1
|
Naguib M, Sharma S, Schneider A, Wehmueller S, Abdelaziz K. Comparative Effectiveness of Various Multi-Antigen Vaccines in Controlling Campylobacter jejuni in Broiler Chickens. Vaccines (Basel) 2024; 12:908. [PMID: 39204034 PMCID: PMC11359598 DOI: 10.3390/vaccines12080908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 09/03/2024] Open
Abstract
This study was undertaken to evaluate and compare the efficacy of different multi-antigen vaccines, including heat-inactivated, whole lysate, and subunit (outer membrane proteins [OMPs]) C. jejuni vaccines along with the immunostimulant CpG ODN in controlling Campylobacter colonization in chickens. In the first trial, 125 μg of C. jejuni OMPs and 50 μg of CpG ODN were administered individually or in combination, either in ovo to chick embryos or subcutaneously (SC) to one-day-old chicks. In the second trial, different concentrations of C. jejuni antigens (heat-killed, whole lysate, and OMPs) were administered SC to one-day-old chicks. The results of the first trial revealed that SC immunization with the combination of CpG ODN and C. jejuni OMPs elevated interferon (IFN)-γ, interleukin (IL)-1β, and IL-13 gene expression in the spleen, significantly increased serum IgM and IgY antibody levels, and reduced cecal C. jejuni counts by approximately 1.2 log10. In contrast, in ovo immunization did not elicit immune responses or confer protection against Campylobacter. The results of the second trial showed that SC immunization with C. jejuni whole lysate or 200 μg OMPs reduced C. jejuni counts by approximately 1.4 and 1.1 log10, respectively. In conclusion, C. jejuni lysate and OMPs are promising vaccine antigens for reducing Campylobacter colonization in chickens.
Collapse
Affiliation(s)
- Mostafa Naguib
- Department of Animal and Veterinary Science, Clemson University, Clemson, SC 29634, USA; (M.N.); (S.S.); (A.S.)
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Cairo University, Cairo 12211, Egypt
| | - Shreeya Sharma
- Department of Animal and Veterinary Science, Clemson University, Clemson, SC 29634, USA; (M.N.); (S.S.); (A.S.)
| | - Abigail Schneider
- Department of Animal and Veterinary Science, Clemson University, Clemson, SC 29634, USA; (M.N.); (S.S.); (A.S.)
| | - Sarah Wehmueller
- Department of Animal and Veterinary Science, Clemson University, Clemson, SC 29634, USA; (M.N.); (S.S.); (A.S.)
| | - Khaled Abdelaziz
- Department of Animal and Veterinary Science, Clemson University, Clemson, SC 29634, USA; (M.N.); (S.S.); (A.S.)
- Clemson University School of Health Research (CUSHR), Clemson, SC 29634, USA
| |
Collapse
|
2
|
Kilburn-Kappeler LR, Doerksen T, Lu A, Palinski RM, Lu N, Aldrich CG. Evaluation of corn fermented protein on the fecal microbiome of cats. J Anim Sci 2024; 102:skae268. [PMID: 39276154 PMCID: PMC11537796 DOI: 10.1093/jas/skae268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/13/2024] [Indexed: 09/16/2024] Open
Abstract
Co-products from the ethanol industry, such as distillers dried grains with solubles (DDGS), can provide alternative protein sources for pet food. Corn fermented protein (CFP) is produced using postfermentation technology to split the protein and yeast from fiber prior to drying. This results in a higher protein ingredient compared to DDGS, increasing its appeal for pet food. In addition, the substantial yeast component, at approximately 20% to 25%, may promote gut health through modulation of the microbiome and the production of short-chain fatty acids. Therefore, the objective of this study was to determine the effect of CFP on the fecal microbiome of cats. The 4 experimental diets included a control with no yeast (T1) and diets containing either 3.5% brewer's dried yeast (T2), 2.5% brewer's dried yeast plus 17.5% DDGS (T3), or 17.5% CFP (T4). All diets except T1 were formulated to contain 3.5% yeast. Diets were fed to adult cats (n = 11) in an incomplete 4 × 4 replicated Latin square design. Cats were adapted to diet for 9 d followed by a 5-d total fecal collection. During each collection period, fresh fecal samples from each cat were collected and stored at -80 °C until analysis. Fresh fecal samples (n = 44) were analyzed by 16S rRNA gene sequencing. Raw sequences were processed through Mothur (v.1.44.1). Community diversity was evaluated in R (v4.0.3). Relative abundance was analyzed within the 50 most abundant operational taxonomic unitsusing a mixed model of SAS (v9.4, SAS Institute, Inc., Cary, NC). Diet was the fixed effect and cat and period were random effects. Results were considered significant at P < 0.05. Alpha-diversity indices (Observed, Chao1, Shannon, Simpson) and beta-diversity metric (principal coordinate analysis) were similar for all treatments. Predominant phyla were Firmicutes (66%), Bacteroidetes (25%), Actinobacteria (8%), Proteobacteria (0.64%), and Desulfobacteria (0.54%). The relative abundance of Firmicutes and Actinobacteria was lower (P < 0.05) for T3 compared to T4 and T2, respectively. On a more specific phylogenic level, 17 genera resulted in differences (P < 0.05) among dietary treatments. Overall, this data indicates that compared to traditional yeast and distillers dried grains, CFP did not alter the overall diversity of the fecal microbiome of healthy adult cats over a 14-d period.
Collapse
Affiliation(s)
| | - Tyler Doerksen
- Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Andrea Lu
- Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Rachel M Palinski
- Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Nanyan Lu
- Bioinformatics Center, Kansas State University, Manhattan, KS 66506, USA
| | - Charles G Aldrich
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|
3
|
Choi J, Goo D, Sharma MK, Ko H, Liu G, Paneru D, Choppa VSR, Lee J, Kim WK. Effects of Different Eimeria Inoculation Doses on Growth Performance, Daily Feed Intake, Gut Health, Gut Microbiota, Foot Pad Dermatitis, and Eimeria Gene Expression in Broilers Raised in Floor Pens for 35 Days. Animals (Basel) 2023; 13:2237. [PMID: 37444035 DOI: 10.3390/ani13132237] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/22/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023] Open
Abstract
The study was conducted to investigate the effects of different Eimeria inoculation doses on the growth performance, gut ecosystem, and body composition of broilers in floor pens for 35 days. A total of 750 15-day-old broilers were allocated to five experimental groups with six replicate pens. The five experimental groups included unchallenged control (CON); Eimeria dose 1 (ED1): E. acervulina: 31,250/E. maxima: 6250/E. tenella: 6250; Eimeria dose 2 (ED2): E. acervulina: 62,500/E. maxima: 12,500/E. tenella: 12,500; Eimeria dose 3 (ED3): E. acervulina: 125,000/E. maxima: 25,000/E. tenella: 25,000; and Eimeria dose 4 (ED4): E. acervulina: 250,000/E. maxima: 50,000/E. tenella: 50,000. On D 21, BW were linearly reduced by increased Eimeria inoculation doses (p < 0.01). On D 35, the Eimeria challenge groups had significantly lower BW compared to the CON group. Increased Eimeria inoculation doses linearly decreased crude fat (CF) (p < 0.01) on D 21. Increased Eimeria inoculation doses tended to increase the relative abundance of the phylum Proteobacteria (p = 0.098) on D 21. On D 35, lean:fat was linearly reduced by increased Eimeria inoculation doses (p < 0.05). Eimeria infection negatively influenced growth performance and gut health in broilers in the acute phase, and the negative effects were prolonged to D 35 in floor pen conditions.
