1
|
Mahuri M, Mohanty M, Thatoi H. Optimization and purification of laccase activity from Mammaliicoccus sciuri isolated from the soils of Similipal, Odisha, India: a kinetics study of crystal violet dye decolorization. Prep Biochem Biotechnol 2024; 54:573-586. [PMID: 37729443 DOI: 10.1080/10826068.2023.2258181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Four laccase-producing bacteria were found in soil samples from the Similipal Biosphere Reserve in Odisha, according to the current study. The isolates (SLCB1 to SLCB4) were evaluated for their laccase-producing ability in LB broth supplemented with guaiacol. The ABTS assay was performed to assess the laccase activity. The bacterium Mammaliicoccus sciuri shows the highest laccase activity i.e., 0.5125 U/L at the optimized conditions of pH 5.5, temperature 32.5 °C, ABTS concentration of 0.75 μl with an incubation time of 9 d. Laccase activity of M. sciuri grown in Sawdust was significantly increased in comparison to that in other agro wastes. The partially purified laccase enzyme after ammonium sulfate precipitation and dialysis showed a molecular weight of ∼58.5 kDa as determined by SDS-PAGE. A decolorization efficiency of 66.67% was recorded for the dye crystal violet after 1 h treatment with dialyzed laccase enzyme compared with phenol red, brilliant blue, and methylene blue.
Collapse
Affiliation(s)
- Monalisa Mahuri
- Department of Biotechnology, Maharaja Sriram Chandra Bhanjadeo University, Baripada, India
| | - Monalisa Mohanty
- Department of Biotechnology, Rama Devi Women's University, Bhubaneswar, India
| | - Hrudayanath Thatoi
- Department of Biotechnology, Maharaja Sriram Chandra Bhanjadeo University, Baripada, India
| |
Collapse
|
2
|
Asemoloye MD, Bello TS, Oladoye PO, Remilekun Gbadamosi M, Babarinde SO, Ebenezer Adebami G, Olowe OM, Temporiti MEE, Wanek W, Marchisio MA. Engineered yeasts and lignocellulosic biomaterials: shaping a new dimension for biorefinery and global bioeconomy. Bioengineered 2023; 14:2269328. [PMID: 37850721 PMCID: PMC10586088 DOI: 10.1080/21655979.2023.2269328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 10/03/2023] [Indexed: 10/19/2023] Open
Abstract
The next milestone of synthetic biology research relies on the development of customized microbes for specific industrial purposes. Metabolic pathways of an organism, for example, depict its chemical repertoire and its genetic makeup. If genes controlling such pathways can be identified, scientists can decide to enhance or rewrite them for different purposes depending on the organism and the desired metabolites. The lignocellulosic biorefinery has achieved good progress over the past few years with potential impact on global bioeconomy. This principle aims to produce different bio-based products like biochemical(s) or biofuel(s) from plant biomass under microbial actions. Meanwhile, yeasts have proven very useful for different biotechnological applications. Hence, their potentials in genetic/metabolic engineering can be fully explored for lignocellulosic biorefineries. For instance, the secretion of enzymes above the natural limit (aided by genetic engineering) would speed-up the down-line processes in lignocellulosic biorefineries and the cost. Thus, the next milestone would greatly require the development of synthetic yeasts with much more efficient metabolic capacities to achieve basic requirements for particular biorefinery. This review gave comprehensive overview of lignocellulosic biomaterials and their importance in bioeconomy. Many researchers have demonstrated the engineering of several ligninolytic enzymes in heterologous yeast hosts. However, there are still many factors needing to be well understood like the secretion time, titter value, thermal stability, pH tolerance, and reactivity of the recombinant enzymes. Here, we give a detailed account of the potentials of engineered yeasts being discussed, as well as the constraints associated with their development and applications.
