1
|
Li Z, Wu R, Guo F, Wang Y, Nick P, Wang X. Advances in the molecular mechanism of grapevine resistance to fungal diseases. MOLECULAR HORTICULTURE 2025; 5:1. [PMID: 39743511 DOI: 10.1186/s43897-024-00119-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 10/14/2024] [Indexed: 01/04/2025]
Abstract
Grapevine is an important economic fruit tree worldwide, but grape production has been plagued by a vast number of fungal diseases, which affect tree vigor and the quality and yield of berries. To seek remedies for such issues, researchers have always been committed to conventional and biotechnological breeding. In recent years, increasing progress has been made in elucidating the molecular mechanisms of grape-pathogenic fungi interactions and resistance regulation. Here, we summarize the current knowledge on the molecular basis of grapevine resistance to fungal diseases, including fungal effector-mediated susceptibility and resistance, resistant regulatory networks in grapevine, innovative approaches of genetic transformation, and strategies to improve grape resistance. Understanding the molecular basis is important for exploring and accurately regulating grape resistance to fungal diseases.
Collapse
Affiliation(s)
- Zhi Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Ronghui Wu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Fangying Guo
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Yuejin Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Peter Nick
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology, Karlsruhe, Germany.
| | - Xiping Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China.
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China.
| |
Collapse
|
2
|
Ren C, Gathunga EK, Li X, Li H, Kong J, Dai Z, Liang Z. Correction: Efficient genome editing in grapevine using CRISPR/LbCas12a system. MOLECULAR HORTICULTURE 2024; 4:44. [PMID: 39673067 PMCID: PMC11639110 DOI: 10.1186/s43897-024-00133-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2024]
Affiliation(s)
- Chong Ren
- State Key Laboratory of Plant Diversity and Specialty Crops, Beijing Key Laboratory of Grape Sciences and Enology, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, PR China
- China National Botanical Garden, Beijing, 100093, PR China
- University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Elias Kirabi Gathunga
- State Key Laboratory of Plant Diversity and Specialty Crops, Beijing Key Laboratory of Grape Sciences and Enology, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, PR China
- China National Botanical Garden, Beijing, 100093, PR China
- University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Xue Li
- State Key Laboratory of Plant Diversity and Specialty Crops, Beijing Key Laboratory of Grape Sciences and Enology, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, PR China
- China National Botanical Garden, Beijing, 100093, PR China
- University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Huayang Li
- State Key Laboratory of Plant Diversity and Specialty Crops, Beijing Key Laboratory of Grape Sciences and Enology, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, PR China
- China National Botanical Garden, Beijing, 100093, PR China
- University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Junhua Kong
- State Key Laboratory of Plant Diversity and Specialty Crops, Beijing Key Laboratory of Grape Sciences and Enology, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, PR China
- China National Botanical Garden, Beijing, 100093, PR China
- University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Zhanwu Dai
- State Key Laboratory of Plant Diversity and Specialty Crops, Beijing Key Laboratory of Grape Sciences and Enology, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, PR China
- China National Botanical Garden, Beijing, 100093, PR China
- University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Zhenchang Liang
- State Key Laboratory of Plant Diversity and Specialty Crops, Beijing Key Laboratory of Grape Sciences and Enology, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, PR China.
- China National Botanical Garden, Beijing, 100093, PR China.
