomic changes, as well as novel metabolic pathways and chemistry. Here, we describe Actinomycetota Micromonospora, Oerskovia, Saccharopolyspora, Sanguibacter and Streptomyces species were successfully revived and their genome sequences resolved. Surprisingly, the genomes of these bacteria from an ancient source show a large phylogenetic distance to known strains and harbour many novel biosynthetic gene clusters that may well represent uncharacterised biosynthetic potential. Metabolic profiles of the strains display the production of known molecules like antimycin, conglobatin and macrotetrolides, but the majority of the mass features could not be dereplicated. Our work provides insights into Actinomycetota isolated from an ancient source, yielding unexplored genomic information that is not yet present in current databases.
Collapse
Affiliation(s)
- Doris A van Bergeijk
- Department of Microbiology, Immunology and Transplantation (Laboratory of Molecular Bacteriology), KU Leuven, Leuven, Belgium
- Center for Microbiology, VIB, Leuven, Belgium
| | - Hannah E Augustijn
- Institute of Biology, Leiden University, Leiden, The Netherlands
- Bioinformatics Group, Wageningen University, Wageningen, The Netherlands
| | | | - Joost Willemse
- Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Victor J Carrión
- Institute of Biology, Leiden University, Leiden, The Netherlands
- Department of Microbiology, University of Málaga, Málaga, Spain
- Department of Microbial Ecology, Netherlands Institute of Ecology, Wageningen, The Netherlands
| | - Chao Du
- Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Mia Urem
- Institute of Biology, Leiden University, Leiden, The Netherlands
| | | | | | | | | | - Bas Wintermans
- Department of Medical Microbiology, Adrz Hospital, Goes, The Netherlands
| | | | - Herman P Spaink
- Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Marnix H Medema
- Institute of Biology, Leiden University, Leiden, The Netherlands
- Bioinformatics Group, Wageningen University, Wageningen, The Netherlands
| | - Gilles P van Wezel
- Institute of Biology, Leiden University, Leiden, The Netherlands
- Department of Microbial Ecology, Netherlands Institute of Ecology, Wageningen, The Netherlands
| |
Collapse
|
8
|
Klinhom S, Sriwichaiin S, Kerdphoo S, Khonmee J, Chattipakorn N, Chattipakorn SC, Thitaram C. Characteristics of gut microbiota in captive Asian elephants (Elephas maximus) from infant to elderly. Sci Rep 2023; 13:23027. [PMID: 38155244 PMCID: PMC10754835 DOI: 10.1038/s41598-023-50429-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 12/19/2023] [Indexed: 12/30/2023] Open
Abstract
Gut microbiota play an important role in the health and disease of Asian elephants, however, its characteristics at each stage of life have not been thoroughly investigated in maintaining and regulating health of elephants. This study, therefore, aimed to characterize the profiles of the gut microbiota of captive Asian elephants from infants to the elderly. Gut microbiota were identified by 16S rRNA sequencing from the feces of captive Asian elephants with varying age groups, including infant calves, suckling calves, weaned calves, subadult and adult elephants, and geriatric elephants. The diversity of the gut microbiota was lowest in infants, stable during adulthood, and slightly decreased in the geriatric period. The gut microbiota of the infant elephants was dominated by milk-fermenting taxa including genus Bifidobacterium of family Bifidobacteriaceae together with genus Akkermansia. The fiber-fermenting taxa such as Lachnospiraceae_NK3A20_group were found to be increased in suckling elephants in differential abundance analysis by Analysis of Compositions of Microbiomes with Bias Correction (ANCOM-BC). The gut microbiota profiles after weaning until the adult period has been uniform as indicated by no significant differences in beta diversity between groups. However, the composition of the gut microbiota was found to change again in geriatric elephants. Understanding of the composition of the gut microbiota of captive Asian elephants at various life stages could be beneficial for promoting good health throughout their lifespan, as well as ensuring the welfare of captive elephants.
