1
|
Lane DM, Valentine DL, Peng X. Genomic analysis of the marine yeast Rhodotorula sphaerocarpa ETNP2018 reveals adaptation to the open ocean. BMC Genomics 2023; 24:695. [PMID: 37986036 PMCID: PMC10662464 DOI: 10.1186/s12864-023-09791-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 11/07/2023] [Indexed: 11/22/2023] Open
Abstract
BACKGROUND Despite a rising interest in the diversity and ecology of fungi in marine environments, there are few published genomes of fungi isolated from the ocean. The basidiomycetous yeast (unicellular fungus) genus Rhodotorula are prevalent and abundant in the open ocean, and they have been isolated from a wide range of other environments. Many of these environments are nutrient poor, such as the Antarctica and the Atacama deserts, raising the question as to how Rhodotorula yeasts may have adapted their metabolic strategies to optimize survival under low nutrient conditions. In order to understand their adaptive strategies in the ocean, the genome of R. sphaerocarpa ETNP2018 was compared to that of fourteen representative Rhodotorula yeasts, isolated from a variety of environments. RESULTS Rhodotorula sphaerocarpa ETNP2018, a strain isolated from the oligotrophic part of the eastern tropical North Pacific (ETNP) oxygen minimum zone (OMZ), hosts the smallest of the fifteen genomes and yet the number of protein-coding genes it possesses is on par with the other strains. Its genome exhibits a distinct reduction in genes dedicated to Major Facilitator Superfamily transporters as well as biosynthetic enzymes. However, its core metabolic pathways are fully conserved. Our research indicates that the selective pressures of the ETNP OMZ favor a streamlined genome with reduced overall biosynthetic potential balanced by a stable set of core metabolisms and an expansion of mechanisms for nutrient acquisition. CONCLUSIONS In summary, this study offers insights into the adaptation of fungi to the oligotrophic ocean and provides valuable information for understanding the ecological roles of fungi in the ocean.
Collapse
Affiliation(s)
- Dylan M Lane
- School of Earth, Ocean, and Environment, University of South Carolina, Columbia, SC, USA
| | - David L Valentine
- Marine Science Institute, University of California, Santa Barbara, CA, USA
- Department of Earth Science, University of California, Santa Barbara, CA, USA
| | - Xuefeng Peng
- School of Earth, Ocean, and Environment, University of South Carolina, Columbia, SC, USA.
- Marine Science Institute, University of California, Santa Barbara, CA, USA.
| |
Collapse
|
2
|
Georgieva ML, Bilanenko EN, Ponizovskaya VB, Kokaeva LY, Georgiev AA, Efimenko TA, Markelova NN, Kuvarina AE, Sadykova VS. Haloalkalitolerant Fungi from Sediments of the Big Tambukan Saline Lake (Northern Caucasus): Diversity and Antimicrobial Potential. Microorganisms 2023; 11:2587. [PMID: 37894245 PMCID: PMC10609068 DOI: 10.3390/microorganisms11102587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
We have performed a characterization of cultivated haloalkalitolerant fungi from the sediments of Big Tambukan Lake in order to assess their biodiversity and antimicrobial activity. This saline, slightly alkaline lake is known as a source of therapeutic sulfide mud used in sanatoria of the Caucasian Mineral Waters, Russia. Though data on bacteria and algae observed in this lake are available in the literature, data on fungi adapted to the conditions of the lake are lacking. The diversity of haloalkalitolerant fungi was low and represented by ascomycetes of the genera Acremonium, Alternaria, Aspergillus, Chordomyces, Emericellopsis, Fusarium, Gibellulopsis, Myriodontium, Penicillium, and Pseudeurotium. Most of the fungi were characterized by moderate alkaline resistance, and they tolerated NaCl concentrations up to 10% w/v. The analysis of the antimicrobial activity of fungi showed that 87.5% of all strains were active against Bacillus subtilis, and 39.6% were also determined to be effective against Escherichia coli. The majority of the strains were also active against Aspergillus niger and Candida albicans, about 66.7% and 62.5%, respectively. These studies indicate, for the first time, the presence of polyextremotolerant fungi in the sediments of Big Tambukan Lake, which probably reflects their involvement in the formation of therapeutic muds.
Collapse
Affiliation(s)
- Marina L. Georgieva
- Gause Institute of New Antibiotics, St. Bolshaya Pirogovskaya 11, 119021 Moscow, Russia; (T.A.E.); (N.N.M.); (A.E.K.)
- Faculty of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory, 119234 Moscow, Russia; (E.N.B.); (V.B.P.); (L.Y.K.); (A.A.G.)
| | - Elena N. Bilanenko
- Faculty of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory, 119234 Moscow, Russia; (E.N.B.); (V.B.P.); (L.Y.K.); (A.A.G.)
| | - Valeria B. Ponizovskaya
- Faculty of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory, 119234 Moscow, Russia; (E.N.B.); (V.B.P.); (L.Y.K.); (A.A.G.)
| | - Lyudmila Y. Kokaeva
- Faculty of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory, 119234 Moscow, Russia; (E.N.B.); (V.B.P.); (L.Y.K.); (A.A.G.)
- Faculty of Soil Sciences, Lomonosov Moscow State University, 1-12 Leninskie Gory, 119991 Moscow, Russia
| | - Anton A. Georgiev
- Faculty of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory, 119234 Moscow, Russia; (E.N.B.); (V.B.P.); (L.Y.K.); (A.A.G.)
| | - Tatiana A. Efimenko
- Gause Institute of New Antibiotics, St. Bolshaya Pirogovskaya 11, 119021 Moscow, Russia; (T.A.E.); (N.N.M.); (A.E.K.)
| | - Natalia N. Markelova
- Gause Institute of New Antibiotics, St. Bolshaya Pirogovskaya 11, 119021 Moscow, Russia; (T.A.E.); (N.N.M.); (A.E.K.)
| | - Anastasia E. Kuvarina
- Gause Institute of New Antibiotics, St. Bolshaya Pirogovskaya 11, 119021 Moscow, Russia; (T.A.E.); (N.N.M.); (A.E.K.)
| | - Vera S. Sadykova
- Gause Institute of New Antibiotics, St. Bolshaya Pirogovskaya 11, 119021 Moscow, Russia; (T.A.E.); (N.N.M.); (A.E.K.)
