1
|
Wang R, He B, Wang Y, Liu Y, Liang Z, Jin H, Wei M, Ren W, Suo Z, Xu Y. A novel electrochemical aptasensor based on AgPdNPs/PEI-GO and hollow nanobox-like Pt@Ni-CoHNBs for procymidone detection. Bioelectrochemistry 2024; 158:108728. [PMID: 38733721 DOI: 10.1016/j.bioelechem.2024.108728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/13/2024]
Abstract
Herein, an aptasensor based on a signal amplification strategy was developed for the sensitive detection of procymidone (PCM). AgPd nanoparticles/Polenimine Graphite oxide (AgPdNPs/PEI-GO) was weaned as electrode modification material to facilitate electron transport and increase the active sites on the electrode surface. Besides, Pt@Ni-Co nanoboxes (Pt@Ni-CoHNBs) were utilized to be carriers for signaling tags, after hollowing ZIF-67 and growing Pt, the resulting Pt@Ni-CoHNBs has a tremendous amounts of folds occurred on the surface, enables it to carry a larger quantity of thionine, thus amplify the detectable electrochemical signal. In the presence of PCM, the binding of PCM to the signal probe would trigger a change in electrical signal. The aptasensor was demonstrated with excellent sensitivity and a low detection limit of 0.98 pg·mL-1, along with a wide linear range of 1 μg·mL-1 to 1 pg·mL-1. Meanwhile, the specificity, stability and reproducibility of the constructed aptasensor were proved to be satisfactory.
Collapse
Affiliation(s)
- Ruonan Wang
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| | - Baoshan He
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China.
| | - Yuling Wang
- School of Natural Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Yao Liu
- Henan Scientific Research Platform Service Center, Zhengzhou, Henan 450003, PR China
| | - Zhengyong Liang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| | - Huali Jin
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| | - Min Wei
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| | - Wenjie Ren
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| | - Zhiguang Suo
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| | - Yiwei Xu
- School of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, PR China
| |
Collapse
|
2
|
Mutunga T, Sinanovic S, Harrison C. A Wireless Network for Monitoring Pesticides in Groundwater: An Inclusive Approach for a Vulnerable Kenyan Population. SENSORS (BASEL, SWITZERLAND) 2024; 24:4665. [PMID: 39066061 PMCID: PMC11280913 DOI: 10.3390/s24144665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/06/2024] [Accepted: 07/13/2024] [Indexed: 07/28/2024]
Abstract
Safe drinking water is essential to a healthy lifestyle and has been recognised as a human right by numerous countries. However, the realisation of this right remains largely aspirational, particularly in impoverished nations that lack adequate resources for water quality testing. Kenya, a Sub-Saharan country, bears the brunt of this challenge. Pesticide imports in Kenya increased by 144% from 2015 to 2018, with sales data indicating that 76% of these pesticides are classified as highly hazardous. This trend continues to rise. Over 70% of Kenya's population resides in rural areas, with 75% of the rural population engaged in agriculture and using pesticides. Agriculture is the country's main economic activity, contributing over 30% of its gross domestic product (GDP). The situation is further exacerbated by the lack of monitoring for pesticide residues in surface water and groundwater, coupled with the absence of piped water infrastructure in rural areas. Consequently, contamination levels are high, as agricultural runoff is a major contaminant of surface water and groundwater. The increased use of pesticides to enhance agricultural productivity exacerbates environmental degradation and harms water ecosystems, adversely affecting public health. This study proposes the development of a wireless sensor system that utilizes radio-frequency identification (RFID), Long-range (LoRa) protocol and a global system for mobile communications (GSM) for monitoring pesticide prevalence in groundwater sources. From the system design, individuals with limited literacy skills, advanced age, or non-expert users can utilize it with ease. The reliability of the LoRa protocol in transmitting data packets is thoroughly investigated to ensure effective communication. The system features a user-friendly interface for straightforward data input and facilitates broader access to information by employing various remote wireless sensing methods.