Collapse
Affiliation(s)
- Sarisa Klinhom
- Center of Elephant and Wildlife Health, Animal Hospital, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, 50100, Thailand
| | - Sirawit Sriwichaiin
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Sasiwan Kerdphoo
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Jaruwan Khonmee
- Center of Elephant and Wildlife Health, Animal Hospital, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, 50100, Thailand
- Department of Veterinary Bioscience and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, 50100, Thailand
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Siriporn C Chattipakorn
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand.
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.
- Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, 50200, Thailand.
| | - Chatchote Thitaram
- Center of Elephant and Wildlife Health, Animal Hospital, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, 50100, Thailand.
- Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, 50100, Thailand.
- Elephant, Wildlife and Companion Animals Research Group, Chiang Mai University, Chiang Mai, 50100, Thailand.
| |
Collapse
|
9
|
Pokharel SS, Brown JL. Physiological plasticity in elephants: highly dynamic glucocorticoids in African and Asian elephants. CONSERVATION PHYSIOLOGY 2023; 11:coad088. [PMID: 39583302 PMCID: PMC10673820 DOI: 10.1093/conphys/coad088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 10/04/2023] [Accepted: 11/01/2023] [Indexed: 09/27/2024]
Abstract
Slowly reproducing and long-lived terrestrial mammals are often more at risk from challenges that influence fitness and survival. It is, therefore, important to understand how animals cope with such challenges and how coping mechanisms translate over generations and affect phenotypic plasticity. Rapidly escalating anthropogenic challenges may further diminish an animal's ability to reinstate homeostasis. Research to advance insights on elephant stress physiology has predominantly focused on relative or comparative analyses of a major stress response marker, glucocorticoids (GCs), across different ecological, anthropogenic, and reproductive contexts. This paper presents an extensive review of published findings on Asian and African elephants from 1980 to 2023 (May) and reveals that stress responses, as measured by alterations in GCs in different sample matrices, often are highly dynamic and vary within and across individuals exposed to similar stimuli, and not always in a predictable fashion. Such dynamicity in physiological reactivity may be mediated by individual differences in personality traits or coping styles, ecological conditions, and technical factors that often are not considered in study designs. We describe probable causations under the 'Physiological Dynamicity Model', which considers context-experience-individuality effects. Highly variable adrenal responses may affect physiological plasticity with potential fitness and survival consequences. This review also addresses the significance of cautious interpretations of GCs data in the context of normal adaptive stress versus distress. We emphasize the need for long-term assessments of GCs that incorporate multiple markers of 'stress' and 'well-being' to decipher the probable fitness consequences of highly dynamic physiological adrenal responses in elephants. Ultimately, we propose that assessing GC responses to current and future challenges is one of the most valuable and informative conservation tools we have for guiding conservation strategies.
Collapse
Affiliation(s)
- Sanjeeta Sharma Pokharel
- Center for Species Survival, Smithsonian National Zoo Conservation Biology Institute, 1500 Remount Road, Front Royal, VA 22630, USA
| | - Janine L Brown
- Center for Species Survival, Smithsonian National Zoo Conservation Biology Institute, 1500 Remount Road, Front Royal, VA 22630, USA
| |
Collapse
|
10
|
Williams CE, Brown AE, Williams CL. The role of diet and host species in shaping the seasonal dynamics of the gut microbiome. FEMS Microbiol Ecol 2023; 99:fiad156. [PMID: 38070877 PMCID: PMC10750813 DOI: 10.1093/femsec/fiad156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 10/05/2023] [Accepted: 12/08/2023] [Indexed: 12/27/2023] Open
Abstract
The gut microbiome plays an important role in the health and fitness of hosts. While previous studies have characterized the importance of various ecological and evolutionary factors in shaping the composition of the gut microbiome, most studies have been cross-sectional in nature, ignoring temporal variation. Thus, it remains unknown how these same factors might affect the stability and dynamics of the gut microbiome over time, resulting in variation across the tree of life. Here, we used samples collected in each of four seasons for three taxa: the herbivorous southern white rhinoceros (Ceratotherium simum simum, n = 5); the carnivorous Sumatran tiger (Panthera tigris sumatrae, n = 5); and the red panda (Ailurus fulgens, n = 9), a herbivorous carnivore that underwent a diet shift in its evolutionary history from carnivory to a primarily bamboo-based diet. We characterize the variability of the gut microbiome among these three taxa across time to elucidate the influence of diet and host species on these dynamics. Altogether, we found that red pandas exhibit marked seasonal variation in their gut microbial communities, experiencing both high microbial community turnover and high variation in how individual red panda's gut microbiota respond to seasonal changes. Conversely, while the gut microbiota of rhinoceros change throughout the year, all individuals respond in the same way to seasonal changes. Tigers experience relatively low levels of turnover throughout the year, yet the ways in which individuals respond to seasonal transitions are highly varied. We highlight how the differences in microbiome richness and network connectivity between these three species may affect the level of temporal stability in the gut microbiota across the year.