| |
Collapse
|
3
|
Hou L, Giraldo A, Groenewald J, Rämä T, Summerbell R, Huang G, Cai L, Crous P. Redisposition of acremonium-like fungi in Hypocreales. Stud Mycol 2023; 105:23-203. [PMID: 38895703 PMCID: PMC11182610 DOI: 10.3114/sim.2023.105.02] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 05/16/2023] [Indexed: 06/21/2024] Open
Abstract
Acremonium is acknowledged as a highly ubiquitous genus including saprobic, parasitic, or endophytic fungi that inhabit a variety of environments. Species of this genus are extensively exploited in industrial, commercial, pharmaceutical, and biocontrol applications, and proved to be a rich source of novel and bioactive secondary metabolites. Acremonium has been recognised as a taxonomically difficult group of ascomycetes, due to the reduced and high plasticity of morphological characters, wide ecological distribution and substrate range. Recent advances in molecular phylogenies, revealed that Acremonium is highly polyphyletic and members of Acremonium s. lat. belong to at least three distinct orders of Sordariomycetes, of which numerous orders, families and genera with acremonium-like morphs remain undefined. To infer the phylogenetic relationships and establish a natural classification for acremonium-like taxa, systematic analyses were conducted based on a large number of cultures with a global distribution and varied substrates. A total of 633 cultures with acremonium-like morphology, including 261 ex-type cultures from 89 countries and a variety of substrates including soil, plants, fungi, humans, insects, air, and water were examined. An overview phylogenetic tree based on three loci (ITS, LSU, rpb2) was generated to delimit the orders and families. Separate trees based on a combined analysis of four loci (ITS, LSU, rpb2, tef-1α) were used to delimit species at generic and family levels. Combined with the morphological features, host associations and ecological analyses, acremonium-like species evaluated in the present study are currently assigned to 63 genera, and 14 families in Cephalothecales, Glomerellales and Hypocreales, mainly in the families Bionectriaceae, Plectosphaerellaceae and Sarocladiaceae and five new hypocrealean families, namely Chrysonectriaceae, Neoacremoniaceae, Nothoacremoniaceae, Pseudoniessliaceae and Valsonectriaceae. Among them, 17 new genera and 63 new combinations are proposed, with descriptions of 65 new species. Furthermore, one epitype and one neotype are designated to stabilise the taxonomy and use of older names. Results of this study demonstrated that most species of Acremonium s. lat. grouped in genera of Bionectriaceae, including the type A. alternatum. A phylogenetic backbone tree is provided for Bionectriaceae, in which 183 species are recognised and 39 well-supported genera are resolved, including 10 new genera. Additionally, rpb2 and tef-1α are proposed as potential DNA barcodes for the identification of taxa in Bionectriaceae. Taxonomic novelties: New families: Chrysonectriaceae L.W. Hou, L. Cai & Crous, Neoacremoniaceae L.W. Hou, L. Cai & Crous, Nothoacremoniaceae L.W. Hou, L. Cai & Crous, Pseudoniessliaceae L.W. Hou, L. Cai & Crous, Valsonectriaceae L.W. Hou, L. Cai & Crous. New genera: Bionectriaceae: Alloacremonium L.W. Hou, L. Cai & Crous, Gossypinidium L.W. Hou, L. Cai & Crous, Monohydropisphaera L.W. Hou, L. Cai & Crous, Musananaesporium L.W. Hou, L. Cai & Crous, Paragliomastix L.W. Hou, L. Cai & Crous, Proliferophialis L.W. Hou, L. Cai & Crous, Proxiovicillium L.W. Hou, L. Cai & Crous, Ramosiphorum L.W. Hou, L. Cai & Crous, Verruciconidia L.W. Hou, L. Cai & Crous, Waltergamsia L.W. Hou, L. Cai & Crous; Clavicipitaceae: Subuliphorum L.W. Hou, L. Cai & Crous; Neoacremoniaceae: Neoacremonium L.W. Hou, L. Cai & Crous; Nothoacremoniaceae: Nothoacremonium L.W. Hou, L. Cai & Crous; Plectosphaerellaceae: Allomusicillium L.W. Hou, L. Cai & Crous, Parafuscohypha L.W. Hou, L. Cai & Crous; Pseudoniessliaceae: Pseudoniesslia L.W. Hou, L. Cai & Crous; Sarocladiaceae: Polyphialocladium L.W. Hou, L. Cai & Crous. New species: Bionectriaceae: Alloacremonium ferrugineum L.W. Hou, L. Cai & Crous, Al. humicola L.W. Hou, L. Cai & Crous, Acremonium aerium L.W. Hou, L. Cai & Crous, A. brunneisporum L.W. Hou, L. Cai & Crous, A. chlamydosporium L.W. Hou, L. Cai & Crous, A. ellipsoideum L.W. Hou, Rämä, L. Cai & Crous, A. gamsianum L.W. Hou, L. Cai & Crous, A. longiphialidicum L.W. Hou, L. Cai & Crous, A. multiramosum L.W. Hou, Rämä, L. Cai & Crous, A. mycoparasiticum L.W. Hou, L. Cai & Crous, A. stroudii K. Fletcher, F.C. Küpper & P. van West, A. subulatum L.W. Hou, L. Cai & Crous, A. synnematoferum L.W. Hou, Rämä, L. Cai & Crous, Bulbithecium ammophilae L.W. Hou, L. Cai & Crous, B. ellipsoideum L.W. Hou, L. Cai & Crous, B. truncatum L.W. Hou, L. Cai & Crous, Emericellopsis brunneiguttula L.W. Hou, L. Cai & Crous, Gliomastix musae L.W. Hou, L. Cai & Crous, Gossypinidium sporodochiale L.W. Hou, L. Cai & Crous, Hapsidospora stercoraria L.W. Hou, L. Cai & Crous, H. variabilis L.W. Hou, L. Cai & Crous, Mycocitrus odorus L.W. Hou, L. Cai & Crous, Nectriopsis ellipsoidea L.W. Hou, L. Cai & Crous, Paracylindrocarpon aurantiacum L.W. Hou, L. Cai & Crous, Pn. foliicola Lechat & J. Fourn., Paragliomastix rosea L.W. Hou, L. Cai & Crous, Proliferophialis apiculata L.W. Hou, L. Cai & Crous, Protocreopsis finnmarkica L.W. Hou, L. Cai, Rämä & Crous, Proxiovicillium lepidopterorum L.W. Hou, L. Cai & Crous, Ramosiphorum echinoporiae L.W. Hou, L. Cai & Crous, R. polyporicola L.W. Hou, L. Cai & Crous, R. thailandicum L.W. Hou, L. Cai & Crous, Verruciconidia erythroxyli L.W. Hou, L. Cai & Crous, Ve. infuscata L.W. Hou, L. Cai & Crous, Ve. quercina L.W. Hou, L. Cai & Crous, Ve. siccicapita L.W. Hou, L. Cai & Crous, Ve. unguis L.W. Hou, L. Cai & Crous, Waltergamsia alkalina L.W. Hou, L. Cai & Crous, W. catenata L.W. Hou, L. Cai & Crous, W. moroccensis L.W. Hou, L. Cai & Crous, W. obpyriformis L.W. Hou, L. Cai & Crous; Chrysonectriaceae: Chrysonectria crystallifera L.W. Hou, L. Cai & Crous; Nectriaceae: Xenoacremonium allantoideum L.W. Hou, L. Cai & Crous; Neoacremoniaceae: Neoacremonium distortum L.W. Hou, L. Cai & Crous, N. flavum L.W. Hou, L. Cai & Crous; Nothoacremoniaceae: Nothoacremonium subcylindricum L.W. Hou, L. Cai & Crous, No. vesiculophorum L.W. Hou, L. Cai & Crous; Myrotheciomycetaceae: Trichothecium hongkongense L.W. Hou, L. Cai & Crous; Plectosphaerellaceae: Brunneomyces polyphialidus L.W. Hou, L. Cai & Crous, Parafuscohypha proliferata L.W. Hou, L. Cai & Crous; Sarocladiaceae: Chlamydocillium acaciae L.W. Hou, L. Cai & Crous, C. antarcticum L.W. Hou, L. Cai & Crous, C. guttulatum L.W. Hou, L. Cai & Crous, C. lolii L.W. Hou, L. Cai & Crous, C. soli L.W. Hou, L. Cai & Crous, C. terrestre L.W. Hou, L. Cai & Crous, Parasarocladium chondroidum L.W. Hou, L. Cai & Crous,Polyphialocladium fusisporum L.W. Hou, L. Cai & Crous, Sarocladium agarici L.W. Hou, L. Cai & Crous, S. citri L.W. Hou, L. Cai & Crous, S. ferrugineum L.W. Hou, L. Cai & Crous, S. fuscum L.W. Hou, L. Cai & Crous,S. theobromae L.W. Hou, L. Cai & Crous; Valsonectriaceae: Valsonectria crystalligena L.W. Hou, L. Cai & Crous, V. hilaris L.W. Hou, L. Cai & Crous. New combinations: Bionectriaceae: Acremonium purpurascens (Sukapure & Thirum.) L.W. Hou, L. Cai & Crous, Bulbithecium arxii (Malloch) L.W. Hou, L. Cai & Crous, Bu. borodinense (Tad. Ito et al.) L.W. Hou, L. Cai & Crous, Bu. pinkertoniae (W. Gams) L.W. Hou, L. Cai & Crous, Bu. spinosum (Negroni) L.W. Hou, L. Cai & Crous, Emericellopsis exuviara (Sigler et al.) L.W. Hou, L. Cai & Crous, E. fimetaria (Pers.) L.W. Hou, L. Cai & Crous, E. fuci (Summerb. et al.) L.W. Hou, L. Cai & Crous, E. moniliformis (A. Giraldo et al.) L.W. Hou, L. Cai & Crous, E. salmonea (W. Gams & Lodha) L.W. Hou, L. Cai & Crous, E. tubakii (Gams) L.W. Hou, L. Cai & Crous, Fusariella arenula (Berk. & Broome) L.W. Hou, L. Cai & Crous, Hapsidospora chrysogena (Thirum. & Sukapure) L.W. Hou, L. Cai & Crous, H. flava (W. Gams) L.W. Hou, L. Cai & Crous, H. globosa (Malloch & Cain) L.W. Hou, L. Cai & Crous, H. inversa (Malloch & Cain) L.W. Hou, L. Cai & Crous, Hydropisphaera aurantiaca (C.A. Jørg.) L.W. Hou, L. Cai & Crous, Lasionectria atrorubra (Lechat & J. Fourn.) L.W. Hou, L. Cai & Crous, L. bisepta (W. Gams) L.W. Hou, L. Cai & Crous, L. castaneicola (Lechat & Gardiennet) L.W. Hou, L. Cai & Crous, L. cerealis (P. Karst.) L.W. Hou, L. Cai & Crous, L. olida (W. Gams) L.W. Hou, L. Cai & Crous, Lasionectriopsis dentifera (Samuels) L.W. Hou, L. Cai & Crous, Lasionectriella arenuloides (Samuels) L.W. Hou, L. Cai & Crous, La. marigotensis (Lechat & J. Fourn.) L.W. Hou, L. Cai & Crous, Monohydropisphaera fusigera (Berk. & Broome) L.W. Hou, L. Cai & Crous, Musananaesporium tectonae (R.F. Castañeda) L.W. Hou, L. Cai & Crous, Mycocitrus zonatus (Sawada) L.W. Hou, L. Cai & Crous, Nectriopsis microspora (Jaap) L.W. Hou, L. Cai & Crous, Ovicillium asperulatum (A. Giraldo et al.) L.W. Hou, L. Cai & Crous, O. variecolor (A. Giraldo et al.) L.W. Hou, L. Cai & Crous, Paracylindrocarpon multiloculatum (Samuels) L.W. Hou, L. Cai & Crous, Pn. multiseptatum (Samuels)L.W. Hou, L. Cai & Crous, Paragliomastix chiangraiensis (J.F. Li et al.) L.W. Hou, L. Cai & Crous, Px. luzulae (Fuckel) L.W. Hou, L. Cai & Crous, Px. znieffensis (Lechat & J. Fourn.) L.W. Hou, L. Cai & Crous, Protocreopsis rutila (W. Gams) L.W. Hou, L. Cai & Crous, Proxiovicillium blochii (Matr.)L.W. Hou, L. Cai & Crous, Stanjemonium dichromosporum (Gams & Sivasith.) L.W. Hou, L. Cai & Crous, Verruciconidia persicina (Nicot) L.W. Hou, L. Cai & Crous, Ve. verruculosa (W. Gams & Veenb.-Rijks) L.W. Hou, L. Cai & Crous, Waltergamsia citrina (A. Giraldo et al.) L.W. Hou, L. Cai & Crous, W. dimorphospora (A. Giraldo et al.) L.W. Hou, L. Cai & Crous, W. epimycota (Samuels) L.W. Hou, L. Cai & Crous, W. fusidioides (Nicot) L.W. Hou, L. Cai & Crous, W. hennebertii (W. Gams) L.W. Hou, L. Cai & Crous, W. parva (A. Giraldo et al.) L.W. Hou, L. Cai & Crous, W. pilosa (A. Giraldo et al.) L.W. Hou, L. Cai & Crous, W. zeylanica (Petch) L.W. Hou, L. Cai & Crous; Cephalothecaceae: Phialemonium thermophilum (W. Gams & J. Lacey) L.W. Hou, L. Cai & Crous; Clavicipitaceae: Subuliphorum camptosporum (W. Gams) L.W. Hou, L. Cai & Crous; Coniochaetaceae: Coniochaeta psammospora (W. Gams) L.W. Hou, L. Cai & Crous; Nothoacremoniaceae: Nothoacremonium exiguum (W. Gams) L.W. Hou, L. Cai & Crous; Neoacremoniaceae: Neoacremonium minutisporum (Sukapure & Thirum.) L.W. Hou, L. Cai & Crous; Ne. taiwanense (K.L. Pang et al.) L.W. Hou, L. Cai & Crous; Ne. vitellinum (W. Gams) L.W. Hou, L. Cai & Crous; Plectosphaerellaceae: Allomusicillium domschii (W. Gams) L.W. Hou, L. Cai & Crous, Brunneomyces pseudozeylanicus (W. Gams) L.W. Hou, L. Cai & Crous; Pseudoniessliaceae: Pseudoniesslia minutispora (W. Gams et al.) L.W. Hou, L. Cai & Crous; Sarocladiaceae: Chlamydocillium curvulum (W. Gams) L.W. Hou, L. Cai & Crous, Parasarocladium funiculosum (Sukapure & Thirum.) L.W. Hou, L. Cai & Crous; Valsonectriaceae: Valsonectria inflata (C.H. Dickinson) L.W. Hou, L. Cai & Crous, V. roseola (G. Sm.) L.W. Hou, L. Cai & Crous. Epitype (basionym): Sphaeria violacea J.C. Schmidt ex Fr. Neotype (basionym): Mastigocladium blochii Matr. Citation: Hou LW, Giraldo A, Groenewald JZ, Rämä T, Summerbell RC, Zang P, Cai L, Crous PW (2023). Redisposition of acremonium-like fungi in Hypocreales. Studies in Mycology 105: 23-203. doi: 10.3114/sim.2023.105.02.
Collapse
Affiliation(s)
- L.W. Hou
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese
Academy of Sciences, Beijing, 100101, China;
| | - A. Giraldo
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584
CT, The Netherlands;
- Netherlands Institute for Vectors, Invasive plants and Plant health
(NIVIP), NVWA, Wageningen Netherlands;
| | - J.Z. Groenewald
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584
CT, The Netherlands;
| | - T. Rämä
- The Norwegian College of Fishery Science, Department at Faculty of
Biosciences, Fisheries and Economics, UiT The Arctic University of Norway,
Tromsø, Norway;
| | - R.C. Summerbell
- Sporometrics, Toronto, ON, Canada;
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON,
Canada;
| | - G.Z. Huang
- State Key Laboratory of Integrated Management of Pest Insects and
Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101,
China;
| | - L. Cai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese
Academy of Sciences, Beijing, 100101, China;
| | - P.W. Crous
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584
CT, The Netherlands;
- Microbiology, Department of Biology, Utrecht University, Padualaan 8,
Utrecht, 3584 CH, The Netherlands;
- Department of Biochemistry, Genetics and Microbiology, Forestry and
Agricultural Biotechnology Institute (FABI), Faculty of Natural and
Agricultural Sciences, University of Pretoria, Private Bag X20, Hatfield,
Pretoria, 0028, South Africa;
- Wageningen University and Research Centre (WUR), Laboratory of
Phytopathology, Droevendaalsesteeg 1, Wageningen, 6708 PB, The
Netherlands
| |
Collapse
|
4
|
Crous PW, Costa MM, Kandemir H, Vermaas M, Vu D, Zhao L, Arumugam E, Flakus A, Jurjević Ž, Kaliyaperumal M, Mahadevakumar S, Murugadoss R, Shivas RG, Tan YP, Wingfield MJ, Abell SE, Marney TS, Danteswari C, Darmostuk V, Denchev CM, Denchev TT, Etayo J, Gené J, Gunaseelan S, Hubka V, Illescas T, Jansen GM, Kezo K, Kumar S, Larsson E, Mufeeda KT, Piątek M, Rodriguez-Flakus P, Sarma PVSRN, Stryjak-Bogacka M, Torres-Garcia D, Vauras J, Acal DA, Akulov A, Alhudaib K, Asif M, Balashov S, Baral HO, Baturo-Cieśniewska A, Begerow D, Beja-Pereira A, Bianchinotti MV, Bilański P, Chandranayaka S, Chellappan N, Cowan DA, Custódio FA, Czachura P, Delgado G, De Silva NI, Dijksterhuis J, Dueñas M, Eisvand P, Fachada V, Fournier J, Fritsche Y, Fuljer F, Ganga KGG, Guerra MP, Hansen K, Hywel-Jones N, Ismail AM, Jacobs CR, Jankowiak R, Karich A, Kemler M, Kisło K, Klofac W, Krisai-Greilhuber I, Latha KPD, Lebeuf R, Lopes ME, Lumyong S, Maciá-Vicente JG, Maggs-Kölling G, Magistà D, Manimohan P, Martín MP, Mazur E, Mehrabi-Koushki M, Miller AN, Mombert A, Ossowska EA, Patejuk K, Pereira OL, Piskorski S, Plaza M, Podile AR, Polhorský A, Pusz W, Raza M, Ruszkiewicz-Michalska M, Saba M, Sánchez RM, Singh R, Śliwa L, Smith ME, Stefenon VM, Strasiftáková D, Suwannarach N, Szczepańska K, Telleria MT, Tennakoon DS, Thines M, Thorn RG, Urbaniak J, van der Vegte M, Vasan V, Vila-Viçosa C, Voglmayr H, Wrzosek M, Zappelini J, Groenewald JZ. Fungal Planet description sheets: 1550-1613. PERSOONIA 2023; 51:280-417. [PMID: 38665977 PMCID: PMC11041897 DOI: 10.3767/persoonia.2023.51.08] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 10/20/2023] [Indexed: 04/28/2024]
Abstract
Novel species of fungi described in this study include those from various countries as follows: Argentina, Neocamarosporium halophilum in leaf spots of Atriplex undulata. Australia, Aschersonia merianiae on scale insect (Coccoidea), Curvularia huamulaniae isolated from air, Hevansia mainiae on dead spider, Ophiocordyceps poecilometigena on Poecilometis sp. Bolivia, Lecanora menthoides on sandstone, in open semi-desert montane areas, Sticta monlueckiorum corticolous in a forest, Trichonectria epimegalosporae on apothecia of corticolous Megalospora sulphurata var. sulphurata, Trichonectria puncteliae on the thallus of Punctelia borreri. Brazil, Catenomargarita pseudocercosporicola (incl. Catenomargarita gen. nov.) hyperparasitic on Pseudocercospora fijiensis on leaves of Musa acuminata, Tulasnella restingae on protocorms and roots of Epidendrum fulgens. Bulgaria, Anthracoidea umbrosae on Carex spp. Croatia, Hymenoscyphus radicis from surface-sterilised, asymptomatic roots of Microthlaspi erraticum, Orbilia multiserpentina on wood of decorticated branches of Quercus pubescens. France, Calosporella punctatispora on dead corticated twigs of Aceropalus. French West Indies (Martinique), Eutypella lechatii on dead corticated palm stem. Germany, Arrhenia alcalinophila on loamy soil. Iceland, Cistella