Collapse
Affiliation(s)
- Titus Mutunga
- School of Engineering and Built Environment, Glasgow Caledonian University, Glasgow G4 0BA, Scotland, UK; (S.S.); (C.H.)
| | | | | |
Collapse
|
3
|
Mutunga T, Sinanovic S, Harrison CS. Integrating Wireless Remote Sensing and Sensors for Monitoring Pesticide Pollution in Surface and Groundwater. SENSORS (BASEL, SWITZERLAND) 2024; 24:3191. [PMID: 38794044 PMCID: PMC11125874 DOI: 10.3390/s24103191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/07/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024]
Abstract
Water constitutes an indispensable resource crucial for the sustenance of humanity, as it plays an integral role in various sectors such as agriculture, industrial processes, and domestic consumption. Even though water covers 71% of the global land surface, governments have been grappling with the challenge of ensuring the provision of safe water for domestic use. A contributing factor to this situation is the persistent contamination of available water sources rendering them unfit for human consumption. A common contaminant, pesticides are not frequently tested for despite their serious effects on biodiversity. Pesticide determination in water quality assessment is a challenging task because the procedures involved in the extraction and detection are complex. This reduces their popularity in many monitoring campaigns despite their harmful effects. If the existing methods of pesticide analysis are adapted by leveraging new technologies, then information concerning their presence in water ecosystems can be exposed. Furthermore, beyond the advantages conferred by the integration of wireless sensor networks (WSNs), the Internet of Things (IoT), Machine Learning (ML), and big data analytics, a notable outcome is the attainment of a heightened degree of granularity in the information of water ecosystems. This paper discusses methods of pesticide detection in water, emphasizing the possible use of electrochemical sensors, biosensors, and paper-based sensors in wireless sensing. It also explores the application of WSNs in water, the IoT, computing models, ML, and big data analytics, and their potential for integration as technologies useful for pesticide monitoring in water.
Collapse
Affiliation(s)
- Titus Mutunga
- School of Engineering and Built Environment, Glasgow Caledonian University, Glasgow G4 0BA, Scotland, UK; (S.S.); (C.S.H.)
| | | | | |
Collapse
|
4
|
Kamalesh R, Karishma S, Saravanan A. Progress in environmental monitoring and mitigation strategies for herbicides and insecticides: A comprehensive review. CHEMOSPHERE 2024; 352:141421. [PMID: 38360415 DOI: 10.1016/j.chemosphere.2024.141421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/24/2024] [Accepted: 02/07/2024] [Indexed: 02/17/2024]
Abstract
Herbicides and insecticides are pervasively applied in agricultural sector to increase the yield by controlling or eliminating bug vermin and weeds. Although, resistance development occurs, direct and indirect impact on human health and ecosystem is clearly visible. Normally, herbicides and pesticides are water soluble in nature; accordingly, it is hard to decrease their deadliness and to dis-appear them from the environment. They are profoundly specific, and considered as poisonous to various peoples in agricultural and industrial work places. In order to substantially reduce the harmful impacts, it is crucial to thoroughly examine the detection and mitigation measures for these compounds. The primary objective of this paper is to provide an overview of various herbicide and pesticide detection techniques and associated remedial techniques. A short summary on occurrence and harmful effects of herbicides/insecticides on ecosystem has been included to the study. The conventional and advanced, rapid techniques for the detection of insecticides and herbicides were described in detail. A detailed overview on several mitigation strategies including advanced oxidation, adsorption, electrochemical process, and bioremediation as well as the mechanism behind the strategic approaches to reduce the effects of growing pesticide pollution has been emphasized. Regardless of the detection techniques and mitigation strategies, the recent advances employed, obstacles, and perspectives have been discussed in detail.
Collapse
Affiliation(s)
- R Kamalesh
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - S Karishma
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - A Saravanan
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India.