Collapse
Affiliation(s)
- Claire E Williams
- Department of Biology, University of Nevada, Reno, Reno, NV 89557, United States
| | - Ashli E Brown
- Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State University, MS State, MS 39762, United States
| | - Candace L Williams
- Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State University, MS State, MS 39762, United States
- Beckman Center for Conservation Science, San Diego Zoo Wildlife Alliance, San Diego, CA 92027, United States
| |
Collapse
|
11
|
Klinsawat W, Uthaipaisanwong P, Jenjaroenpun P, Sripiboon S, Wongsurawat T, Kusonmano K. Microbiome variations among age classes and diets of captive Asian elephants (Elephas maximus) in Thailand using full-length 16S rRNA nanopore sequencing. Sci Rep 2023; 13:17685. [PMID: 37848699 PMCID: PMC10582034 DOI: 10.1038/s41598-023-44981-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 10/14/2023] [Indexed: 10/19/2023] Open
Abstract
Asian elephant (Elephas maximus) is the national symbol of Thailand and linked to Thai history and culture for centuries. The elephant welfare improvement is one of the major components to achieve sustainable captive management. Microbiome inhabiting digestive tracts have been shown with symbiotic relations to host health. This work provided high-resolution microbiome profiles of 32 captive elephants at a species level by utilizing full-length 16S rRNA gene nanopore sequencing. Eleven common uncultured bacterial species were found across elephants fed with solid food including uncultured bacterium Rikenellaceae RC9 gut group, Kiritimatiellae WCHB1-41, Phascolarctobacterium, Oscillospiraceae NK4A214 group, Christensenellaceae R-7 group, Oribacterium, Oscillospirales UCG-010, Lachnospiraceae, Bacteroidales F082, uncultured rumen Rikenellaceae RC9 gut group, and Lachnospiraceae AC2044 group. We observed microbiome shifts along the age classes of baby (0-2 years), juvenile (2-10 years), and adult (> 10 years). Interestingly, we found distinct microbiome profiles among adult elephants fed with a local palm, Caryota urens, as a supplement. Potential beneficial microbes have been revealed according to the age classes and feed diets. The retrieved microbiome data could be provided as good baseline microbial profiles for monitoring elephant health, suggesting further studies towards dietary selection suitable for each age class and the use of local supplementary diets.
Collapse
Affiliation(s)
- Worata Klinsawat
- Conservation Ecology Program, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, Thailand
| | - Pichahpuk Uthaipaisanwong
- Systems Biology and Bioinformatics Research Group, Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi, Bangkok, Thailand
| | - Piroon Jenjaroenpun
- Division of Medical Bioinformatics, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Supaphen Sripiboon
- Department of Large Animal and Wildlife Clinical Science, Faculty of Veterinary Medicine, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom, Thailand
| | - Thidathip Wongsurawat
- Division of Medical Bioinformatics, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
| | - Kanthida Kusonmano
- Systems Biology and Bioinformatics Research Group, Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi, Bangkok, Thailand.
