1
|
He C, Zhu R, He L, Chook CYB, Li H, Leung FP, Tse G, Chen ZY, Huang Y, Wong WT. Asperuloside as a Novel NRF2 Activator to Ameliorate Endothelial Dysfunction in High Fat Diet-Induced Obese Mice. Antioxid Redox Signal 2025; 42:77-96. [PMID: 39119806 DOI: 10.1089/ars.2024.0593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Aims: Current treatments are inadequate in alleviating obesity-associated vascular diseases. The development of effective therapies to ameliorate endothelial dysfunction and attenuate oxidative stress is of utmost importance. Asperuloside (ASP), a bioactive compound extracted from Eucommia species, exhibits antiobesity properties. However, the effects of ASP on vasculopathy have not been investigated. Therefore, the effects of ASP on vascular dysfunction and related mechanisms were elucidated. Results: ASP significantly reversed the impaired endothelium-dependent relaxations (EDRs) in obese mice and interleukin (IL)-1β-treated aortas. ASP suppressed endothelial activation in obese mice aortas and IL-1β-treated endothelial cells. ASP attenuated oxidative stress, scavenged mitochondrial reactive oxygen species (ROS), and upregulated heme oxygenase-1 (HO-1) expression in endothelium, independent of its anti-inflammatory properties. HO-1 knockdown diminished the protective effects of ASP against impaired EDRs, ROS overproduction, and endothelial activation. Endothelial cell-specific nuclear factor erythroid 2-related factor 2 (Nrf2) knockdown eliminated the ASP-mediated vascular protective effects and endothelial HO-1 upregulation, emphasizing that ASP improves endothelial function by activating Nrf2/HO-1 signaling. ASP facilitated Nrf2 nuclear translocation and the direct binding of Nrf2 to antioxidant response element, thereby enhancing HO-1 transcription and scavenging ROS. The cellular thermal shift assay results provide the first experimental characterization of the direct binding of ASP to Nrf2. Conclusions: These findings demonstrate that ASP ameliorates obesity-associated endothelial dysfunction by activating Nrf2/HO-1 signaling and thereby maintaining redox hemostasis, suggesting its potential as a novel Nrf2-targeted therapeutic agent and dietary supplement for vasculopathy. Antioxid. Redox Signal. 42, 77-96.
Collapse
Affiliation(s)
- Chufeng He
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Ruiwen Zhu
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Lei He
- Department of Biomedical Sciences, The City University of Hong Kong, Hong Kong, China
| | | | - Huixian Li
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Fung Ping Leung
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Gary Tse
- School of Nursing and Health Studies, Hong Kong Metropolitan University, Hong Kong, China
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Zhen-Yu Chen
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Yu Huang
- Department of Biomedical Sciences, The City University of Hong Kong, Hong Kong, China
| | - Wing Tak Wong
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| |
Collapse
|
2
|
Wang L, Zhu R, He C, Li H, Zhang Q, Cheung YM, Leung FP, Wong WT. Licorice Extract Isoliquiritigenin Protects Endothelial Function in Type 2 Diabetic Mice. Nutrients 2024; 16:3160. [PMID: 39339760 PMCID: PMC11435099 DOI: 10.3390/nu16183160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/11/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024] Open
Abstract
Endothelial dysfunction occurs prior to atherosclerosis, which is an independent predictor of cardiovascular diseases (CVDs). Diabetes mellitus impairs endothelial function by triggering oxidative stress and inflammation in vascular tissues. Isoliquiritigenin (ISL), one of the major bioactive ingredients extracted from licorice, has been reported to inhibit inflammation and oxidative stress. However, the therapeutic effects of ISL on ameliorating type 2 diabetes (T2D)-associated endothelial dysfunction remain unknown. In our animal study, db/db male mice were utilized as a model for T2D-associated endothelial dysfunction, while their counterpart, heterozygote db/m+ male mice, served as the control. Mouse brain microvascular endothelial cells (mBMECs) were used for in vitro experiments. Interleukin-1β (IL-1β) was used to induce endothelial cell dysfunction. ISL significantly reversed the impairment of endothelium-dependent relaxations (EDRs) in db/db mouse aortas. ISL treatment decreased ROS (reactive oxygen species) levels in db/db mice aortic sections and IL-1β-treated endothelial cells. Encouragingly, ISL attenuated the overexpression of pro-inflammatory factors MCP-1, TNF-α, and IL-6 in db/db mouse aortas and IL-1β-impaired endothelial cells. The NOX2 (NADPH oxidase 2) overexpression was inhibited by ISL treatment. Notably, ISL treatment restored the expression levels of IL-10, SOD1, Nrf2, and HO-1 in db/db mouse aortas and IL-1β-impaired endothelial cells. This study illustrates, for the first time, that ISL attenuates endothelial dysfunction in T2D mice, offering new insights into the pharmacological effects of ISL. Our findings demonstrate the potential of ISL as a promising therapeutic agent for the treatment of vascular diseases, paving the way for the further exploration of novel vascular therapies.