- University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| |
Collapse
|
3
|
He Y, Liu S, Chen L, Pu D, Zhong Z, Xu T, Ren Q, Dong C, Wang Y, Wang D, Zheng X, Guo F, Zhang T, Qi Y, Zhang Y. Versatile plant genome engineering using anti-CRISPR-Cas12a systems. SCIENCE CHINA. LIFE SCIENCES 2024; 67:2730-2745. [PMID: 39158766 DOI: 10.1007/s11427-024-2704-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 08/07/2024] [Indexed: 08/20/2024]
Abstract
CRISPR-Cas12a genome engineering systems have been widely used in plant research and crop breeding. To date, the performance and use of anti-CRISPR-Cas12a systems have not been fully established in plants. Here, we conduct in silico analysis to identify putative anti-CRISPR systems for Cas12a. These putative anti-CRISPR proteins, along with known anti-CRISPR proteins, are assessed for their ability to inhibit Cas12a cleavage activity in vivo and in planta. Among all anti-CRISPR proteins tested, AcrVA1 shows robust inhibition of Mb2Cas12a and LbCas12a in E. coli. Further tests show that AcrVA1 inhibits LbCas12a mediated genome editing in rice protoplasts and stable transgenic lines. Impressively, co-expression of AcrVA1 mitigates off-target effects by CRISPR-LbCas12a, as revealed by whole genome sequencing. In addition, transgenic plants expressing AcrVA1 exhibit different levels of inhibition to LbCas12a mediated genome editing, representing a novel way of fine-tuning genome editing efficiency. By controlling temporal and spatial expression of AcrVA1, we show that inducible and tissue specific genome editing can be achieved in plants. Furthermore, we demonstrate that AcrVA1 also inhibits LbCas12a-based CRISPR activation (CRISPRa) and based on this principle we build logic gates to turn on and off target genes in plant cells. Together, we have established an efficient anti-CRISPR-Cas12a system in plants and demonstrate its versatile applications in mitigating off-target effects, fine-tuning genome editing efficiency, achieving spatial-temporal control of genome editing, and generating synthetic logic gates for controlling target gene expression in plant cells.
Collapse
Affiliation(s)
- Yao He
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Chongqing Key Laboratory of Tree Germplasm Innovation and Utilization, School of Life Sciences, Southwest University, Chongqing, 400715, China
- Department of Biotechnology, School of Life Sciences and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Shishi Liu
- Department of Biotechnology, School of Life Sciences and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, 610054, China
- Sichuan Institute of Edible Fungi, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China
| | - Long Chen
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, 225009, China
| | - Dongkai Pu
- Department of Biotechnology, School of Life Sciences and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Zhaohui Zhong
- Department of Biotechnology, School of Life Sciences and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Tang Xu
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Chongqing Key Laboratory of Tree Germplasm Innovation and Utilization, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Qiurong Ren
- Department of Biotechnology, School of Life Sciences and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Chuan Dong
- Department of Biotechnology, School of Life Sciences and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Yawei Wang
- Department of Biotechnology, School of Life Sciences and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Danning Wang
- Department of Biotechnology, School of Life Sciences and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Xuelian Zheng
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Chongqing Key Laboratory of Tree Germplasm Innovation and Utilization, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Fengbiao Guo
- Department of Respiratory and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430017, China.
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430072, China.
| | - Tao Zhang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou, 225009, China.
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, 225009, China.
| | - Yiping Qi
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, 20742, USA.
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, 20850, USA.
| | - Yong Zhang
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Chongqing Key Laboratory of Tree Germplasm Innovation and Utilization, School of Life Sciences, Southwest University, Chongqing, 400715, China.
- Department of Biotechnology, School of Life Sciences and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, 610054, China.
| |
Collapse
|
4
|
Fizikova A, Tukhuzheva Z, Zhokhova L, Tvorogova V, Lutova L. A New Approach for CRISPR/Cas9 Editing and Selection of Pathogen-Resistant Plant Cells of Wine Grape cv. 'Merlot'. Int J Mol Sci 2024; 25:10011. [PMID: 39337500 PMCID: PMC11432302 DOI: 10.3390/ijms251810011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/13/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Grape is one of the most economically significant berry crops. Owing to the biological characteristics of grapes, such as the long juvenile period (5-8 years), high degree of genome heterozygosity, and the frequent occurrence of inbreeding depression, homozygosity during crossbreeding leads to loss of varietal characteristics and viability. CRISPR/Cas editing has become the tool of choice for improving elite technical grape varieties. This study provides the first evidence of a decrease in the total fraction of phenolic compounds and an increase in the concentration of peroxide compounds in grape callus cells upon the addition of chitosan to the culture medium. These previously unreported metabolic features of the grape response to chitosan have been described and used for the first time to increase the probability of selecting plant cells with MLO7 knockout characterised by an oxidative burst in response to the presence of a pathogen modulated by chitosan in the high-metabolite black grape variety 'Merlot'. This was achieved by using a CRISPR/Cas9 editing vector construction with the peroxide sensor HyPer as a reporter. This research represents the first CRISPR/Cas9 editing of 'Merlot', one of the most economically important elite technical grape varieties.