- Bioinformatics and Systems Biology Program, Schools of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, Thailand.
| |
Collapse
|
12
|
Thorel M, Obregon D, Mulot B, Maitre A, Mateos-Hernandez L, Moalic PY, Wu-Chuang A, Cabezas-Cruz A, Leclerc A. Conserved core microbiota in managed and free-ranging Loxodonta africana elephants. Front Microbiol 2023; 14:1247719. [PMID: 37860133 PMCID: PMC10582353 DOI: 10.3389/fmicb.2023.1247719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/30/2023] [Indexed: 10/21/2023] Open
Abstract
The gut microbiota plays a crucial role in animal health and homeostasis, particularly in endangered species conservation. This study investigated the fecal microbiota composition of European captive-bred African savanna elephants (Loxodonta africana) housed in French zoos, and compared it with wild African savanna elephants. Fecal samples were collected and processed for DNA extraction and amplicon sequencing of the 16S rRNA gene. The analysis of α and β diversity revealed significant effects of factors such as diet, daily activity, and institution on microbiota composition. Specifically, provision of branches as part of the diet positively impacted microbiota diversity. Comparative analyses demonstrated distinct differences between captive and wild elephant microbiomes, characterized by lower bacterial diversity and altered co-occurrence patterns in the captive population. Notably, specific taxa were differentially abundant in captive and wild elephants, suggesting the influence of the environment on microbiota composition. Furthermore, the study identified a core association network shared by both captive and wild elephants, emphasizing the importance of certain taxa in maintaining microbial interactions. These findings underscore the impact of environment and husbandry factors on elephant gut microbiota, highlighting the benefits of dietary enrichment strategies in zoos to promote microbiome diversity and health. The study contributes to the broader understanding of host-microbiota interactions and provides insights applicable to conservation medicine and captive animal management.
Collapse
Affiliation(s)
- Milan Thorel
- ZooParc de Beauval and Beauval Nature, Saint-Aignan, France
| | - Dasiel Obregon
- School of Environmental Sciences, University of Guelph, Guelph, ON, Canada
| | - Baptiste Mulot
- ZooParc de Beauval and Beauval Nature, Saint-Aignan, France
| | - Apolline Maitre
- Anses, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Lourdes Mateos-Hernandez
- Anses, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| | | | - Alejandra Wu-Chuang
- Anses, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Alejandro Cabezas-Cruz
- Anses, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| | | |
Collapse
|
13
|
Prado NA, Armstrong EE, Brown JL, Goldenberg SZ, Leimgruber P, Pearson VR, Maldonado JE, Campana MG. Genomic resources for Asian (Elephas maximus) and African savannah elephant (Loxodonta africana) conservation and health research. J Hered 2023; 114:529-538. [PMID: 37246890 DOI: 10.1093/jhered/esad034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 05/26/2023] [Indexed: 05/30/2023] Open
Abstract
We provide novel genomic resources to help understand the genomic traits involved in elephant health and to aid conservation efforts. We sequence 11 elephant genomes (5 African savannah, 6 Asian) from North American zoos, including 9 de novo assemblies. We estimate elephant germline mutation rates and reconstruct demographic histories. Finally, we provide an in-solution capture assay to genotype Asian elephants. This assay is suitable for analyzing degraded museum and noninvasive samples, such as feces and hair. The elephant genomic resources we present here should allow for more detailed and uniform studies in the future to aid elephant conservation efforts and disease research.