blauvikensis on dead grass (Poaceae). India, Fulvifomes maritimus on living Peltophorum pterocarpum, Fulvifomes natarajanii on dead wood of Prosopis juliflora, Fulvifomes subazonatus on trunk of Azadirachta indica, Macrolepiota bharadwajii on moist soil near the forest, Narcissea delicata on decaying elephant dung, Paramyrothecium indicum on living leaves of Hibiscus hispidissimus, Trichoglossum syamviswanathii on moist soil near the base of a bamboo plantation. Iran, Vacuiphoma astragalicola from stem canker of Astragalus sarcocolla. Malaysia, Neoeriomycopsis fissistigmae (incl. Neoeriomycopsidaceae fam. nov.) on leaf spots on flower Fissistigma sp. Namibia, Exophiala lichenicola lichenicolous on Acarospora cf. luederitzensis. Netherlands, Entoloma occultatum on soil, Extremus caricis on dead leaves of Carex sp., Inocybe pseudomytiliodora on loamy soil. Norway, Inocybe guldeniae on calcareous soil, Inocybe rupestroides on gravelly soil. Pakistan, Hymenagaricus brunneodiscus on soil. Philippines, Ophiocordyceps philippinensis parasitic on Asilus sp. Poland, Hawksworthiomyces ciconiae isolated from Ciconia ciconia nest, Plectosphaerella vigrensis from leaf spots on Impatiens noli-tangere, Xenoramularia epitaxicola from sooty mould community on Taxus baccata. Portugal, Inocybe dagamae on clay soil. Saudi Arabia, Diaporthe jazanensis on branches of Coffea arabica. South Africa, Alternaria moraeae on dead leaves of Moraea sp., Bonitomyces buffels-kloofinus (incl. Bonitomyces gen. nov.) on dead twigs of unknown tree, Constrictochalara koukolii on living leaves of Itea rhamnoides colonised by a Meliola sp., Cylindromonium lichenophilum on Parmelina tiliacea, Gamszarella buffelskloofina (incl. Gamszarella gen. nov.) on dead insect, Isthmosporiella africana (incl. Isthmosporiella gen. nov.) on dead twigs of unknown tree, Nothoeucasphaeria buffelskloofina (incl. Nothoeucasphaeria gen. nov.), on dead twigs of unknown tree, Nothomicrothyrium beaucarneae (incl. Nothomicrothyrium gen. nov.) on dead leaves of Beaucarnea stricta, Paramycosphaerella proteae on living leaves of Protea caffra, Querciphoma foliicola on leaf litter, Rachicladosporium conostomii on dead twigs of Conostomium natalense var. glabrum, Rhamphoriopsis synnematosa on dead twig of unknown tree, Waltergamsia mpumalanga on dead leaves of unknown tree. Spain, Amanita fulvogrisea on limestone soil, in mixed forest, Amanita herculis in open Quercus forest, Vuilleminia beltraniae on Cistus symphytifolius. Sweden, Pachyella pulchella on decaying wood on sand-silt riverbank. Thailand, Deniquelata cassiae on dead stem of Cassia fistula, Stomiopeltis thailandica on dead twigs of Magnolia champaca. Ukraine, Circinaria podoliana on natural limestone outcrops, Neonematogonum carpinicola (incl. Neonematogonum gen. nov.) on dead branches of Carpinus betulus. USA, Exophiala wilsonii water from cooling tower, Hygrophorus aesculeticola on soil in mixed forest, and Neocelosporium aereum from air in a house attic. Morphological and culture characteristics are supported by DNA barcodes. Citation: Crous PW, Costa MM, Kandemir H, et al. 2023. Fungal Planet description sheets: 1550-1613. Persoonia 51: 280-417. doi: 10.3767/persoonia.2023.51.08.
Collapse
Affiliation(s)
- P W Crous
- Wasterdijk Fungal Biodiversity Institute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - M M Costa
- Wasterdijk Fungal Biodiversity Institute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands
| | - H Kandemir
- Wasterdijk Fungal Biodiversity Institute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands
| | - M Vermaas
- Wasterdijk Fungal Biodiversity Institute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands
| | - D Vu
- Wasterdijk Fungal Biodiversity Institute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands
| | - L Zhao
- Wasterdijk Fungal Biodiversity Institute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands
| | - E Arumugam
- Centre for Advanced Studies in Botany, University of Madras, Chennai, Tamil Nadu, India
| | - A Flakus
- W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, PL-31-512 Kraków, Poland
| | - Ž Jurjević
- EMSL Analytical, Inc., 200 Route 130 North, Cinnaminson, NJ 08077 USA
| | - M Kaliyaperumal
- Centre for Advanced Studies in Botany, University of Madras, Chennai, Tamil Nadu, India
| | - S Mahadevakumar
- Forest Pathology Department, Division of Forest Protection, KSCSTE-Kerala Forest Research Institute, Peechi - 680653, Thrissur, Kerala, India
- Botanical Survey of India, Andaman and Nicobar Regional Center, Haddo - 744102, Port Blair, South Andaman, India
| | - R Murugadoss
- Centre for Advanced Studies in Botany, University of Madras, Chennai, Tamil Nadu, India
| | - R G Shivas
- Centre for Crop Health, University of Southern Queensland, Toowoomba 4350, Queensland, Australia
| | - Y P Tan
- Queensland Plant Pathology Herbarium, Department of Agriculture and Fisheries, Dutton Park 4102, Queensland, Australia
| | - M J Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - S E Abell
- Australian Tropical Herbarium, James Cook University, Smithfield 4878, Queensland, Australia
| | - T S Marney
- Queensland Plant Pathology Herbarium, Department of Agriculture and Fisheries, Dutton Park 4102, Queensland, Australia
| | - C Danteswari
- Department of Plant Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - V Darmostuk
- W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, PL-31-512 Kraków, Poland
| | - C M Denchev
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 2 Gagarin St., 1113 Sofia, Bulgaria
| | - T T Denchev
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 2 Gagarin St., 1113 Sofia, Bulgaria
| | - J Etayo
- Navarro Villoslada 16, 3° cha., E-31003 Pamplona, Navarra, Spain
| | - J Gené
- Universitat Rovira i Virgili, Facultat de Medicina i Ciéncies de la Salut and IU-RESCAT, Unitat de Micologia i Microbiologia Ambiental, Reus, Catalonia, Spain
| | - S Gunaseelan
- Centre for Advanced Studies in Botany, University of Madras, Chennai, Tamil Nadu, India
| | - V Hubka
- Department of Botany, Faculty of Science, Charles University, Benátská 2, 128 01 Prague 2, Czech Republic
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Prague, Czech Republic
| | - T Illescas
- Buenos Aires 3 Bajo 1, 14006 Córdoba, Spain
| | - G M Jansen
- Ben Sikkenlaan 9, 6703JC Wageningen, The Netherlands
| | - K Kezo
- Centre for Advanced Studies in Botany, University of Madras, Chennai, Tamil Nadu, India
| | - S Kumar
- Botanical Survey of India, Andaman and Nicobar Regional Center, Haddo - 744102, Port Blair, South Andaman, India
| | - E Larsson
- Biological and Environmental Sciences, University of Gothenburg, and Gothenburg Global Biodiversity Centre, Box 463, SE40530 Göteborg, Sweden
| | - K T Mufeeda
- Botanical Survey of India, Andaman and Nicobar Regional Center, Haddo - 744102, Port Blair, South Andaman, India
| | - M Piątek
- W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, PL-31-512 Kraków, Poland
| | - P Rodriguez-Flakus
- W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, PL-31-512 Kraków, Poland
| | - P V S R N Sarma
- Department of Plant Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - M Stryjak-Bogacka
- W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, PL-31-512 Kraków, Poland
| | - D Torres-Garcia
- Universitat Rovira i Virgili, Facultat de Medicina i Ciéncies de la Salut and IU-RESCAT, Unitat de Micologia i Microbiologia Ambiental, Reus, Catalonia, Spain
| | - J Vauras
- Biological Collections of Åbo Akademi University, Biodiversity Unit, Herbarium, FI-20014 University of Turku, Finland
| | - D A Acal
- Department of Invertebrate Zoology & Hydrobiology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| | - A Akulov
- Department of Mycology and Plant Resistance, V. N. Karazin Kharkiv National University, Maidan Svobody 4, 61022 Kharkiv, Ukraine
| | - K Alhudaib
