1
|
Asad MAU, Yan Z, Zhou L, Guan X, Cheng F. How abiotic stresses trigger sugar signaling to modulate leaf senescence? PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 210:108650. [PMID: 38653095 DOI: 10.1016/j.plaphy.2024.108650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 04/05/2024] [Accepted: 04/18/2024] [Indexed: 04/25/2024]
Abstract
Plants have evolved the adaptive capacity to mitigate the negative effect of external adversities at chemical, molecular, cellular, and physiological levels. This capacity is conferred by triggering the coordinated action of internal regulatory factors, in which sugars play an essential role in the regulating chloroplast degradation and leaf senescence under various stresses. In this review, we summarize the recent findings on the senescent-associated changes in carbohydrate metabolism and its relation to chlorophyl degradation, oxidative damage, photosynthesis inhibition, programmed cell death (PCD), and sink-source relation as affected by abiotic stresses. The action of sugar signaling in regulating the initiation and progression of leaf senescence under abiotic stresses involves interactions with various plant hormones, reactive oxygen species (ROS) burst, and protein kinases. This discussion aims to elucidate the complex regulatory network and molecular mechanisms that underline sugar-induced leaf senescence in response to various abiotic stresses. The imperative role of sugar signaling in regulating plant stress responses potentially enables the production of crop plants with modified sugar metabolism. This, in turn, may facilitate the engineering of plants with improved stress responses, optimal life span and higher yield achievement.
Collapse
Affiliation(s)
- Muhmmad Asad Ullah Asad
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Zhang Yan
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Lujian Zhou
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Xianyue Guan
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Fangmin Cheng
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China; Collaborative Innovation Centre for Modern Crop Production Co-sponsored by Province and Ministry, Nanjing, China.
| |
Collapse
|
2
|
Clauw H, Van de Put H, Sghaier A, Kerkaert T, Debonne E, Eeckhout M, Steppe K. The Impact of a Six-Hour Light-Dark Cycle on Wheat Ear Emergence, Grain Yield, and Flour Quality in Future Plant-Growing Systems. Foods 2024; 13:750. [PMID: 38472863 DOI: 10.3390/foods13050750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/06/2024] [Accepted: 02/24/2024] [Indexed: 03/14/2024] Open
Abstract
Cultivating wheat (Triticum aestivum) in a closed environment offers applications in both indoor farming and in outer-space farming. Tailoring the photoperiod holds potential to shorten the growth cycle, thereby increasing the annual number of cycles. As wheat is a long-day plant, a night shorter than a critical length is required to induce flowering. In growth chambers, experiments were conducted to examine the impact of a 6 h light-dark cycle on the timing of wheat ear emergence, grain yield, and flour quality. Under equal daily light-integral conditions, the 6 h light-dark cycle promoted growth and development, resulting in accelerated ear emergence when compared to a 12 h cycle, additionally indicating that 12 h of darkness was excessive. To further stimulate heading and increase yield, the 6 h cycle was changed at the onset of stem elongation to a 14 h-10 h, mimicking spring conditions, and maintained until maturity. This successful transition was then combined with two levels of light intensity and nutrient solution, which did not significantly impact yield, while tillering and grain ripening did increase under higher light intensities. Moreover, it enabled manipulation of the baking quality, although lower-end falling numbers were observed. In conclusion, combining a 6 h light-dark cycle until stem elongation with a 14 h-10 h cycle presents a promising strategy for increasing future wheat production in closed environments. The observation of low falling numbers underscores the importance of factoring in flour quality when designing the wheat-growing systems of the future.