Collapse
Affiliation(s)
- Janghan Choi
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
- US National Poultry Research Center, United States Department of Agriculture Agricultural Research Service, Athens, GA 30605, USA
| | - Doyun Goo
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - Milan Kumar Sharma
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - Hanseo Ko
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - Guanchen Liu
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - Deependra Paneru
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | | | - Jihwan Lee
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - Woo Kyun Kim
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
4
|
Pang J, Looft T, Zhang Q, Sahin O. Deciphering the Association between Campylobacter Colonization and Microbiota Composition in the Intestine of Commercial Broilers. Microorganisms 2023; 11:1724. [PMID: 37512896 PMCID: PMC10386351 DOI: 10.3390/microorganisms11071724] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/19/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023] Open
Abstract
Campylobacter is a major food safety concern and is transmitted mainly via poultry meat. We previously found that some commercial broiler farms consistently produced Campylobacter-negative flocks while others were consistently Campylobacter-positive for consecutive production cycles although the farms operated under similar management practices. We hypothesized that this difference in Campylobacter colonization might be associated with the gut microbiota composition. To address this, six commercial broiler farms were selected based on their Campylobacter status (three negative and three positive) to evaluate the microbiota differences between each farm category. For each farm on each production cycle (2-3 cycles), 40 ceca collected from five-week-old broilers were processed for microbiota analysis via 16S rRNA gene sequencing. Cecal microbiota species richness, phylogenetic diversity, community structure, and composition of Campylobacter-positive farms were noticeably different from those of Campylobacter-negative farms. Rikenella, Methanocorpusculum, Barnesiella, Parasutterella, and Helicobacter were significantly more abundant among Campylobacter-positive farms. In contrast, Ruminococcaceae, Streptococcus, Escherichia, Eggerthellaceae, Lactobacillus, Monoglobus, and Blausia were more abundant in Campylobacter-negative farms. Eggerthellaceae, Clostridia, Lachnospiraceae, Lactobacillus, Monoglobus, and Parabacteroides were significantly negatively correlated with Campylobacter abundance. These findings suggest that specific members of cecal microbiota may influence Campylobacter colonization in commercial broilers and may be further explored to control Campylobacter in poultry.
Collapse
Affiliation(s)
- Jinji Pang
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| | - Torey Looft
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
- National Animal Disease Center, United States Department of Agriculture, Ames, IA 50010, USA
| | - Qijing Zhang
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| | - Orhan Sahin
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
5
|
Helmy YA, Taha-Abdelaziz K, Hawwas HAEH, Ghosh S, AlKafaas SS, Moawad MMM, Saied EM, Kassem II, Mawad AMM. Antimicrobial Resistance and Recent Alternatives to Antibiotics for the Control of Bacterial Pathogens with an Emphasis on Foodborne Pathogens. Antibiotics (Basel) 2023; 12:274. [PMID: 36830185 PMCID: PMC9952301 DOI: 10.3390/antibiotics12020274] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/21/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023] Open
Abstract
Antimicrobial resistance (AMR) is one of the most important global public health problems. The imprudent use of antibiotics in humans and animals has resulted in the emergence of antibiotic-resistant bacteria. The dissemination of these strains and their resistant determinants could endanger antibiotic efficacy. Therefore, there is an urgent need to identify and develop novel strategies to combat antibiotic resistance. This review provides insights into the evolution and the mechanisms of AMR. Additionally, it discusses alternative approaches that might be used to control AMR, including probiotics, prebiotics, antimicrobial peptides, small molecules, organic acids, essential oils, bacteriophage, fecal transplants, and nanoparticles.