- Department of Arid Land Agriculture, College of Agricultural and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Pests and Plant Diseases Unit, College of Agricultural and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - M Asif
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, 45320, Islamabad, Pakistan
| | - S Balashov
- EMSL Analytical, Inc., 200 Route 130 North, Cinnaminson, NJ 08077 USA
| | - H-O Baral
- Blaihofstr. 42, Tübingen, D-72074, Germany
| | - A Baturo-Cieśniewska
- Department of Biology and Plant Protection, Bydgoszcz University of Science and Technology, Al. prof. S. Kaliskiego 7, 85-796 Bydgoszcz, Poland
| | - D Begerow
- Universität Hamburg, Institute of Plant Science and Microbiology, Organismic Botany and Mycology, Ohnhorststraße 18, 22609 Hamburg, Germany
| | - A Beja-Pereira
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal
- DGAOT, Faculdade de Ciências, Universidade do Porto, Rua Campo Alegre 687, 4169-007 Porto, Portugal
| | - M V Bianchinotti
- CERZOS-UNS-CONICET, Camino La Carrindanga Km 7, CP: 8000, Bahía Blanca, Argentina and Depto. de Biología, Bioquímica y Farmacia, UNS, San Juan 670, CP: 8000, Bahía Blanca, Argentina
| | - P Bilański
- Department of Forest Ecosystems Protection, University of Agriculture in Krakow, Al. 29 Listopada 46, 31-425 Krakow, Poland
| | - S Chandranayaka
- Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysuru - 570006, Karnataka, India
| | - N Chellappan
- Centre for Advanced Studies in Botany, University of Madras, Chennai, Tamil Nadu, India
| | - D A Cowan
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Private Bag X20, Hatfield 0028, Pretoria, South Africa
| | - F A Custódio
- Departamento de Fitopatologia, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - P Czachura
- W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, PL-31-512 Kraków, Poland
| | - G Delgado
- Eurofins Built Environment, 6110 W. 34th St, Houston, TX 77092, USA
| | - N I De Silva
- Department of Biology, Faculty of Science, Chiang Mai University, 50200, Chiang Mai, Thailand
| | - J Dijksterhuis
- Wasterdijk Fungal Biodiversity Institute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands
| | - M Dueñas
- Department of Mycology, Real Jardín Botánico-CSIC, Plaza de Murillo 2, 28014 Madrid, Spain
| | - P Eisvand
- Department of Plant Protection, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Khuzestan Province, Iran
| | - V Fachada
- Neuromuscular Research Center, University of Jyväskylä, Rautpohjankatu 8, 40700, Jyväskylä, Finland
- MHNC-UP - Museu de História Natural e da Ciência da Universidade do Porto - Herbário PO, Universidade do Porto. Praça Gomes Teixeira, 4099-002, Porto, Portugal
| | | | - Y Fritsche
- Plant Developmental Physiology and Genetics Laboratory, Department of Plant Science, Federal University of Santa Catarina, Florianópolis, Brazil
| | - F Fuljer
- Department of Botany, Faculty of Natural Sciences, Comenius University, Révová 39, 811 02, Bratislava, Slovakia
| | - K G G Ganga
- Department of Botany, University of Calicut, Kerala, 673 635, India
| | - M P Guerra
- Plant Developmental Physiology and Genetics Laboratory, Department of Plant Science, Federal University of Santa Catarina, Florianópolis, Brazil
| | - K Hansen
- Swedish Museum of Natural History, Department of Botany, P.O. Box 50007, SE-104 05 Stockholm, Sweden
| | - N Hywel-Jones
- Zhejiang BioAsia Institute of Life Sciences, Pinghu 31 4200, Zhejiang, People's Republic of China
| | - A M Ismail
- Department of Arid Land Agriculture, College of Agricultural and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Pests and Plant Diseases Unit, College of Agricultural and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Vegetable Diseases Research Department, Plant Pathology Research Institute, Agricultural Research Center, Giza 12619, Egypt
| | - C R Jacobs
- Nin.Da.Waab.Jig-Walpole Island Heritage Centre, Bkejwanong (Walpole Island First Nation), 2185 River Road North, Walpole Island, Ontario, N8A 4K9, Canada
| | - R Jankowiak
- Department of Forest Ecosystems Protection, University of Agriculture in Krakow, Al. 29 Listopada 46, 31-425 Krakow, Poland
| | - A Karich
- Unit of Bio- and Environmental Sciences, TU Dresden, International Institute Zittau, Markt 23, 02763 Zittau, Germany
| | - M Kemler
- Universität Hamburg, Institute of Plant Science and Microbiology, Organismic Botany and Mycology, Ohnhorststraße 18, 22609 Hamburg, Germany
| | - K Kisło
- University of Warsaw, Botanic Garden, Aleje Ujazdowskie 4, 00-478 Warsaw, Poland
| | - W Klofac
- Mayerhöfen 28, 3074 Michelbach, Austria
| | - I Krisai-Greilhuber
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, 1030 Wien, Austria
| | - K P D Latha
- Department of Botany, University of Calicut, Kerala, 673 635, India
| | - R Lebeuf
- 775, rang du Rapide Nord, Saint-Casimir, Quebec, G0A 3L0, Canada
| | - M E Lopes
- Plant Developmental Physiology and Genetics Laboratory, Department of Plant Science, Federal University of Santa Catarina, Florianópolis, Brazil
| | - S Lumyong
- Department of Biology, Faculty of Science, Chiang Mai University, 50200, Chiang Mai, Thailand
| | - J G Maciá-Vicente
- Plant Ecology and Nature Conservation, Wageningen University & Research, P.O. Box 47, 6700 AA Wageningen, The Netherlands
- Department of Microbial Ecology, Netherlands Institute for Ecology (NIOO-KNAW), P.O. Box 50, 6700 AB Wageningen, The Netherlands
| | - G Maggs-Kölling
- Gobabeb-Namib Research Institute, Walvis Bay, Namibia
- Unit for Environmental Sciences and Management, North-West University, P. Bag X1290, Potchefstroom, 2520, South Africa
| | - D Magistà
- Department of Soil, Plant and Food Sciences, University of Bari A. Moro, 70126, Bari, Italy
- Institute of Sciences of Food Production (ISPA), National Research Council (CNR), 70126, Bari, Italy
| | - P Manimohan
- Department of Botany, University of Calicut, Kerala, 673 635, India
| | - M P Martín
- Department of Mycology, Real Jardín Botánico-CSIC, Plaza de Murillo 2, 28014 Madrid, Spain
| | - E Mazur
- W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, PL-31-512 Kraków, Poland
| | - M Mehrabi-Koushki
- Department of Plant Protection, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Khuzestan Province, Iran
- Biotechnology and Bioscience Research Center, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - A N Miller
- University of Illinois Urbana-Champaign, Illinois Natural History Survey, 1816 South Oak Street, Champaign, Illinois, 61820, USA
| | - A Mombert
- 3 rue de la craie, 25640 Corcelle-Mieslot, France
| | - E A Ossowska
- Department of Plant Taxonomy and Nature Conservation, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, PL-80-308 Gdańsk, Poland
| | - K Patejuk
- Department of Plant Protection, Wtoctaw University of Environmental and Life Sciences, pl. Grunwaldzki 24a, 50-363 Wtoctaw, Poland
| | - O L Pereira
- Departamento de Fitopatologia, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - S Piskorski
- Department of Algology and Mycology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| | - M Plaza
- La Angostura, 20, 11370 Los Barrios, Cádiz, Spain
| | - A R Podile
- Department of Plant Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | | | - W Pusz
- Department of Plant Protection, Wtoctaw University of Environmental and Life Sciences, pl. Grunwaldzki 24a, 50-363 Wtoctaw, Poland
| | - M Raza
- Key Laboratory of Integrated Pest Management in Crops in Northwestern Oasis, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang 83009, China
| | - M Ruszkiewicz-Michalska
- Department of Algology and Mycology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| | - M Saba
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, 45320, Islamabad, Pakistan
| | - R M Sánchez
- CERZOS-UNS-CONICET, Camino La Carrindanga Km 7, CP: 8000, Bahía Blanca, Argentina and Depto. de Biología, Bioquímica y Farmacia, UNS, San Juan 670, CP: 8000, Bahía Blanca, Argentina
| | - R Singh
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi - 221005, Uttar Pradesh, India
| | - L Śliwa