| |
Collapse
|
5
|
Lee HJ, Shields MR, Landeta A, Saldaña MA, Fredregill CL, Pietrantonio PV. Evaluation of field resistance in field-collected mosquito Culex quinquefasciatus Say through quantification of ULV permethrin/PBO formulation in field bioassays. PEST MANAGEMENT SCIENCE 2023; 79:3934-3949. [PMID: 37248198 DOI: 10.1002/ps.7587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/24/2023] [Accepted: 05/29/2023] [Indexed: 05/31/2023]
Abstract
BACKGROUND Pyrethroids are among the most applied adulticides worldwide to control mosquito vectors for prevention of arboviral diseases transmission. However, pesticide resistance development in a mosquito population could lead to decreased control efficacy. While most studies investigate the resistant genotype (i.e. kdr, CYP450, etc.) as explanatory variables, few field efficacy studies have measured pesticide quantities deposited at different distances from the sprayer in association with observed mosquito mortality. The current study determined field delivered amounts of an applied ULV permethrin/PBO formulation (31% permethrin + 66% piperonyl butoxide) by GC/MS and estimated practical resistance ratios using caged mosquito females. RESULTS For field samples, the extraction method recovered 78 ± 3.92-108 ± 8.97% of the permethrin/PBO formulation when utilizing the peaks of PBO from GC/MS to estimate the concentrations of adulticide deposited near the mosquito cages. The field bioassay showed that the spatial distribution of permethrin/PBO formulation was heterogeneous among three pseudo-replicates within the same distance. Within the quantifiable permethrin/PBO range of 15.7-51.4 ng/cm2 , field-collected mosquito mortalities started at 64% and linearly increased reaching 100% only in two areas, while all Sebring susceptible mosquitoes died. The field LC95 resistance ratio (RR) of F0 Cx. quinquefasciatus ranged from 2.65-3.51, falling within the 95% CI of RR95 estimated by laboratory vial assays. Tests with and without PBO indicated P450's enzymes contributed to field resistance. CONCLUSION Results showed the suitability of the collection and quantification method to estimate the field resistance ratio at the applied pesticide rate. Pesticide quantification would also allow the association of the known frequencies of resistance mechanisms (e.g. kdr, CYP450) with field mortalities to estimate the resistance level conferred by such mechanisms. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Han-Jung Lee
- Department of Entomology, Texas A&M University, College Station, TX, USA
| | - Michael Ray Shields
- Geochemical and Environmental Research Group, Texas A&M University, College Station, TX, USA
| | - Anais Landeta
- Harris County Public Health, Mosquito and Vector Control Division (HCPH-MVCD), Houston, TX, USA
| | - Miguel Arturo Saldaña
- Harris County Public Health, Mosquito and Vector Control Division (HCPH-MVCD), Houston, TX, USA
| | - Chris Lee Fredregill
- Harris County Public Health, Mosquito and Vector Control Division (HCPH-MVCD), Houston, TX, USA
| | | |
Collapse
|
6
|
Kashyap P, Rajpurohit D, Modi K, Bhasin H, Fernandes P, Mishra D. Benzene Sulfonyl Linked Tetrasubstituted Thiacalix[4]arene for Selective and Sensitive Fluorometric Sensing of Sulfosulfuron along with Theoretical Studies. J Fluoresc 2023; 33:1961-1970. [PMID: 36930343 DOI: 10.1007/s10895-023-03194-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 02/20/2023] [Indexed: 03/18/2023]
Abstract
Herein, we designed two fluorescent tetrasubstituted benzene sulfonyl appended Thiacalix[4]arene receptors named L1 and L2, which sensitively and selectively detect Sulfosulfuron among other herbicides and pesticides. The detection limit (LOD) was found to be 0.21 ppm and 0.35 ppm, and the enhancement constant (Ks) was determined to be 7.07 X 104 M-1 and 5.55 X 104 M-1 for L1 and L2, respectively. Using the non-linear regression method, the association constant was obtained as 2.1 X 104 M-1 and 2.23 X 104 M-1 whereas, the binding ratio was found to be 1:1 for both L1 and L2, respectively. Additionally, the interference studies show the selective nature of receptors for Sulfosulfuron among its sulfonylurea family. To further confirm the interaction mechanism, 1H-NMR spectroscopy, and a computational investigation were carried out, which validates the 1:1 binding ratio. The receptors were found to be recyclable in nature with simple acid-base treatment. This new approach of using supramolecules as fluorescent probes for sensitive and selective detection of herbicides is rare in the literature.
