1
|
Porninta K, Khemacheewakul J, Techapun C, Phimolsiripol Y, Jantanasakulwong K, Sommanee S, Mahakuntha C, Feng J, Htike SL, Moukamnerd C, Zhuang X, Wang W, Qi W, Li FL, Liu T, Kumar A, Nunta R, Leksawasdi N. Pretreatment and enzymatic hydrolysis optimization of lignocellulosic biomass for ethanol, xylitol, and phenylacetylcarbinol co-production using Candida magnoliae. Front Bioeng Biotechnol 2024; 11:1332185. [PMID: 38304106 PMCID: PMC10830760 DOI: 10.3389/fbioe.2023.1332185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 12/18/2023] [Indexed: 02/03/2024] Open
Abstract
Cellulosic bioethanol production generally has a higher operating cost due to relatively expensive pretreatment strategies and low efficiency of enzymatic hydrolysis. The production of other high-value chemicals such as xylitol and phenylacetylcarbinol (PAC) is, thus, necessary to offset the cost and promote economic viability. The optimal conditions of diluted sulfuric acid pretreatment under boiling water at 95°C and subsequent enzymatic hydrolysis steps for sugarcane bagasse (SCB), rice straw (RS), and corn cob (CC) were optimized using the response surface methodology via a central composite design to simplify the process on the large-scale production. The optimal pretreatment conditions (diluted sulfuric acid concentration (% w/v), treatment time (min)) for SCB (3.36, 113), RS (3.77, 109), and CC (3.89, 112) and the optimal enzymatic hydrolysis conditions (pretreated solid concentration (% w/v), hydrolysis time (h)) for SCB (12.1, 93), RS (10.9, 61), and CC (12.0, 90) were achieved. CC xylose-rich and CC glucose-rich hydrolysates obtained from the respective optimal condition of pretreatment and enzymatic hydrolysis steps were used for xylitol and ethanol production. The statistically significant highest (p ≤ 0.05) xylitol and ethanol yields were 65% ± 1% and 86% ± 2% using Candida magnoliae TISTR 5664. C. magnoliae could statistically significantly degrade (p ≤ 0.05) the inhibitors previously formed during the pretreatment step, including up to 97% w/w hydroxymethylfurfural, 76% w/w furfural, and completely degraded acetic acid during the xylitol production. This study was the first report using the mixed whole cells harvested from xylitol and ethanol production as a biocatalyst in PAC biotransformation under a two-phase emulsion system (vegetable oil/1 M phosphate (Pi) buffer). PAC concentration could be improved by 2-fold compared to a single-phase emulsion system using only 1 M Pi buffer.
Collapse
Affiliation(s)
- Kritsadaporn Porninta
- Program in Biotechnology, Multidisciplinary and Interdisciplinary School, Chiang Mai University, Chiang Mai, Thailand
- Cluster of Agro Bio-Circular-Green Industry (Agro BCG), School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, Thailand
| | - Julaluk Khemacheewakul
- Cluster of Agro Bio-Circular-Green Industry (Agro BCG), School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, Thailand
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, Thailand
| | - Charin Techapun
- Cluster of Agro Bio-Circular-Green Industry (Agro BCG), School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, Thailand
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, Thailand
| | - Yuthana Phimolsiripol
- Cluster of Agro Bio-Circular-Green Industry (Agro BCG), School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, Thailand
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, Thailand
| | - Kittisak Jantanasakulwong
- Cluster of Agro Bio-Circular-Green Industry (Agro BCG), School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, Thailand
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, Thailand
| | - Sumeth Sommanee
- Cluster of Agro Bio-Circular-Green Industry (Agro BCG), School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, Thailand
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, Thailand
| | - Chatchadaporn Mahakuntha
- Cluster of Agro Bio-Circular-Green Industry (Agro BCG), School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, Thailand
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, Thailand
| | - Juan Feng
- Cluster of Agro Bio-Circular-Green Industry (Agro BCG), School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, Thailand
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, Thailand
| | - Su Lwin Htike
- Cluster of Agro Bio-Circular-Green Industry (Agro BCG), School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, Thailand
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, Thailand
| | | | - Xinshu Zhuang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, CAS Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou, China
| | - Wen Wang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, CAS Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou, China
| | - Wei Qi
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, CAS Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou, China
| | - Fu-Li Li
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Shandong Energy Institute, Qingdao New Energy Shandong Laboratory, Qingdao, China
| | - Tianzhong Liu
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Shandong Energy Institute, Qingdao New Energy Shandong Laboratory, Qingdao, China
| | - Anbarasu Kumar
- Cluster of Agro Bio-Circular-Green Industry (Agro BCG), School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, Thailand
- Department of Biotechnology, Periyar Maniammai Institute of Science & Technology (Deemed to be University), Thanjavur, India
| | - Rojarej Nunta
- Cluster of Agro Bio-Circular-Green Industry (Agro BCG), School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, Thailand
- Division of Food Innovation and Business, Faculty of Agricultural Technology, Lampang Rajabhat University, Lampang, Thailand
| | - Noppol Leksawasdi
- Cluster of Agro Bio-Circular-Green Industry (Agro BCG), School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, Thailand
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
2
|
Kumar S, Panwar P, Sehrawat N, Upadhyay SK, Sharma AK, Singh M, Yadav M. Oxalic acid: recent developments for cost-effective microbial production. PHYSICAL SCIENCES REVIEWS 2023. [DOI: 10.1515/psr-2022-0167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Abstract
Organic acids are the important compounds that have found numerous applications in various industries. Oxalic acid is one of the important organic acids with different industrial applications. Different microbes have been reported as important sources of various organic acids. Majority of studies have been carried on fungal sources for oxalic acid production. Aspergillus sp. has been found efficient oxalic acid producer. Microbial productions of metabolites including organic acids are considered cost effective and eco-friendly approach over chemical synthesis. Fermentative production of microbial oxalic acid seems to be a good alternative as compared to chemical methods. Microbial production of oxalic acid still requires the extensive and elaborated research for its commercial production from efficient microbes using cost effective substrates. The present text summarizes the production of oxalic acid, its applications and recent developments in the direction of fermentative production of microbial oxalic acid.