- W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, PL-31-512 Kraków, Poland
| | - M E Smith
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611-0680, USA
| | - V M Stefenon
- Plant Developmental Physiology and Genetics Laboratory, Department of Plant Science, Federal University of Santa Catarina, Florianópolis, Brazil
| | - D Strasiftáková
- Slovak National Museum-Natural History Museum, Vajanského náb. 2, P.O. Box 13, 81006, Bratislava, Slovakia
| | - N Suwannarach
- Department of Biology, Faculty of Science, Chiang Mai University, 50200, Chiang Mai, Thailand
| | - K Szczepańska
- Department of Botany and Plant Ecology, Wroclaw University of Environmental and Life Sciences, pl. Grunwaldzki 24a, PL-50-363 Wroclaw, Poland
| | - M T Telleria
- Department of Mycology, Real Jardín Botánico-CSIC, Plaza de Murillo 2, 28014 Madrid, Spain
| | - D S Tennakoon
- Department of Biology, Faculty of Science, Chiang Mai University, 50200, Chiang Mai, Thailand
| | - M Thines
- Evolutionary Analyses and Biological Archives, Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Senckenberganlage 25, 60325 Frankfurt am Main, Germany
- LOEWE Centre for Translational Biodiversity Genomics, Georg-Voigt-Str. 14-16, 60325 Frankfurt am Main
- Goethe University, Department of Biological Sciences, Institute of Ecology, Evolution, and Diversity, Max-von-Laue-Str. 9, 60483 Frankfurt am Main, Germany
| | - R G Thorn
- Department of Biology, University of Western Ontario, London, Ontario, N6A 5B7, Canada
| | - J Urbaniak
- Department of Botany and Plant Ecology, Wroclaw University of Environmental and Life Sciences, pl. Grunwaldzki 24a, PL-50-363 Wroclaw, Poland
| | | | - V Vasan
- Centre for Advanced Studies in Botany, University of Madras, Chennai, Tamil Nadu, India
| | - C Vila-Viçosa
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal
- MHNC-UP - Museu de História Natural e da Ciência da Universidade do Porto - Herbário PO, Universidade do Porto. Praça Gomes Teixeira, 4099-002, Porto, Portugal
| | - H Voglmayr
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, 1030 Wien, Austria
| | - M Wrzosek
- University of Warsaw, Botanic Garden, Aleje Ujazdowskie 4, 00-478 Warsaw, Poland
| | - J Zappelini
- Plant Developmental Physiology and Genetics Laboratory, Department of Plant Science, Federal University of Santa Catarina, Florianópolis, Brazil
| | - J Z Groenewald
- Wasterdijk Fungal Biodiversity Institute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands
| |
Collapse
|
5
|
Barrett K, Hunt CJ, Lange L, Grigoriev IV, Meyer AS. Conserved unique peptide patterns (CUPP) online platform 2.0: implementation of +1000 JGI fungal genomes. Nucleic Acids Res 2023:7175339. [PMID: 37216585 DOI: 10.1093/nar/gkad385] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 04/27/2023] [Accepted: 04/29/2023] [Indexed: 05/24/2023] Open
Abstract
Carbohydrate-processing enzymes, CAZymes, are classified into families based on sequence and three-dimensional fold. Because many CAZyme families contain members of diverse molecular function (different EC-numbers), sophisticated tools are required to further delineate these enzymes. Such delineation is provided by the peptide-based clustering method CUPP, Conserved Unique Peptide Patterns. CUPP operates synergistically with the CAZy family/subfamily categorizations to allow systematic exploration of CAZymes by defining small protein groups with shared sequence motifs. The updated CUPP library contains 21,930 of such motif groups including 3,842,628 proteins. The new implementation of the CUPP-webserver, https://cupp.info/, now includes all published fungal and algal genomes from the Joint Genome Institute (JGI), genome resources MycoCosm and PhycoCosm, dynamically subdivided into motif groups of CAZymes. This allows users to browse the JGI portals for specific predicted functions or specific protein families from genome sequences. Thus, a genome can be searched for proteins having specific characteristics. All JGI proteins have a hyperlink to a summary page which links to the predicted gene splicing including which regions have RNA support. The new CUPP implementation also includes an update of the annotation algorithm that uses only a fourth of the RAM while enabling multi-threading, providing an annotation speed below 1 ms/protein.
Collapse
Affiliation(s)
- Kristian Barrett
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, DK-2800 Kgs. Lyngby, Denmark
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA94720, USA
| | - Cameron J Hunt
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, DK-2800 Kgs. Lyngby, Denmark
| | - Lene Lange
- BioEconomy, Research & Advisory, Valby DK-2500, Denmark
| | - Igor V Grigoriev
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA94720, USA
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA94720, USA
| | - Anne S Meyer
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, DK-2800 Kgs. Lyngby, Denmark
| |
Collapse
|
6
|
Rosolen RR, Horta MAC, de Azevedo PHC, da Silva CC, Sforca DA, Goldman GH, de Souza AP. Whole-genome sequencing and comparative genomic analysis of potential biotechnological strains of Trichoderma harzianum, Trichoderma atroviride, and Trichoderma reesei. Mol Genet Genomics 2023; 298:735-754. [PMID: 37017807 DOI: 10.1007/s00438-023-02013-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 03/24/2023] [Indexed: 04/06/2023]
Abstract
Trichoderma atroviride and Trichoderma harzianum are widely used as commercial biocontrol agents against plant diseases. Recently, T. harzianum IOC-3844 (Th3844) and T. harzianum CBMAI-0179 (Th0179) demonstrated great potential in the enzymatic conversion of lignocellulose into fermentable sugars. Herein, we performed whole-genome sequencing and assembly of the Th3844 and Th0179 strains. To assess the genetic diversity within the genus Trichoderma, the results of both strains were compared with strains of T. atroviride CBMAI-00020 (Ta0020) and T. reesei CBMAI-0711 (Tr0711). The sequencing coverage value of all genomes evaluated in this study was higher than that of previously reported genomes for the same species of Trichoderma. The resulting assembly revealed total lengths of 40 Mb (Th3844), 39 Mb (Th0179), 36 Mb (Ta0020), and 32 Mb (Tr0711). A genome-wide phylogenetic analysis provided details on the relationships of the newly sequenced species with other Trichoderma species. Structural variants revealed genomic rearrangements among Th3844, Th0179, Ta0020, and Tr0711 relative to the T. reesei QM6a reference genome and showed the functional effects of such variants. In conclusion, the findings presented herein allow the visualization of genetic diversity in the evaluated strains and offer opportunities to explore such fungal genomes in future biotechnological and industrial applications.
Collapse
Affiliation(s)
- Rafaela Rossi Rosolen
- Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), Cidade Universitária Zeferino Vaz, Campinas, SP, Brazil
- Graduate Program in Genetics and Molecular Biology, Institute of Biology, UNICAMP, Campinas, SP, Brazil
| | - Maria Augusta Crivelente Horta
- Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), Cidade Universitária Zeferino Vaz, Campinas, SP, Brazil
- Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Paulo Henrique Campiteli de Azevedo
- Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), Cidade Universitária Zeferino Vaz, Campinas, SP, Brazil
- Graduate Program in Genetics and Molecular Biology, Institute of Biology, UNICAMP, Campinas, SP, Brazil
| | - Carla Cristina da Silva
- Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), Cidade Universitária Zeferino Vaz, Campinas, SP, Brazil
| | - Danilo Augusto Sforca
- Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), Cidade Universitária Zeferino Vaz, Campinas, SP, Brazil
| | - Gustavo Henrique Goldman
- Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Anete Pereira de Souza
- Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), Cidade Universitária Zeferino Vaz, Campinas, SP, Brazil.