Collapse
Affiliation(s)
- Priyanka Kashyap
- Department of Chemistry, School of Sciences, Gujarat University, 380009, Ahmedabad, Gujarat, India.
| | - Dushyantsingh Rajpurohit
- Department of Chemistry, School of Sciences, Gujarat University, 380009, Ahmedabad, Gujarat, India
| | - Krunal Modi
- Department of Humanity and Science, School of Engineering, Indrashil University, 382740, Mehsana, Gujarat, India.
| | - Hinaly Bhasin
- Department of Chemistry, School of Sciences, Gujarat University, 380009, Ahmedabad, Gujarat, India
| | - Patrick Fernandes
- Department of Chemistry, School of Sciences, Gujarat University, 380009, Ahmedabad, Gujarat, India
| | - Divya Mishra
- Department of Chemistry, School of Sciences, Gujarat University, 380009, Ahmedabad, Gujarat, India.
| |
Collapse
|
7
|
Leskovac A, Petrović S. Pesticide Use and Degradation Strategies: Food Safety, Challenges and Perspectives. Foods 2023; 12:2709. [PMID: 37509801 PMCID: PMC10379487 DOI: 10.3390/foods12142709] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/11/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
While recognizing the gaps in pesticide regulations that impact consumer safety, public health concerns associated with pesticide contamination of foods are pointed out. The strategies and research directions proposed to prevent and/or reduce pesticide adverse effects on human health and the environment are discussed. Special attention is paid to organophosphate pesticides, as widely applied insecticides in agriculture, veterinary practices, and urban areas. Biotic and abiotic strategies for organophosphate pesticide degradation are discussed from a food safety perspective, indicating associated challenges and potential for further improvements. As food systems are endangered globally by unprecedented challenges, there is an urgent need to globally harmonize pesticide regulations and improve methodologies in the area of food safety to protect human health.
Collapse
Affiliation(s)
- Andreja Leskovac
- Vinca Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, M. Petrovića Alasa 12-14, 11000 Belgrade, Serbia
| | - Sandra Petrović
- Vinca Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, M. Petrovića Alasa 12-14, 11000 Belgrade, Serbia
| |
Collapse
|
8
|
Issaka E, Wariboko MA, Johnson NAN, Aniagyei OND. Advanced visual sensing techniques for on-site detection of pesticide residue in water environments. Heliyon 2023; 9:e13986. [PMID: 36915503 PMCID: PMC10006482 DOI: 10.1016/j.heliyon.2023.e13986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/26/2023] [Accepted: 02/17/2023] [Indexed: 03/02/2023] Open
Abstract
Pesticide usage has increased to fulfil agricultural demand. Pesticides such as organophosphorus pesticides (OPPs) are ubiquitous in world food production. Their widespread usage has unavoidable detrimental consequences for humans, wildlife, water, and soil environments. Hence, the development of more convenient and efficient pesticide residue (PR) detection methods is of paramount importance. Visual detecting approaches have acquired a lot of interest among different sensing systems due to inherent advantages in terms of simplicity, speed, sensitivity, and eco-friendliness. Furthermore, various detections have been proven to enable real-life PR surveillance in environment water. Fluorometric (FL), colourimetric (CL), and enzyme-inhibition (EI) techniques have emerged as viable options. These sensing technologies do not need complex operating processes or specialist equipment, and the simple colour change allows for visual monitoring of the sensing result. Visual sensing techniques for on-site detection of PR in water environments are discussed in this paper. This paper further reviews prior research on the integration of CL, FL, and EI-based techniques with nanoparticles (NPs), quantum dots (QDs), and metal-organic frameworks (MOFs). Smartphone detection technologies for PRs are also reviewed. Finally, conventional methods and nanoparticle (NPs) based strategies for the detection of PRs are compared.