Collapse
Affiliation(s)
- Sachin Kumar
- Department of Bioinformatics , Janta Vedic College , Baraut-Baghpat , Uttar Pradesh 250611 , India
| | - Priya Panwar
- Department of Biotechnology , M.M.E.C., Maharishi Markandeshwar (Deemed to be University) , Mullana-Ambala 133207 , India
| | - Nirmala Sehrawat
- Department of Biotechnology , M.M.E.C., Maharishi Markandeshwar (Deemed to be University) , Mullana-Ambala 133207 , India
| | - Sushil Kumar Upadhyay
- Department of Biotechnology , M.M.E.C., Maharishi Markandeshwar (Deemed to be University) , Mullana-Ambala 133207 , India
| | - Anil Kumar Sharma
- Department of Biotechnology , M.M.E.C., Maharishi Markandeshwar (Deemed to be University) , Mullana-Ambala 133207 , India
| | - Manoj Singh
- Department of Biotechnology , M.M.E.C., Maharishi Markandeshwar (Deemed to be University) , Mullana-Ambala 133207 , India
| | - Mukesh Yadav
- Department of Biotechnology , M.M.E.C., Maharishi Markandeshwar (Deemed to be University) , Mullana-Ambala 133207 , India
| |
Collapse
|
3
|
Feng F, Zeng B, Ouyang S, Zhong Y, Chen J. Optimization of alkali-treated poplar fiber saccharification using metal ions and surfactants. Bioengineered 2020; 12:138-150. [PMID: 33350341 PMCID: PMC8806347 DOI: 10.1080/21655979.2020.1857576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
In this study, contrary to untreated poplar fiber, processing of alkali-treated poplar fiber was optimized for the enzymatic saccharification. Considering reducing sugar content as the evaluation index, pH, temperature, time, amount of enzyme, and rotational speed of shaker were standardized to optimize the sugar production by enzymatic hydrolysis. Using response surface methodology, the optimum technological condition of enzymatic hydrolysis was found to be utilizing 43 mg cellulase at 46 °C for 50 h. At this, the sugar conversion amount of NaOH or H2O2-NaOH pretreated poplar was 164.62 mg/g and 218.82 mg/g respectively. It was a corresponding increase of 446.73% or 626.75% than that of poplar fiber without a pretreatment. At a low concentration, metal ions and surfactants promoted the conversion of reducing sugar. Especially, 0.01 g/L Mn2+ and 0.50 g/L hexadecyl trimethyl ammonium bromide (CTAB) produced the best effect and increased the conversion rate of reducing sugar by 23.62% and 21.44% respectively. Also, the effect of the combination of metal ions and surfactants was better than that of a single accelerator. By improving the enzymatic process, these findings could enhance the utilization of poplar fiber for the production of reducing sugar.
Collapse
Affiliation(s)
- Fan Feng
- College of Life Science and Technology, Central South University of Forestry & Technology , Changsha, China
| | - Baiquan Zeng
- College of Life Science and Technology, Central South University of Forestry & Technology , Changsha, China
| | - Shilin Ouyang
- College of Life Science and Technology, Central South University of Forestry & Technology , Changsha, China
| | - Yanan Zhong
- College of Life Science and Technology, Central South University of Forestry & Technology , Changsha, China
| | - Jienan Chen
- Ministry of Forestry Bioethanol Research Center , Changsha, China.,Hunan Engineering Research Center for Woody Biomass Conversion , Changsha, China
| |
Collapse
|