- Department of Plant Biology, Institute of Biology, UNICAMP, Cidade Universitária Zeferino Vaz, Rua Monteiro Lobato, Campinas, SP, Brazil.
| |
Collapse
|
7
|
Affiliation(s)
- Michael Cunliffe
- Marine Biological AssociationPlymouthUK
- School of Biological and Marine SciencesUniversity PlymouthPlymouthUK
| |
Collapse
|
8
|
Roik A, Reverter M, Pogoreutz C. A roadmap to understanding diversity and function of coral reef-associated fungi. FEMS Microbiol Rev 2022; 46:fuac028. [PMID: 35746877 PMCID: PMC9629503 DOI: 10.1093/femsre/fuac028] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/01/2022] [Accepted: 06/14/2022] [Indexed: 01/09/2023] Open
Abstract
Tropical coral reefs are hotspots of marine productivity, owing to the association of reef-building corals with endosymbiotic algae and metabolically diverse bacterial communities. However, the functional importance of fungi, well-known for their contribution to shaping terrestrial ecosystems and global nutrient cycles, remains underexplored on coral reefs. We here conceptualize how fungal functional traits may have facilitated the spread, diversification, and ecological adaptation of marine fungi on coral reefs. We propose that functions of reef-associated fungi may be diverse and go beyond their hitherto described roles of pathogens and bioeroders, including but not limited to reef-scale biogeochemical cycles and the structuring of coral-associated and environmental microbiomes via chemical mediation. Recent technological and conceptual advances will allow the elucidation of the physiological, ecological, and chemical contributions of understudied marine fungi to coral holobiont and reef ecosystem functioning and health and may help provide an outlook for reef management actions.
Collapse
Affiliation(s)
- Anna Roik
- Helmholtz Institute for Functional Marine Biodiversity, University of Oldenburg, Ammerländer Heerstraße 231, 26129 Oldenburg, Germany
- Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University of Oldenburg, Wilhelmshaven, 26046, Germany
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI), Am Handelshafen 12, 27570 Bremerhaven, Germany
| | - Miriam Reverter
- Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University of Oldenburg, Wilhelmshaven, 26046, Germany
- School of Biological and Marine Sciences, University of Plymouth, Plymouth PL4 8AA, United Kingdom
| | - Claudia Pogoreutz
- Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| |
Collapse
|
9
|
Vacuolal and Peroxisomal Calcium Ion Transporters in Yeasts and Fungi: Key Role in the Translocation of Intermediates in the Biosynthesis of Fungal Metabolites. Genes (Basel) 2022; 13:genes13081450. [PMID: 36011361 PMCID: PMC9407949 DOI: 10.3390/genes13081450] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/09/2022] [Accepted: 08/12/2022] [Indexed: 11/25/2022] Open
Abstract
Highlights The intracellular calcium content plays a key role in the expression of genes involved in the biosynthesis and secretion of fungal metabolites. The cytosolic calcium concentration in fungi is maintained by influx through the cell membrane and by release from store organelles. Some MSF transporters, e.g., PenV of Penicillium chrysogenum and CefP of Acremonium chrysogenum belong to the TRP calcium ion channels. A few of the numerous calcium ion transporters existing in organelles of different filamentous fungi have been characterized at the functional and subcellular localization levels. The cytosolic calcium signal seems to be transduced by the calcitonin/calcineurin cascade controlling the expression of many fungal genes.
Abstract The intracellular calcium content in fungal cells is influenced by a large number of environmental and nutritional factors. Sharp changes in the cytosolic calcium level act as signals that are decoded by the cell gene expression machinery, resulting in several physiological responses, including differentiation and secondary metabolites biosynthesis. Expression of the three penicillin biosynthetic genes is regulated by calcium ions, but there is still little information on the role of this ion in the translocation of penicillin intermediates between different subcellular compartments. Using advanced information on the transport of calcium in organelles in yeast as a model, this article reviews the recent progress on the transport of calcium in vacuoles and peroxisomes and its relation to the translocation of biosynthetic intermediates in filamentous fungi. The Penicillium chrysogenum PenV vacuole transporter and the Acremonium chrysogenum CefP peroxisomal transporter belong to the transient receptor potential (TRP) class CSC of calcium ion channels. The PenV transporter plays an important role in providing precursors for the biosynthesis of the tripeptide δ-(-α-aminoadipyl-L-cysteinyl-D-valine), the first intermediate of penicillin biosynthesis in P. chrysogenum. Similarly, CefP exerts a key function in the conversion of isopenicillin N to penicillin N in peroxisomes of A. chrysogenum. These TRP transporters are different from other TRP ion channels of Giberella zeae that belong to the Yvc1 class of yeast TRPs. Recent advances in filamentous fungi indicate that the cytosolic calcium concentration signal is connected to the calcitonin/calcineurin signal transduction cascade that controls the expression of genes involved in the subcellular translocation of intermediates during fungal metabolite biosynthesis. These advances open new possibilities to enhance the expression of important biosynthetic genes in fungi.
Collapse
|
10
|
Khoulassa S, Elmoualij B, Benlyas M, Meziani R, Bouhlali EDT, Houria B, Alaoui YEH, Haridas S, Guo J, Lipzen A, Hurtado CV, Tejomurthula S, Barry K, Grigoriev IV, Coleman JJ, Ayhan DH, Ma LJ, Essarioui A. High-Quality Draft Nuclear and Mitochondrial Genome Sequence of Fusarium oxysporum f. sp. albedinis strain 9, the Causal Agent of Bayoud Disease on Date Palm. PLANT DISEASE 2022; 106:1974-1976. [PMID: 35536698 DOI: 10.1094/pdis-01-22-0245-a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Affiliation(s)
- Siham Khoulassa
- National Institute of Agricultural Research (INRA), Errachidia, Morocco
- Moulay Ismail University (FSTE/UMI), Errachidia, Morocco
| | | | | | - Reda Meziani
- National Institute of Agricultural Research (INRA), Errachidia, Morocco
| | | | - Benamar Houria
- National Institute of Agricultural Research (INRA), Errachidia, Morocco
| | | | - Sajeet Haridas
- United States Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, U.S.A
| | - Jie Guo
- United States Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, U.S.A
| | - Anna Lipzen
- United States Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, U.S.A
| | - Catalina Vega Hurtado
- United States Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, U.S.A
| | - Sravanthi Tejomurthula
- United States Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, U.S.A
| | - Kerrie Barry
- United States Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, U.S.A
| | - Igor V Grigoriev
- United States Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, U.S.A
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, U.S.A
| | - Jeffrey J Coleman
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, U.S.A
| | | | - Li-Jun Ma
- University of Massachusetts, Amherst, MA, U.S.A
| | - Adil Essarioui
- National Institute of Agricultural Research (INRA), Errachidia, Morocco
| |
Collapse
|
11
|
Jones EBG, Ramakrishna S, Vikineswary S, Das D, Bahkali AH, Guo SY, Pang KL. How Do Fungi Survive in the Sea and Respond to Climate Change? J Fungi (Basel) 2022; 8:jof8030291. [PMID: 35330293 PMCID: PMC8949214 DOI: 10.3390/jof8030291] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/08/2022] [Accepted: 03/10/2022] [Indexed: 02/05/2023] Open
Abstract
With the over 2000 marine fungi and fungal-like organisms documented so far, some have adapted fully to life in the sea, while some have the ability to tolerate environmental conditions in the marine milieu. These organisms have evolved various mechanisms for growth in the marine environment, especially against salinity gradients. This review highlights the response of marine fungi, fungal-like organisms and terrestrial fungi (for comparison) towards salinity variations in terms of their growth, spore germination, sporulation, physiology, and genetic adaptability. Marine, freshwater and terrestrial fungi and fungal-like organisms vary greatly in their response to salinity. Generally, terrestrial and freshwater fungi grow, germinate and sporulate better at lower salinities, while marine fungi do so over a wide range of salinities. Zoosporic fungal-like organisms are more sensitive to salinity than true fungi, especially Ascomycota and Basidiomycota. Labyrinthulomycota and marine Oomycota are more salinity tolerant than saprolegniaceous organisms in terms of growth and reproduction. Wide adaptability to saline conditions in marine or marine-related habitats requires mechanisms for maintaining accumulation of ions in the vacuoles, the exclusion of high levels of sodium chloride, the maintenance of turgor in the mycelium, optimal growth at alkaline pH, a broad temperature growth range from polar to tropical waters, and growth at depths and often under anoxic conditions, and these properties may allow marine fungi to positively respond to the challenges that climate change will bring. Other related topics will also be discussed in this article, such as the effect of salinity on secondary metabolite production by marine fungi, their evolution in the sea, and marine endophytes.