Collapse
Affiliation(s)
- Michael Dare Asemoloye
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, Nankai District, China
- Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
| | - Tunde Sheriffdeen Bello
- Department of Plant Biology, School of Life Sciences, Federal University of Technology Minna, Minna Niger State, Nigeria
| | | | | | - Segun Oladiran Babarinde
- Department of Plant, Food and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, Nova Scotia, Canada
| | | | - Olumayowa Mary Olowe
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Mail Bag, Mmabatho, South Africa
| | | | - Wolfgang Wanek
- Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
| | - Mario Andrea Marchisio
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, Nankai District, China
| |
Collapse
|
3
|
Gares M, Benaissa A, Hiligsmann S, Cherfia R, Flahaut S, Alloun W, Djelid H, Chaoua S, Kacem Chaouche N. Box-Behnken design optimization of xylanase and cellulase production by Aspergillus fumigatus on Stipa tenacissima biomass. Mycologia 2023:1-19. [PMID: 37216583 DOI: 10.1080/00275514.2023.2205331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 04/18/2023] [Indexed: 05/24/2023]
Abstract
Optimization of xylanase and cellulase production by a newly isolated Aspergillus fumigatus strain grown on Stipa tenacissima (alfa grass) biomass without pretreatment was carried out using a Box-Behnken design. First, the polysaccharides of dried and ground alfa grass were characterized using chemical methods (strong and diluted acid). The effect of substrate particle size on xylanase and carboxymethylcellulase (CMCase) production by the selected and identified strain was then investigated. Thereafter, experiments were statistically planned with a Box-Behnken design to optimize initial pH, cultivation temperature, moisture content, and incubation period using alfa as sole carbon source. The effect of these parameters on the two enzyme production was evaluated using the response surface method. Analysis of variance was also carried out, and production of the enzymes was expressed using a mathematical equation depending on the influencing factors. The effects of individual, interaction, and square terms on production of both enzymes were represented using the nonlinear regression equations with significant R2 and P-values. Xylanase and CMCase production levels were enhanced by 25% and 27%, respectively. Thus, this study demonstrated for the first time the potential of alfa as a raw material to produce enzymes without any pretreatment. A set of parameter combinations was found to be effective for the production of xylanase and CMCase by A. fumigatus in an alfa-based solid-state fermentation.
Collapse
Affiliation(s)
- Maroua Gares
- Laboratory of Mycology, Biotechnology and Microbial Activity, Department of Applied Biology, Faculty of Natural and Life Sciences, University of Brothers Mentouri, Constantine 25017, Algeria
| | - Akila Benaissa
- Drug and Sustainable Development Laboratory, Faculty of Process Engineering, University Salah Boubnider-Constantine 3, Constantine 25000, Algeria
| | - Serge Hiligsmann
- 3BIO-BioTech, Université Libre de Bruxelles, Av. F. Roosevelt 50, CP 165/61, Brussels 1050, Belgium
| | - Radia Cherfia
- Laboratory of Mycology, Biotechnology and Microbial Activity, Department of Applied Biology, Faculty of Natural and Life Sciences, University of Brothers Mentouri, Constantine 25017, Algeria
| | - Sigrid Flahaut
- Applied Microbiology Laboratory, Interfaculty School of Bioengineers, Université Libre de Bruxelles, Brussels 1050, Belgium
| | - Wiem Alloun
- Laboratory of Mycology, Biotechnology and Microbial Activity, Department of Applied Biology, Faculty of Natural and Life Sciences, University of Brothers Mentouri, Constantine 25017, Algeria
| | - Hadjer Djelid
- Laboratory of Mycology, Biotechnology and Microbial Activity, Department of Applied Biology, Faculty of Natural and Life Sciences, University of Brothers Mentouri, Constantine 25017, Algeria
| | - Samah Chaoua
- Laboratory of Mycology, Biotechnology and Microbial Activity, Department of Applied Biology, Faculty of Natural and Life Sciences, University of Brothers Mentouri, Constantine 25017, Algeria
- Applied Microbiology Laboratory, Interfaculty School of Bioengineers, Université Libre de Bruxelles, Brussels 1050, Belgium
| | - Noreddine Kacem Chaouche
- Laboratory of Mycology, Biotechnology and Microbial Activity, Department of Applied Biology, Faculty of Natural and Life Sciences, University of Brothers Mentouri, Constantine 25017, Algeria
| |
Collapse
|
4
|
Co-elicitation of lignocelluloytic enzymatic activities and metabolites production in an Aspergillus-Streptomyces co-culture during lignocellulose fractionation. CURRENT RESEARCH IN MICROBIAL SCIENCES 2022; 3:100108. [PMID: 35243445 PMCID: PMC8861581 DOI: 10.1016/j.crmicr.2022.100108] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/20/2022] [Accepted: 02/05/2022] [Indexed: 11/24/2022] Open
Abstract
An easy set-up of the co-cultures from 2 different microorganisms (filamentous fungi and bacteria) from different microbial domains resulting into a greater and more diverse metabolic and lignocellulolytic content. An over expression of several key enzymatic lignocellulolytic activities is observed during the co-coculture due to elicitation. An elicitation of some specific biosynthetic cluster genes is observed due to the activation of those the complexity of the carbon compounds present in the lignocellulose. An elicitation of some specific biosynthetic cluster genes is observed only during the co-culture experiment. A specific microbial crosstalk and interaction exists at the species level between the 3 Streptomyces and the fungi leading to a specific of lignocellulolytic enzyme and secondary metabolite production.