Collapse
Affiliation(s)
- Yosra A. Helmy
- Department of Veterinary Science, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA
- Department of Zoonoses, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Khaled Taha-Abdelaziz
- Department of Animal and Veterinary Sciences, Clemson University, Clemson, SC 29634, USA
| | - Hanan Abd El-Halim Hawwas
- Department of Zoonoses, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Soumya Ghosh
- Department of Genetics, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein 9301, South Africa
| | - Samar Sami AlKafaas
- Molecular Cell Biology Unit, Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta 31511, Egypt
| | | | - Essa M. Saied
- Chemistry Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
- Institute for Chemistry, Humboldt Universität zu Berlin, Brook-Taylor-Str. 2, 12489 Berlin, Germany
| | - Issmat I. Kassem
- Centre for Food Safety, Department of Food Science and Technology, University of Georgia, Griffin, GA 30609, USA
| | - Asmaa M. M. Mawad
- Department of Biology, College of Science, Taibah University, Madinah 42317, Saudi Arabia
- Botany and Microbiology Department, Faculty of Science, Assiut University, Assiut 71516, Egypt
| |
Collapse
|
6
|
Taha-Abdelaziz K, Singh M, Sharif S, Sharma S, Kulkarni RR, Alizadeh M, Yitbarek A, Helmy YA. Intervention Strategies to Control Campylobacter at Different Stages of the Food Chain. Microorganisms 2023; 11:113. [PMID: 36677405 PMCID: PMC9866650 DOI: 10.3390/microorganisms11010113] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/16/2022] [Accepted: 12/28/2022] [Indexed: 01/04/2023] Open
Abstract
Campylobacter is one of the most common bacterial pathogens of food safety concern. Campylobacter jejuni infects chickens by 2-3 weeks of age and colonized chickens carry a high C. jejuni load in their gut without developing clinical disease. Contamination of meat products by gut contents is difficult to prevent because of the high numbers of C. jejuni in the gut, and the large percentage of birds infected. Therefore, effective intervention strategies to limit human infections of C. jejuni should prioritize the control of pathogen transmission along the food supply chain. To this end, there have been ongoing efforts to develop innovative ways to control foodborne pathogens in poultry to meet the growing customers' demand for poultry meat that is free of foodborne pathogens. In this review, we discuss various approaches that are being undertaken to reduce Campylobacter load in live chickens (pre-harvest) and in carcasses (post-harvest). We also provide some insights into optimization of these approaches, which could potentially help improve the pre- and post-harvest practices for better control of Campylobacter.
Collapse
Affiliation(s)
- Khaled Taha-Abdelaziz
- Department of Animal and Veterinary Science, College of Agriculture, Forestry and Life Sciences, Clemson University, Clemson, SC 29634, USA
| | - Mankerat Singh
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Shayan Sharif
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Shreeya Sharma
- Department of Animal and Veterinary Science, College of Agriculture, Forestry and Life Sciences, Clemson University, Clemson, SC 29634, USA
| | - Raveendra R. Kulkarni
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606, USA
| | - Mohammadali Alizadeh
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Alexander Yitbarek
- Department of Animal Science, McGill University, Montreal, QC H9X 3V9, Canada
| | - Yosra A. Helmy
- Department of Veterinary Science, College of Agriculture, Food, and Environment, University of Kentucky, Lexington, KY 40546, USA
| |
Collapse
|
7
|
Lorenzo-Rebenaque L, Casto-Rebollo C, Diretto G, Frusciante S, Rodríguez JC, Ventero MP, Molina-Pardines C, Vega S, Marin C, Marco-Jiménez F. Examining the effects of Salmonella phage on the caecal microbiota and metabolome features in Salmonella-free broilers. Front Genet 2022; 13:1060713. [PMID: 36437955 PMCID: PMC9691336 DOI: 10.3389/fgene.2022.1060713] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 10/26/2022] [Indexed: 10/29/2023] Open
Abstract
Bacteriophages selectively infect and kill their target bacterial host, being a promising approach to controlling zoonotic bacteria in poultry production. To ensure confidence in its use, fundamental questions of safety and toxicity monitoring of phage therapy should be raised. Due to its high specificity, a minimal impact on the gut ecology is expected; however, more in-depth research into key parameters that influence the success of phage interventions has been needed to reach a consensus on the impact of bacteriophage therapy in the gut. In this context, this study aimed to investigate the interaction of phages with animals; more specifically, we compared the caecum microbiome and metabolome after a Salmonella phage challenge in Salmonella-free broilers, evaluating the role of the phage administration route. To this end, we employed 45 caecum content samples from a previous study where Salmonella phages were administered via drinking water or feed for 24 h from 4, 5 to 6-weeks-old broilers. High-throughput 16S rRNA gene sequencing showed a high level of similarity (beta diversity) but revealed a significant change in alpha diversity between broilers with Salmonella-phage administered in the drinking water and control. Our results showed that the phages affected only a few genera of the microbiota's structure, regardless of the administration route. Among these, we found a significant increase in Streptococcus and Sellimonas in the drinking water and Lactobacillus, Anaeroplasma and Clostridia_vadinBB60_group in the feed. Nevertheless, the LC-HRMS-based metabolomics analyses revealed that despite few genera were significantly affected, a substantial number of metabolites, especially in the phage administered in the drinking water were significantly altered (64 and 14 in the drinking water and feed groups, respectively). Overall, our study shows that preventive therapy with bacteriophages minimally alters the caecal microbiota but significantly impacts their metabolites, regardless of the route of administration.