Collapse
Affiliation(s)
- Natalia A Prado
- Biology Department, College of Arts and Sciences, Adelphi University, Garden City, NY, United States
- Center for Conservation Genomics, Smithsonian's National Zoo and Conservation Biology Institute, Washington, DC, United States
- Endocrinology Research Laboratory, Center for Species Survival, Smithsonian's National Zoo and Conservation Biology Institute, Front Royal, VA, United States
| | - Ellie E Armstrong
- Department of Biology, Stanford University, Stanford, CA, United States
- School of Biological Sciences, Washington State University, Pullman, WA, United States
| | - Janine L Brown
- Endocrinology Research Laboratory, Center for Species Survival, Smithsonian's National Zoo and Conservation Biology Institute, Front Royal, VA, United States
| | - Shifra Z Goldenberg
- Conservation Ecology Center, Smithsonian's National Zoo and Conservation Biology Institute, Washington, DC, United States
- Conservation Science and Wildlife Health, San Diego Zoo Wildlife Alliance, Escondido, CA, United States
| | - Peter Leimgruber
- Conservation Ecology Center, Smithsonian's National Zoo and Conservation Biology Institute, Washington, DC, United States
| | - Virginia R Pearson
- Glenn Rall Laboratory, Fox Chase Cancer Center, Philadelphia, PA, United States
| | - Jesús E Maldonado
- Center for Conservation Genomics, Smithsonian's National Zoo and Conservation Biology Institute, Washington, DC, United States
| | - Michael G Campana
- Center for Conservation Genomics, Smithsonian's National Zoo and Conservation Biology Institute, Washington, DC, United States
| |
Collapse
|
14
|
Keady MM, Jimenez RR, Bragg M, Wagner JCP, Bornbusch SL, Power ML, Muletz-Wolz CR. Ecoevolutionary processes structure milk microbiomes across the mammalian tree of life. Proc Natl Acad Sci U S A 2023; 120:e2218900120. [PMID: 37399384 PMCID: PMC10334807 DOI: 10.1073/pnas.2218900120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 05/22/2023] [Indexed: 07/05/2023] Open
Abstract
Milk production is an ancient adaptation that unites all mammals. Milk contains a microbiome that can contribute to offspring health and microbial-immunological development. We generated a comprehensive milk microbiome dataset (16S rRNA gene) for the class Mammalia, representing 47 species from all placental superorders, to determine processes structuring milk microbiomes. We show that across Mammalia, milk exposes offspring to maternal bacterial and archaeal symbionts throughout lactation. Deterministic processes of environmental selection accounted for 20% of milk microbiome assembly processes; milk microbiomes were similar from mammals with the same host superorder (Afrotheria, Laurasiathera, Euarchontoglires, and Xenarthra: 6%), environment (marine captive, marine wild, terrestrial captive, and terrestrial wild: 6%), diet (carnivore, omnivore, herbivore, and insectivore: 5%), and milk nutrient content (sugar, fat, and protein: 3%). We found that diet directly and indirectly impacted milk microbiomes, with indirect effects being mediated by milk sugar content. Stochastic processes, such as ecological drift, accounted for 80% of milk microbiome assembly processes, which was high compared to mammalian gut and mammalian skin microbiomes (69% and 45%, respectively). Even amid high stochasticity and indirect effects, our results of direct dietary effects on milk microbiomes provide support for enteromammary trafficking, representing a mechanism by which bacteria are transferred from the mother's gut to mammary gland and then to offspring postnatally. The microbial species present in milk reflect both selective pressures and stochastic processes at the host level, exemplifying various ecological and evolutionary factors acting on milk microbiomes, which, in turn, set the stage for offspring health and development.