Collapse
Affiliation(s)
- Eliasu Issaka
- School of Environmental Science and Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Mary Adumo Wariboko
- School of Medicine, Faculty of Dermatology and Venereology, Jiangsu University, Zhenjiang 212013, PR China
| | | | | |
Collapse
|
9
|
Immediate, sensitive and specific time-resolved fluorescent immunoassay strips based on immune competition for the detection of procymidone in vegetables. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
10
|
Ren M, Rigele A, Davaasambuu S, Shun N, Natsagdorj N, Purev N. Study on Gas Chromatography Retention Time Variation of Acetic Acid Combined with Quantum Chemical Calculation. Chromatographia 2022. [DOI: 10.1007/s10337-022-04220-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
11
|
Abdelsalam IM, Ghosh S, AlKafaas SS, Bedair H, Malloum A, ElKafas SS, Saad-Allah KM. Nanotechnology as a tool for abiotic stress mitigation in horticultural crops. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01251-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
12
|
Bedair H, Ghosh S, Abdelsalam IM, Keerio AA, AlKafaas SS. Potential implementation of trees to remediate contaminated soil in Egypt. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:78132-78151. [PMID: 36175731 DOI: 10.1007/s11356-022-22984-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 09/06/2022] [Indexed: 06/16/2023]
Abstract
Soil and water in Egypt have become contaminated with multiple pollutants. These contaminants arise from diverse sources, including misuse of fertilizers, industrial effluent discharged into irrigation water, discharge of wastewater in rural areas, and mining activities discharging wet and dry atmospheric deposits and heavy metal contamination. The pollutants can directly affect the quality of air, water, and food and have an adverse effect on human health. About 33% of the cultivated lands in Egypt are salinized due to extreme conditions like high temperatures and aridity. The presence of elevated salt levels in the soil leads to grave consequences for seed germination, plant biochemical processes, development, and reproduction, all of which result in the output of reactive oxygen species and eventually plant death. Despite the possibility of thermal, chemical, or a combination of the two to remediate contaminated soils, their applications are complicated and costly. Some plants, called hyperaccumulators, exhibit the potential to clean up pollutants safely from the soil and water at a low cost. All the technologies used in soil decontamination are called phytoremediation. Some physiological (e.g., phytoextraction, phytostabilization, phytotransformation, rhizofiltration, phytostimulation, phytovolatilization, phytodegradation, and phytodesalination) and molecular parameters (e.g., genes, peptides, and proteins) are involved in heavy metals accumulation of these plants. Although trees are not classified as hyperaccumulators, they have recently proved higher phytoremediation potential than herbaceous plants due to their deeper root system and greater biomass growth. Indeed, this review sheds the light on the application of trees for the phytoremediation of salts and heavy metals in Egypt.
Collapse
Affiliation(s)
- Heba Bedair
- Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Soumya Ghosh
- Department of Genetics, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, 9301, South Africa.
| | | | - Ayaz Ali Keerio
- Faculty of Crop Production, Sindh Agriculture University Tando Jam, Sindh, Hyderabad, Pakistan
| | - Samar Sami AlKafaas
- Chemistry Department, Division of Biochemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| |
Collapse
|
13
|
Shaltout K, Bedair H. Diversity, distribution and regional conservation status of the Egyptian tree flora. Afr J Ecol 2022. [DOI: 10.1111/aje.13071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Kamal Shaltout
- Botany Department, Faculty of Science Tanta University Tanta Egypt
| | - Heba Bedair
- Botany Department, Faculty of Science Tanta University Tanta Egypt
| |
Collapse
|
14
|
Optimization of an Analytical Method for Indoxacarb Residues in Fourteen Medicinal Herbs Using GC–μECD, GC–MS/MS and LC–MS/MS. SEPARATIONS 2022. [DOI: 10.3390/separations9090232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Pesticide residue analysis in medicinal herbs is a challenging task because of the matrix effect and its influence on quantitative analysis despite the continuous development of several new analytical methods and instrumentations. In this study, a modified QuEChERS method was developed for the analysis of indoxacarb residue in medicinal herbs by using the conventional instrument, gas chromatography micro-electron-capture-detector (GC–μECD), and comparing it with gas chromatography–tandem mass spectrometry (GC–MS/MS) and liquid chromatography–tandem mass spectrometry (LC–MS/MS). Samples were extracted with acetonitrile and purified using an NH2 cartridge. The optimized method efficiently removes the co-extractives and offered a limit of quantification of 0.01 mg kg−1. The GC–μECD analysis results of indoxacarb in seven medicinal herbs out of fourteen species at a fortification level of 0.01 mg kg−1 showed a recovery range of 79.7–117.6%, while the rest showed recovery > 120%. Similarly, the recovery of indoxacarb by GC and LC–MS/SM were 74.1–105.9 and 73.0–99.0%, respectively, with a relative standard deviation of <20%. Matrix effects for the majority of medicinal herbs analyzed by GC–MS/MS were >±20%. Whereas the results for LC–MS/MS were <20%, which was within the acceptable range according to the SANTE/11312/2021 guidelines. Considering the performance of the method and alignment with the regulatory guidelines, LC–MS/MS is recommended for the analysis of indoxacarb in selected medicinal herbs.
Collapse
|