Collapse
Affiliation(s)
- Laura Lorenzo-Rebenaque
- Department of Animal Production and Health, Veterinary Public Health and Food Science and Technology, Biomedical Research Institute, Faculty of Veterinary Medicine, Cardenal Herrera-CEU University, CEU Universities, Valencia, Spain
| | - Cristina Casto-Rebollo
- Institute of Science and Animal Technology, Universitat Politècnica de València, Valencia, Spain
| | - Gianfranco Diretto
- Italian Agency for New Technologies, Energy and Sustainable Development (ENEA), Biotechnology Laboratory, Centro Ricerche Casaccia, Santa Maria di Galeria, Rome, Italy
| | - Sarah Frusciante
- Italian Agency for New Technologies, Energy and Sustainable Development (ENEA), Biotechnology Laboratory, Centro Ricerche Casaccia, Santa Maria di Galeria, Rome, Italy
| | - Juan Carlos Rodríguez
- Microbiology Department, Balmis General University Hospital, Microbiology Division, Miguel Hernández University, ISABIAL, Alicante, Spain
| | - María-Paz Ventero
- Microbiology Department, Balmis General University Hospital, ISABIAL, Alicante, Spain
| | | | - Santiago Vega
- Department of Animal Production and Health, Veterinary Public Health and Food Science and Technology, Biomedical Research Institute, Faculty of Veterinary Medicine, Cardenal Herrera-CEU University, CEU Universities, Valencia, Spain
| | - Clara Marin
- Department of Animal Production and Health, Veterinary Public Health and Food Science and Technology, Biomedical Research Institute, Faculty of Veterinary Medicine, Cardenal Herrera-CEU University, CEU Universities, Valencia, Spain
| | - Francisco Marco-Jiménez
- Institute of Science and Animal Technology, Universitat Politècnica de València, Valencia, Spain
| |
Collapse
|
8
|
Cai H, Luo S, zhou Q, Yan Z, Liu Q, Kang Z, Liao S, Li J, Lv M, Lin X, Hu J, Yu S, Zhang J, Qi N, Sun M. Effects of Bacillus subtilis and coccidiosis vaccine on growth indices and intestinal microbiota of broilers. Poult Sci 2022; 101:102091. [PMID: 36095864 PMCID: PMC9472081 DOI: 10.1016/j.psj.2022.102091] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 07/22/2022] [Accepted: 07/26/2022] [Indexed: 10/31/2022] Open
|
9
|
Balta I, Butucel E, Stef L, Pet I, Gradisteanu-Pircalabioru G, Chifiriuc C, Gundogdu O, McCleery D, Corcionivoschi N. Anti- Campylobacter Probiotics: Latest Mechanistic Insights. Foodborne Pathog Dis 2022; 19:693-703. [PMID: 35905047 PMCID: PMC9595622 DOI: 10.1089/fpd.2022.0039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The Campylobacter genus is the leading cause of human gastroenteritis, with the consumption of contaminated poultry meat as the main route of infection. Probiotic bacteria, such as Lactobacillus, Bacillus, Escherichia coli Nissle, and Bifidobacterium species, have a great immunomodulatory capacity and exhibit antipathogenic effects through various molecular mechanisms. Reducing Campylobacter levels in livestock animals, such as poultry, will have a substantial benefit to humans as it will reduce disease transmissibility through the food chain. Moreover, probiotic-based strategies might attenuate intestinal inflammatory processes, which consequently reduce the severity of Campylobacter disease progression. At a molecular level, probiotics can also negatively impact on the functionality of various Campylobacter virulence and survival factors (e.g., adhesion, invasion), and on the associated colonization proteins involved in epithelial translocation. The current review describes recent in vitro, in vivo, and preclinical findings on probiotic therapies, aiming to reduce Campylobacter counts in poultry and reduce the pathogen's virulence in the avian and human host. Moreover, we focused in particular on probiotics with known anti-Campylobacter activity seeking to understand the biological mechanisms involved in their mode of action.