Collapse
Affiliation(s)
- Mia M. Keady
- Center for Conservation Genomics, Smithsonian National Zoo and Conservation Biology Institute, Washington, DC20008
- Nelson Institute for Environmental Studies, University of Wisconsin-Madison, Madison, WI53706
| | - Randall R. Jimenez
- Center for Conservation Genomics, Smithsonian National Zoo and Conservation Biology Institute, Washington, DC20008
- Science Team, International Union for Conservation of Nature, 11501San José, Costa Rica
| | - Morgan Bragg
- Center for Conservation Genomics, Smithsonian National Zoo and Conservation Biology Institute, Washington, DC20008
- Department of Environmental Science and Policy, George Mason University, Fairfax, VA22030
| | - Jenna C. P. Wagner
- Nutrition Laboratory and Conservation Ecology Center, Smithsonian National Zoo and Conservation Biology Institute, National Zoological Park, Washington, DC20008
| | - Sally L. Bornbusch
- Center for Conservation Genomics, Smithsonian National Zoo and Conservation Biology Institute, Washington, DC20008
- Department of Nutrition Science, Smithsonian National Zoo and Conservation Biology Institute, Washington, DC20008
| | - Michael L. Power
- Nutrition Laboratory and Conservation Ecology Center, Smithsonian National Zoo and Conservation Biology Institute, National Zoological Park, Washington, DC20008
| | - Carly R. Muletz-Wolz
- Center for Conservation Genomics, Smithsonian National Zoo and Conservation Biology Institute, Washington, DC20008
| |
Collapse
|
15
|
Amiri N, M. Keady M, Lim HC. Honey bees and bumble bees occupying the same landscape have distinct gut microbiomes and amplicon sequence variant-level responses to infections. PeerJ 2023; 11:e15501. [PMID: 37312881 PMCID: PMC10259447 DOI: 10.7717/peerj.15501] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 05/14/2023] [Indexed: 06/15/2023] Open
Abstract
The gut microbiome of bees is vital for the health of their hosts. Given the ecosystem functions performed by bees, and the declines faced by many species, it is important to improve our understanding of the amount of natural variation in the gut microbiome, the level of sharing of bacteria among co-occurring species (including between native and non-native species), and how gut communities respond to infections. We conducted 16S rRNA metabarcoding to discern the level of microbiome similarity between honey bees (Apis mellifera, N = 49) and bumble bees (Bombus spp., N = 66) in a suburban-rural landscape. We identified a total of 233 amplicon sequence variants (ASVs) and found simple gut microbiomes dominated by bacterial taxa belonging to Gilliamella, Snodgrassella, and Lactobacillus. The average number of ASVs per species ranged from 4.00-15.00 (8.79 ± 3.84, mean ± SD). Amplicon sequence variant of one bacterial species, G. apicola (ASV 1), was widely shared across honey bees and bumble bees. However, we detected another ASV of G. apicola that was either exclusive to honey bees, or represented an intra-genomic 16S rRNA haplotype variant in honey bees. Other than ASV 1, honey bees and bumble bees rarely share gut bacteria, even ones likely derived from outside environments (e.g., Rhizobium spp., Fructobacillus spp.). Honey bee bacterial microbiomes exhibited higher alpha diversity but lower beta and gamma diversities than those of bumble bees, likely a result of the former possessing larger, perennial hives. Finally, we identified pathogenic or symbiotic bacteria (G. apicola, Acinetobacter sp. and Pluralibacter sp.) that associate with Trypanosome and/or Vairimorpha infections in bees. Such insights help to determine bees' susceptibility to infections should gut microbiomes become disrupted by chemical pollutants and contribute to our understanding of what constitutes a state of dysbiosis.