Collapse
Affiliation(s)
- E. B. Gareth Jones
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (E.B.G.J.); (A.H.B.)
| | - Sundari Ramakrishna
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia; (S.R.); (S.V.); (D.D.)
| | - Sabaratnam Vikineswary
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia; (S.R.); (S.V.); (D.D.)
| | - Diptosh Das
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia; (S.R.); (S.V.); (D.D.)
| | - Ali H. Bahkali
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (E.B.G.J.); (A.H.B.)
| | - Sheng-Yu Guo
- Institute of Marine Biology and Centre of Excellence for the Oceans, National Taiwan Ocean University, 2 Pei-Ning Road, Keelung 202301, Taiwan;
| | - Ka-Lai Pang
- Institute of Marine Biology and Centre of Excellence for the Oceans, National Taiwan Ocean University, 2 Pei-Ning Road, Keelung 202301, Taiwan;
- Correspondence:
| |
Collapse
|
12
|
Kuvarina AE, Gavryushina IA, Sykonnikov MA, Efimenko TA, Markelova NN, Bilanenko EN, Bondarenko SA, Kokaeva LY, Timofeeva AV, Serebryakova MV, Barashkova AS, Rogozhin EA, Georgieva ML, Sadykova VS. Exploring Peptaibol's Profile, Antifungal, and Antitumor Activity of Emericellipsin A of Emericellopsis Species from Soda and Saline Soils. Molecules 2022; 27:1736. [PMID: 35268835 PMCID: PMC8911692 DOI: 10.3390/molecules27051736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 11/17/2022] Open
Abstract
Features of the biochemical adaptations of alkaliphilic fungi to exist in extreme environments could promote the production of active antibiotic compounds with the potential to control microorganisms, causing infections associated with health care. Thirty-eight alkaliphilic and alkalitolerant Emericellopsis strains (E. alkalina, E. cf. maritima, E. cf. terricola, Emericellopsis sp.) isolated from different saline soda soils and belonging to marine, terrestrial, and soda soil ecological clades were investigated for emericellipsin A (EmiA) biosynthesis, an antifungal peptaibol previously described for Emericellopsis alkalina. The analysis of the Emericellopsis sp. strains belonging to marine and terrestrial clades from chloride soils revealed another novel form with a mass of 1032.7 Da, defined by MALDI-TOF Ms/Ms spectrometers, as the EmiA lacked a hydroxyl (dEmiA). EmiA displayed strong inhibitory effects on cell proliferation and viability of HCT 116 cells in a dose- and time-dependent manners and induced apoptosis.
Collapse
Affiliation(s)
- Anastasia E. Kuvarina
- Laboratory for Taxonomic Study and Collection of Cultures of Microorganisms, Gause Institute of New Antibiotics, St. Bolshaya Pirogovskaya, 11, 119021 Moscow, Russia; (A.E.K.); (I.A.G.); (M.A.S.); (T.A.E.); (N.N.M.); (E.A.R.)
| | - Irina A. Gavryushina
- Laboratory for Taxonomic Study and Collection of Cultures of Microorganisms, Gause Institute of New Antibiotics, St. Bolshaya Pirogovskaya, 11, 119021 Moscow, Russia; (A.E.K.); (I.A.G.); (M.A.S.); (T.A.E.); (N.N.M.); (E.A.R.)
| | - Maxim A. Sykonnikov
- Laboratory for Taxonomic Study and Collection of Cultures of Microorganisms, Gause Institute of New Antibiotics, St. Bolshaya Pirogovskaya, 11, 119021 Moscow, Russia; (A.E.K.); (I.A.G.); (M.A.S.); (T.A.E.); (N.N.M.); (E.A.R.)
| | - Tatiana A. Efimenko
- Laboratory for Taxonomic Study and Collection of Cultures of Microorganisms, Gause Institute of New Antibiotics, St. Bolshaya Pirogovskaya, 11, 119021 Moscow, Russia; (A.E.K.); (I.A.G.); (M.A.S.); (T.A.E.); (N.N.M.); (E.A.R.)
| | - Natalia N. Markelova
- Laboratory for Taxonomic Study and Collection of Cultures of Microorganisms, Gause Institute of New Antibiotics, St. Bolshaya Pirogovskaya, 11, 119021 Moscow, Russia; (A.E.K.); (I.A.G.); (M.A.S.); (T.A.E.); (N.N.M.); (E.A.R.)
| | - Elena N. Bilanenko
- Faculty of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory, 119234 Moscow, Russia; (E.N.B.); (S.A.B.); (L.Y.K.)
| | - Sofiya A. Bondarenko
- Faculty of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory, 119234 Moscow, Russia; (E.N.B.); (S.A.B.); (L.Y.K.)
| | - Lyudmila Y. Kokaeva
- Faculty of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory, 119234 Moscow, Russia; (E.N.B.); (S.A.B.); (L.Y.K.)
| | - Alla V. Timofeeva
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (A.V.T.); (M.V.S.)
| | - Marina V. Serebryakova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (A.V.T.); (M.V.S.)
| | - Anna S. Barashkova
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, RAS, St. Miklukho-Maklaya, 16/10, 117997 Moscow, Russia;
| | - Eugene A. Rogozhin
- Laboratory for Taxonomic Study and Collection of Cultures of Microorganisms, Gause Institute of New Antibiotics, St. Bolshaya Pirogovskaya, 11, 119021 Moscow, Russia; (A.E.K.); (I.A.G.); (M.A.S.); (T.A.E.); (N.N.M.); (E.A.R.)
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, RAS, St. Miklukho-Maklaya, 16/10, 117997 Moscow, Russia;
| | - Marina L. Georgieva
- Laboratory for Taxonomic Study and Collection of Cultures of Microorganisms, Gause Institute of New Antibiotics, St. Bolshaya Pirogovskaya, 11, 119021 Moscow, Russia; (A.E.K.); (I.A.G.); (M.A.S.); (T.A.E.); (N.N.M.); (E.A.R.)
- Faculty of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory, 119234 Moscow, Russia; (E.N.B.); (S.A.B.); (L.Y.K.)
| | - Vera S. Sadykova
- Laboratory for Taxonomic Study and Collection of Cultures of Microorganisms, Gause Institute of New Antibiotics, St. Bolshaya Pirogovskaya, 11, 119021 Moscow, Russia; (A.E.K.); (I.A.G.); (M.A.S.); (T.A.E.); (N.N.M.); (E.A.R.)
| |
Collapse
|
13
|
Genomic and Metabolomic Analyses of the Marine Fungus Emericellopsis cladophorae: Insights into Saltwater Adaptability Mechanisms and Its Biosynthetic Potential. J Fungi (Basel) 2021; 8:jof8010031. [PMID: 35049971 PMCID: PMC8780691 DOI: 10.3390/jof8010031] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 12/18/2021] [Accepted: 12/27/2021] [Indexed: 01/01/2023] Open
Abstract
The genus Emericellopsis is found in terrestrial, but mainly in marine, environments with a worldwide distribution. Although Emericellopsis has been recognized as an important source of bioactive compounds, the range of metabolites expressed by the species of this genus, as well as the genes involved in their production are still poorly known. Untargeted metabolomics, using UPLC- QToF–MS/MS, and genome sequencing (Illumina HiSeq) was performed to unlock E. cladophorae MUM 19.33 chemical diversity. The genome of E. cladophorae is 26.9 Mb and encodes 8572 genes. A large set of genes encoding carbohydrate-active enzymes (CAZymes), secreted proteins, transporters, and secondary metabolite biosynthetic gene clusters were identified. Our analysis also revealed genomic signatures that may reflect a certain fungal adaptability to the marine environment, such as genes encoding for (1) the high-osmolarity glycerol pathway; (2) osmolytes’ biosynthetic processes; (3) ion transport systems, and (4) CAZymes classes allowing the utilization of marine polysaccharides. The fungal crude extract library constructed revealed a promising source of antifungal (e.g., 9,12,13-Trihydroxyoctadec-10-enoic acid, hymeglusin), antibacterial (e.g., NovobiocinA), anticancer (e.g., daunomycinone, isoreserpin, flavopiridol), and anti-inflammatory (e.g., 2’-O-Galloylhyperin) metabolites. We also detected unknown compounds with no structural match in the databases used. The metabolites’ profiles of E. cladophorae MUM 19.33 fermentations were salt dependent. The results of this study contribute to unravel aspects of the biology and ecology of this marine fungus. The genome and metabolome data are relevant for future biotechnological exploitation of the species.
Collapse
|