Collapse
Affiliation(s)
- Igori Balta
- Bacteriology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast, United Kingdom.,Faculty of Animal Science and Biotechnologies, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania.,Faculty of Bioengineering of Animal Resources, Banat University of Agricultural Sciences and Veterinary Medicine-King Michael I of Romania, Timisoara, Romania
| | - Eugenia Butucel
- Bacteriology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast, United Kingdom.,Faculty of Bioengineering of Animal Resources, Banat University of Agricultural Sciences and Veterinary Medicine-King Michael I of Romania, Timisoara, Romania
| | - Lavinia Stef
- Faculty of Bioengineering of Animal Resources, Banat University of Agricultural Sciences and Veterinary Medicine-King Michael I of Romania, Timisoara, Romania
| | - Ioan Pet
- Faculty of Bioengineering of Animal Resources, Banat University of Agricultural Sciences and Veterinary Medicine-King Michael I of Romania, Timisoara, Romania
| | | | - Carmen Chifiriuc
- Research Institute of University of Bucharest, Bucharest, Romania
| | - Ozan Gundogdu
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - David McCleery
- Bacteriology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast, United Kingdom
| | - Nicolae Corcionivoschi
- Bacteriology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast, United Kingdom.,Faculty of Bioengineering of Animal Resources, Banat University of Agricultural Sciences and Veterinary Medicine-King Michael I of Romania, Timisoara, Romania
| |
Collapse
|
10
|
Szott V, Reichelt B, Friese A, Roesler U. A Complex Competitive Exclusion Culture Reduces Campylobacter jejuni Colonization in Broiler Chickens at Slaughter Age In Vivo. Vet Sci 2022; 9:vetsci9040181. [PMID: 35448680 PMCID: PMC9029414 DOI: 10.3390/vetsci9040181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/26/2022] [Accepted: 04/06/2022] [Indexed: 02/01/2023] Open
Abstract
Diminishing Campylobacter prevalence in poultry flocks has proven to be extremely challenging. To date, efficacious control measures to reduce Campylobacter prevalence are still missing. A potential approach to control Campylobacter in modern poultry productions is to occupy its niche in the mucosal layer by administering live intestinal microbiota from adult chickens to dayold-chicks (competitive exclusion (CE)). Therefore, this in vivo study investigates the efficacy of a complex CE culture to reduce Campylobacter (C.) jejuni colonization in broiler chickens. For this purpose, the complex CE culture was applied twice: once by spray application to day-old chicks immediately after hatching (on the 1st day of life) and subsequently by an additional application via drinking water on the 25th day of life. We observed a consistent and statistically significant reduction of C. jejuni counts in cloacal swabs throughout the entire fattening period. At the end of the trial after necropsy (at 33 days of age), C. jejuni cecal counts also showed a statistically significant decrease of 1 log10 MPN/g compared to the control group. Likewise, colon counts were reduced by 2.0 log10 MPN/g. These results suggest that CE cultures can be considered a practically relevant control strategy to reduce C. jejuni colonization in broiler chickens on poultry farms.
Collapse
|