Lignocellulose, the most abundant biomass on Earth, is a complex recalcitrant material mainly composed of three fractions: cellulose, hemicelluloses and lignins. In nature, lignocellulose is efficiently degraded for carbon recycling. Lignocellulose degradation involves numerous microorganisms and their secreted enzymes that act in synergy. Even they are efficient, the natural processes for lignocellulose degradation are slow (weeks to months). In this study, the objective was to study the synergism of some microorganisms to achieve efficient and rapid lignocellulose degradation. Wheat bran, an abundant co-product from milling industry, was selected as lignocellulosic biomass. Mono-cultures and co-cultures involving one A.niger strain fungi never sequenced before (DSM 1957) and either one of three different Streptomyces strains were tested in order to investigate the potentiality for efficient lignocellulose degradability. Comparative genomics of the strain Aspergillus niger DSM 1957 revealed that it harboured the maximum of AA, CBM, CE and GH among its closest relative strains. The different co-cultures set-up enriched the metabolic diversity and the lignocellulolytic CAZyme content. Depending on the co-cultures, an over-expression of some enzymatic activities (xylanase, glucosidase, arabinosidase) was observed in the co-cultures compared to the mono-cultures suggesting a specific microbial cross-talk depending on the microbial partner. Moreover, metabolomics for each mono and co-culture was performed and revealed an elicitation of the production of secondary metabolites and the activation of silent biosynthetic cluster genes depending on the microbial co-culture. This opens opportunities for the bioproduction of molecules of interest from wheat bran.
Collapse
|
5
|
Rath S, Paul M, Behera HK, Thatoi H. Response surface methodology mediated optimization of Lignin peroxidase from Bacillus mycoides isolated from Simlipal Biosphere Reserve, Odisha, India. J Genet Eng Biotechnol 2022; 20:2. [PMID: 34978643 PMCID: PMC8724326 DOI: 10.1186/s43141-021-00284-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 12/06/2021] [Indexed: 12/20/2022]
Abstract
BACKGROUND Lignin is a complex polymer of phenyl propanoid units found in the vascular tissues of the plants as one of lignocellulose materials. Many bacteria secrete enzymes to lyse lignin, which can be essential to ease the production of bioethanol. Current research focused on the study of ligninolytic bacteria capable of producing lignin peroxidase (LiP) which can help in lignin biodegradation and bioethanol production. Ligninolytic bacterial strains were isolated and screened from the soil samples of Simlipal Biosphere Reserve (SBR), Odisha (India), for the determination of their LiP activity. Enzymatic assay and optimization for the LiP activity were performed with the most potent bacterial strain. The strain was identified by morphological, biochemical, and molecular methods. RESULTS In this study, a total of 16 bacteria (Simlipal ligninolytic bacteria [SLB] 1-16) were isolated from forest soils of SBR using minimal salt medium containing lignin. Out of the 16 isolates, 9 isolates showed decolourization of methylene blue dye on LB agar plates. The bacterial isolates such as SLB8, SLB9, and SLB10 were able to decolourize lignin with 15.51%, 16.80%, and 33.02%, respectively. Further enzyme assay was performed using H2O2 as substrate and methylene blue as an indicator for these three bacterial strains in lignin containing minimal salt medium where the isolate SLB10 showed the highest LiP activity (31.711 U/mg). The most potent strain, SLB10, was optimized for enhanced LiP enzyme activity using response surface methodology. In the optimized condition of pH 10.5, temperature 30 °C, H2O2 concentration 0.115 mM, and time 42 h, SLB10 showed a maximum LiP activity of 55.947 U/mg with an increase of 1.76 times from un-optimized condition. Further chemical optimization was performed, and maximum LiP activity as well as significant dye-decolourization efficiency of SLB10 has been found in bacterial growth medium supplemented individually with cellulose, yeast extract, and MnSO4. Most notably, yeast extract and MnSO4-supplemented bacterial culture medium were shown to have even higher percentage of dye decolourization compared to normal basal medium. The bacterial strain SLB10 was identified as Bacillus mycoides according to morphological, biochemical, and molecular (16S rRNA sequencing) characterization and phylogenetic tree analysis. CONCLUSION Result from the present study revealed the potential of Bacillus mycoides bacterium isolated from the forest soil of SBR in producing LiP enzyme that can be evaluated further for application in lignin biodegradation and bioethanol production. Scaling up of LiP production from this potent bacterial strain could be useful in different industrial applications.