Collapse
Affiliation(s)
- Lin Wang
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China; (L.W.); (R.Z.); (C.H.); (H.L.); (Q.Z.); (Y.M.C.); (F.P.L.)
| | - Ruiwen Zhu
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China; (L.W.); (R.Z.); (C.H.); (H.L.); (Q.Z.); (Y.M.C.); (F.P.L.)
| | - Chufeng He
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China; (L.W.); (R.Z.); (C.H.); (H.L.); (Q.Z.); (Y.M.C.); (F.P.L.)
| | - Huixian Li
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China; (L.W.); (R.Z.); (C.H.); (H.L.); (Q.Z.); (Y.M.C.); (F.P.L.)
| | - Qile Zhang
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China; (L.W.); (R.Z.); (C.H.); (H.L.); (Q.Z.); (Y.M.C.); (F.P.L.)
| | - Yiu Ming Cheung
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China; (L.W.); (R.Z.); (C.H.); (H.L.); (Q.Z.); (Y.M.C.); (F.P.L.)
| | - Fung Ping Leung
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China; (L.W.); (R.Z.); (C.H.); (H.L.); (Q.Z.); (Y.M.C.); (F.P.L.)
| | - Wing Tak Wong
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China; (L.W.); (R.Z.); (C.H.); (H.L.); (Q.Z.); (Y.M.C.); (F.P.L.)
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518172, China
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
3
|
Qin Zhang Q, Tang J, Feng Wu Y, Yu Qian C, Qin S, Hang Cai Z, Wang H, Mei Xiao H. Gelation of crocodile myofibrillar protein - κ-carrageenan mixtures in two low-NaCl solution. Food Chem 2024; 445:138753. [PMID: 38394905 DOI: 10.1016/j.foodchem.2024.138753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/31/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024]
Abstract
Crocodile meat is a novel reptile meat source, but its processing method is rare. This study investigated the effect of κ-carrageenan addition and partial substitution of NaCl on the gel properties of crocodile myofibrillar protein (CMP). Result showed that CMP formed gel when temperature above 60 ℃. The water-holding capacity, gel strength, denaturation degree, sulfhydryl content covalent bond and hydrophobic bond of gel in KCl solution were significantly higher than those in CaCl2 solution (P < 0.05). K+ induced CMP to form a tight network structure with uniform small pores though covalent and hydrophobic bonds, but the gel properties were reduced by κ-carrageenan. In CaCl2 solution, κ-carrageenan improved the gel structure by filling the protein network through hydrogen bonding. Therefore, it can be concluded that KCl is better than CaCl2 in the manufacturing of low-sodium crocodile foods. Moreover, κ-carrageenan was only beneficial to gel quality in CaCl2 solution.
Collapse
Affiliation(s)
- Qiu Qin Zhang
- Sanya Institute of Nanjing Agricultural University, Sanya, Hainan 572024, China; College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jing Tang
- Sanya Institute of Nanjing Agricultural University, Sanya, Hainan 572024, China; College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Ying Feng Wu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Cheng Yu Qian
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Shan Qin
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zi Hang Cai
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Hui Wang
- Sanya Institute of Nanjing Agricultural University, Sanya, Hainan 572024, China; College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Hong Mei Xiao
- Sanya Institute of Nanjing Agricultural University, Sanya, Hainan 572024, China; College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|