Collapse
Affiliation(s)
- Navolle Amiri
- Department of Biology, George Mason University, Fairfax, VA, United States
| | - Mia M. Keady
- Department of Biology, George Mason University, Fairfax, VA, United States
- Nelson Institute for Environmental Studies, University of Wisconsin—Madison, Madison, WI, United States
- Center for Conservation Genomics, Smithsonian’s National Zoo and Conservation Biology Institute, Washington, D.C., United States
| | - Haw Chuan Lim
- Department of Biology, George Mason University, Fairfax, VA, United States
- Center for Conservation Genomics, Smithsonian’s National Zoo and Conservation Biology Institute, Washington, D.C., United States
| |
Collapse
|
16
|
Thacher PR, Kendrick EL, Maslanka M, Muletz-Wolz CR, Bornbusch SL. Fecal microbiota transplants modulate the gut microbiome of a two-toed sloth (Choloepus didactylus). Zoo Biol 2023; 42:453-458. [PMID: 36629092 DOI: 10.1002/zoo.21751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/18/2022] [Accepted: 12/23/2022] [Indexed: 01/12/2023]
Abstract
The microbes inhabiting an animal's gastrointestinal tracts, collectively known as the gut microbiome, are vital to animal health and wellbeing. For animals experiencing gut distress or infection, modulation of the gut microbiome, for example, via fecal microbiota transplant (FMT), provides a possible disease prevention and treatment method. The beneficial microbes present in the donor's transplanted feces can help combat pathogens, assist in digestion, and rebalance the recipient's microbiota. Investigating the efficacy of FMTs in animal health is a crucial step toward improving management strategies for species under human care. We present a case study of the use of FMTs in a two-toed sloth experiencing abnormally large, clumped, and frequent stools. We used 16 S rRNA amplicon sequencing of fecal samples to (a) compare the microbiomes of the FMT donor, a healthy, cohoused conspecific, and the FMT recipient and (b) assess the influence of multiple rounds of FMTs on the recipient's microbiome and stool consistency and frequency over time. In response to the FMTs, we found that the recipient's microbiome showed trends toward increased diversity, shifted community composition, and altered membership that more resembled the community of the donor. FMT treatment was also associated with marked, yet temporary, alleviation of the recipient's abnormal bowel movements, suggesting a broader impact on gut health. Our results provide valuable preliminary evidence that FMT treatments can augment the recipient's gut microbiome, with potential implications for animal health and management.
Collapse
Affiliation(s)
- Piper R Thacher
- Center for Conservation Genomics, Smithsonian's National Zoo and Conservation Biology Institute, Washington, District of Columbia, USA.,Department of Environmental Science and Policy, Smithsonian Mason School of Conservation, George Mason University, Fairfax, Virginia, USA
| | - Erin L Kendrick
- Department of Nutrition Science, Smithsonian's National Zoo and Conservation Biology Institute, Washington, District of Columbia, USA
| | - Michael Maslanka
- Department of Nutrition Science, Smithsonian's National Zoo and Conservation Biology Institute, Washington, District of Columbia, USA
| | - Carly R Muletz-Wolz
- Center for Conservation Genomics, Smithsonian's National Zoo and Conservation Biology Institute, Washington, District of Columbia, USA
| | - Sally L Bornbusch
- Center for Conservation Genomics, Smithsonian's National Zoo and Conservation Biology Institute, Washington, District of Columbia, USA.,Department of Nutrition Science, Smithsonian's National Zoo and Conservation Biology Institute, Washington, District of Columbia, USA
| |
Collapse
|
17
|
Feng X, Hua R, Zhang W, Liu Y, Luo C, Li T, Chen X, Zhu H, Wang Y, Lu Y. Comparison of the gut microbiome and resistome in captive African and Asian elephants on the same diet. Front Vet Sci 2023; 10:986382. [PMID: 36875997 PMCID: PMC9978182 DOI: 10.3389/fvets.2023.986382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 01/26/2023] [Indexed: 02/18/2023] Open
Abstract
Elephants are endangered species and threatened with extinction. They are monogastric herbivorous, hindgut fermenters and their digestive strategy requires them to consume large amounts of low quality forage. The gut microbiome is important to their metabolism, immune regulation, and ecological adaptation. Our study investigated the structure and function of the gut microbiota as well as the antibiotic resistance genes (ARGs) in captive African and Asian elephants on the same diet. Results showed that captive African and Asian elephants had distinct gut bacterial composition. MetaStats analysis showed that the relative abundance of Spirochaetes (FDR = 0.00) and Verrucomicrobia (FDR = 0.01) at the phylum level as well as Spirochaetaceae (FDR = 0.01) and Akkermansiaceae (FDR = 0.02) at the family level varied between captive African and Asian elephants. Among the top ten functional subcategories at level 2 (57 seed pathway) of Kyoto Encyclopedia of Genes and Genomes (KEGG) database, the relative gene abundance of cellular community-prokaryotes, membrane transport, and carbohydrate metabolism in African elephants were significantly lower than those in Asian elephants (0.98 vs. 1.03%, FDR = 0.04; 1.25 vs. 1.43%, FDR = 0.03; 3.39 vs. 3.63%; FDR = 0.02). Among the top ten functional subcategories at level 2 (CAZy family) of CAZy database, MetaStats analysis showed that African elephants had higher relative gene abundance of Glycoside Hydrolases family 28 (GH 28) compared to Asian elephants (0.10 vs. 0.08%, FDR = 0.03). Regarding the antibiotic resistance genes carried by gut microbes, MetaStats analysis showed that African elephants had significantly higher relative abundance of vanO (FDR = 0.00), tetQ (FDR = 0.04), and efrA (FDR = 0.04) than Asian elephants encoding resistance for glycopeptide, tetracycline, and macrolide/rifamycin/fluoroquinolone antibiotic, respectively. In conclusion, captive African and Asian elephants on the same diet have distinct gut microbial communities. Our findings established the ground work for future research on improving gut health of captive elephants.