Collapse
Affiliation(s)
- Helena Clauw
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Hans Van de Put
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Abderahman Sghaier
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Trui Kerkaert
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Els Debonne
- Research Unit of Cereal and Feed Technology, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Valentin Vaerwyckweg 1, 9000 Ghent, Belgium
| | - Mia Eeckhout
- Research Unit of Cereal and Feed Technology, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Valentin Vaerwyckweg 1, 9000 Ghent, Belgium
| | - Kathy Steppe
- Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| |
Collapse
|
3
|
Wu H, Li J, Pu Q, Mi C, Zeng G, Chen Y, Kong D, Zuo X, Hu X, Li O. Physiological and transcriptome analysis of Dendrobium officinale under low nitrogen stress. FUNCTIONAL PLANT BIOLOGY : FPB 2023; 50:314-334. [PMID: 36872310 DOI: 10.1071/fp22061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Nitrogen (N) is the main nutrient of plants, and low nitrogen usually affects plant growth and crop yield. The traditional Chinese herbal medicine Dendrobium officinale Kimura et. Migo is a typical low nitrogen-tolerant plant, and its mechanism in response to low nitrogen stress has not previously been reported. In this study, physiological measurements and RNA-Seq analysis were used to analyse the physiological changes and molecular responses of D. officinale under different nitrogen concentrations. The results showed that under low nitrogen levels, the growth, photosynthesis and superoxide dismutase activity were found to be significantly inhibited, while the activities of peroxidase and catalase, the content of polysaccharides and flavonoids significantly increased. Differentially expressed genes (DEGs) analysis showed that nitrogen and carbon metabolisms, transcriptional regulation, antioxidative stress, secondary metabolite synthesis and signal transduction all made a big difference in low nitrogen stress. Therefore, copious polysaccharide accumulation, efficient assimilation and recycling of nitrogen, as well as rich antioxidant components play critical roles. This study is helpful for understanding the response mechanism of D. officinale to low nitrogen levels, which might provide good guidance for practical production of high quality D. officinale .
Collapse
Affiliation(s)
- Hangtao Wu
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Science, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Jin Li
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Science, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Qian Pu
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Science, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Chunyi Mi
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Science, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Guohong Zeng
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Science, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Ying Chen
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Science, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Dedong Kong
- Institute of Digital Agriculture, Zhejiang Academy of Agricultural Sciences, Hangzhou 310018, P. R. China
| | - Xiaorong Zuo
- Xi'an Ande Pharmaceutical Co., Ltd, Zhenping Branch, Xi'an 710000, P. R. China
| | - Xiufang Hu
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Science, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Ou Li
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Science, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| |
Collapse
|
4
|
Machado J, Vasconcelos MW, Soares C, Fidalgo F, Heuvelink E, Carvalho SMP. Young Tomato Plants Respond Differently under Single or Combined Mild Nitrogen and Water Deficit: An Insight into Morphophysiological Responses and Primary Metabolism. PLANTS (BASEL, SWITZERLAND) 2023; 12:1181. [PMID: 36904041 PMCID: PMC10005627 DOI: 10.3390/plants12051181] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/21/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
This study aimed to understand the morphophysiological responses and primary metabolism of tomato seedlings subjected to mild levels of nitrogen and/or water deficit (50% N and/or 50% W). After 16 days of exposure, plants grown under the combined deficit showed similar behavior to the one found upon exposure to single N deficit. Both N deficit treatments resulted in a significantly lower dry weight, leaf area, chlorophyll content, and N accumulation but in a higher N use efficiency when compared to control (CTR) plants. Moreover, concerning plant metabolism, at the shoot level, these two treatments also responded in a similar way, inducing higher C/N ratio, nitrate reductase (NR) and glutamine synthetase (GS) activity, expression of RuBisCO encoding genes as well as a downregulation of GS2.1 and GS2.2 transcripts. Interestingly, plant metabolic responses at the root level did not follow the same pattern, with plants under combined deficit behaving similarly to W deficit plants, resulting in enhanced nitrate and proline concentrations, NR activity, and an upregulation of GS1 and NR genes than in CTR plants. Overall, our data suggest that the N remobilization and osmoregulation strategies play a relevant role in plant acclimation to these abiotic stresses and highlight the complexity of plant responses under a combined N+W deficit.
Collapse
Affiliation(s)
- Joana Machado
- GreenUPorto—Sustainable Agrifood Production Research Centre/Inov4Agro, DGAOT, Faculty of Sciences, University of Porto, Campus de Vairão, Rua da Agrária 747, 4485-646 Vairão, Portugal;
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
- Horticulture and Product Physiology Group, Department of Plant Sciences, Wageningen University, P.O. Box 16, 6700 AA Wageningen, The Netherlands
| | - Marta W. Vasconcelos
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Cristiano Soares
- GreenUPorto—Sustainable Agrifood Production Research Centre/Inov4Agro, Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Fernanda Fidalgo
- GreenUPorto—Sustainable Agrifood Production Research Centre/Inov4Agro, Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Ep Heuvelink
- Horticulture and Product Physiology Group, Department of Plant Sciences, Wageningen University, P.O. Box 16, 6700 AA Wageningen, The Netherlands
| | - Susana M. P. Carvalho
- GreenUPorto—Sustainable Agrifood Production Research Centre/Inov4Agro, DGAOT, Faculty of Sciences, University of Porto, Campus de Vairão, Rua da Agrária 747, 4485-646 Vairão, Portugal;
| |
Collapse
|