Collapse
Affiliation(s)
- Subhashree Rath
- Department of Biotechnology, Maharaja Sriram Chandra Bhanja Deo University, Takatpur, Baripada, Odisha, 757003, India
| | - Manish Paul
- Department of Biotechnology, Maharaja Sriram Chandra Bhanja Deo University, Takatpur, Baripada, Odisha, 757003, India
| | - Hemanta Kumar Behera
- Department of Biotechnology, Maharaja Sriram Chandra Bhanja Deo University, Takatpur, Baripada, Odisha, 757003, India
| | - Hrudayanath Thatoi
- Department of Biotechnology, Maharaja Sriram Chandra Bhanja Deo University, Takatpur, Baripada, Odisha, 757003, India.
| |
Collapse
|
6
|
CHAUHAN V, DHIMAN V, KANWAR SS. Combination of classical and statistical approaches to enhance the fermentation conditions and increase the yield of Lipopeptide(s) by Pseudomonas sp. OXDC12: its partial purification and determining antifungal property. Turk J Biol 2021; 45:695-710. [PMID: 35068950 PMCID: PMC8733952 DOI: 10.3906/biy-2106-59] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 11/26/2021] [Indexed: 01/05/2023] Open
Abstract
Around 200 different lipopeptides (LPs) have been identified to date, most of which are produced via Bacillus and Pseudomonas species. The clinical nature of the lipopeptide (LP) has led to a big surge in its research. They show antimicrobial and antitumor activities due to which mass-scale production and purification of LPs are beneficial. Response surface methodology (RSM) approach has emerged as an alternative in the field of computational biology for optimizing the reaction parameters using statistical models. In the present study, Pseudomonas sp. strain OXDC12 was used for production and partial purification of LPs using Thin Layer Chromatography (TLC). The main goal of the study was to increase the overall yield of LPs by optimizing the different variables in the fermentation broth. This was achieved using a combination of one factor at a time (OFAT) and response surface methodology (RSM) approaches. OFAT technique was used to optimize the necessary parameters and was followed by the creation of statistical models (RSM) to optimize the remaining variables. Maximum mycelial growth inhibition (%) against the fungus Mucor sp. was 61.3% for LP. Overall, the combination of both OFAT and RSM helped in increasing the LPs yield by 3 folds from 367mg/L to 1169mg/L.
Collapse
Affiliation(s)
- Vivek CHAUHAN
- Department of Biotechnology, Himachal Pradesh University, Summer HillIndia
| | - Vivek DHIMAN
- Department of Biotechnology, Himachal Pradesh University, Summer HillIndia
| | | |
Collapse
|
7
|
Murlidhar Sonkar R, Savata Gade P, Bokade V, Mudliar SN, Bhatt P. Ozone assisted autohydrolysis of wheat bran enhances xylooligosaccharide production with low generation of inhibitor compounds: A comparative study. BIORESOURCE TECHNOLOGY 2021; 338:125559. [PMID: 34280853 DOI: 10.1016/j.biortech.2021.125559] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/08/2021] [Accepted: 07/09/2021] [Indexed: 06/13/2023]
Abstract
In the present study, ozone assisted autohydrolysis (OAAH) was evaluated for enhanced generation of xylooligosaccharide (XOS) from wheat bran. The total XOS yield with optimum ozone dose of 3% (OAAH-3) was found to be 8.9% (w/w biomass) at 110 °C in comparison to 7.96% at 170 °C by autohydrolysis (AH) alone. Although, there was no significant difference in oligomeric composition (DP 2-6), significant decrease in degradation products namely furfural (2.78-fold), HMF (3.15-fold), acrylamide (nil) and acetic acid (1.06-fold), was observed with OAAH-3 as a pretreatment option. There was 1-fold higher xylan to XOS conversion and OAAH-hydrolysate had higher DPPH radical scavenging activity than AH. PCA plots indicated clear enhancement in XOS production and lower generation of inhibitors with decrease in treatment temperature. Results of the study therefore suggest OAAH can be an effective pretreatment option that can further be integrated with downstream processing for concentration and purification of XOS.
Collapse
Affiliation(s)
- Rutuja Murlidhar Sonkar
- Academy of Scientific and Innovative Research, Ghaziabad 201002, India; Microbiology and Fermentation Technology Department, CSIR-Central Food Technological Research Institute, Mysore 570020, India
| | - Pravin Savata Gade
- Academy of Scientific and Innovative Research, Ghaziabad 201002, India; Microbiology and Fermentation Technology Department, CSIR-Central Food Technological Research Institute, Mysore 570020, India
| | - Vijay Bokade
- Academy of Scientific and Innovative Research, Ghaziabad 201002, India; Catalysis Division, CSIR-National Chemical Laboratory, Pune 411008, India
| | - Sandeep N Mudliar
- Academy of Scientific and Innovative Research, Ghaziabad 201002, India; Plant Cell Biotechnology Department, CSIR-Central Food Technological Research Institute, Mysore 570020, India
| | - Praveena Bhatt
- Academy of Scientific and Innovative Research, Ghaziabad 201002, India; Microbiology and Fermentation Technology Department, CSIR-Central Food Technological Research Institute, Mysore 570020, India.
| |
Collapse
|