Collapse
Affiliation(s)
- Xin Feng
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Rong Hua
- Beijing Key Laboratory of Captive Wildlife Technologies, Beijing Zoo, Beijing, China
| | - Wanying Zhang
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Yuhang Liu
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Caiyu Luo
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Tonghao Li
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Xiaolin Chen
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Hui Zhu
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Youcong Wang
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Yan Lu
- Beijing Key Laboratory of Captive Wildlife Technologies, Beijing Zoo, Beijing, China
| |
Collapse
|
18
|
Bornbusch SL, Keady MM, Power ML, Muletz-Wolz CR. Milk microbiomes of three great ape species vary among host species and over time. Sci Rep 2022; 12:11017. [PMID: 35773288 PMCID: PMC9247006 DOI: 10.1038/s41598-022-15091-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 05/17/2022] [Indexed: 12/02/2022] Open
Abstract
In mammalian neonates, milk consumption provides nutrients, growth factors, immune molecules, and microbes. Milk microbiomes are increasingly recognized for their roles in seeding infant gut microbiomes and priming immune development. However, milk microbiome variation within and among individuals remains under investigation. We used 16S rRNA gene sequencing to investigate factors shaping milk microbiomes in three captive great ape species: Gorilla gorilla gorilla (individuals, N = 4; samples, n = 29), Pongo abelii (N = 2; n = 16), and Pongo pygmaeus (N = 1; n = 9). We demonstrate variation among host species, over lactation, and between housing facilities. In phylogenetic community composition, milk microbiomes were distinct among the three ape species. We found only a few shared, abundant bacterial taxa and suggest that they likely serve functional roles. The diversity and community composition of milk microbiomes showed gradual changes over time in gorillas and the Bornean orangutan, which was detectable with our comprehensive sampling over lactation stages (> 300-day span). In gorillas, milk microbiomes differed between housing facilities, but were similar between dams within a facility. These results support the strong influence of evolutionary history in shaping milk microbiomes, but also indicate that more proximate cues from mother, offspring, and the environment affect the distribution of rarer microbial taxa.
Collapse
Affiliation(s)
- Sally L Bornbusch
- Center for Conservation Genomics, Smithsonian's National Zoo and Conservation Biology Institute, Washington, DC, USA.
- Center for Species Survival, Smithsonian's National Zoo and Conservation Biology Institute, Washington, DC, USA.
| | - Mia M Keady
- Center for Conservation Genomics, Smithsonian's National Zoo and Conservation Biology Institute, Washington, DC, USA
- Nelson Institute for Environmental Studies, University of Wisconsin-Madison, Madison, WI, USA
| | - Michael L Power
- Center for Species Survival, Smithsonian's National Zoo and Conservation Biology Institute, Washington, DC, USA
| | - Carly R Muletz-Wolz
- Center for Conservation Genomics, Smithsonian's National Zoo and Conservation Biology Institute, Washington, DC, USA
| |
Collapse
|