Collapse
Affiliation(s)
- Anastasia Fizikova
- Plant Biology and Biotechnology Department, Sirius University of Science and Technology, Olympic Avenue 1, 354340 Sochi, Russia
| | - Zhanneta Tukhuzheva
- Plant Biology and Biotechnology Department, Sirius University of Science and Technology, Olympic Avenue 1, 354340 Sochi, Russia
| | - Lada Zhokhova
- Plant Biology and Biotechnology Department, Sirius University of Science and Technology, Olympic Avenue 1, 354340 Sochi, Russia
| | - Varvara Tvorogova
- Plant Biology and Biotechnology Department, Sirius University of Science and Technology, Olympic Avenue 1, 354340 Sochi, Russia
- Department of Genetics and Biotechnology, Saint-Petersburg State University, Universitetskaya Emb 7/9, 199034 Saint-Petersburg, Russia
| | - Ludmila Lutova
- Plant Biology and Biotechnology Department, Sirius University of Science and Technology, Olympic Avenue 1, 354340 Sochi, Russia
- Department of Genetics and Biotechnology, Saint-Petersburg State University, Universitetskaya Emb 7/9, 199034 Saint-Petersburg, Russia
| |
Collapse
|
5
|
Bacelar E, Pinto T, Anjos R, Morais MC, Oliveira I, Vilela A, Cosme F. Impacts of Climate Change and Mitigation Strategies for Some Abiotic and Biotic Constraints Influencing Fruit Growth and Quality. PLANTS (BASEL, SWITZERLAND) 2024; 13:1942. [PMID: 39065469 PMCID: PMC11280748 DOI: 10.3390/plants13141942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/07/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024]
Abstract
Factors such as extreme temperatures, light radiation, and nutritional condition influence the physiological, biochemical, and molecular processes associated with fruit development and its quality. Besides abiotic stresses, biotic constraints can also affect fruit growth and quality. Moreover, there can be interactions between stressful conditions. However, it is challenging to predict and generalize the risks of climate change scenarios on seasonal patterns of growth, development, yield, and quality of fruit species because their responses are often highly complex and involve changes at multiple levels. Advancements in genetic editing technologies hold great potential for the agricultural sector, particularly in enhancing fruit crop traits. These improvements can be tailored to meet consumer preferences, which is crucial for commercial success. Canopy management and innovative training systems are also key factors that contribute to maximizing yield efficiency and improving fruit quality, which are essential for the competitiveness of orchards. Moreover, the creation of habitats that support pollinators is a critical aspect of sustainable agriculture, as they play a significant role in the production of many crops, including fruits. Incorporating these strategies allows fruit growers to adapt to changing climate conditions, which is increasingly important for the stability of food production. By investing in these areas, fruit growers can stay ahead of challenges and opportunities in the industry, ultimately leading to increased success and profitability. In this review, we aim to provide an updated overview of the current knowledge on this important topic. We also provide recommendations for future research.
Collapse
Affiliation(s)
- Eunice Bacelar
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-of-Montes and Alto Douro, Quinta de Prados, P-5000-801 Vila Real, Portugal; (T.P.); (R.A.); (M.C.M.); (I.O.)
| | - Teresa Pinto
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-of-Montes and Alto Douro, Quinta de Prados, P-5000-801 Vila Real, Portugal; (T.P.); (R.A.); (M.C.M.); (I.O.)
| | - Rosário Anjos
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-of-Montes and Alto Douro, Quinta de Prados, P-5000-801 Vila Real, Portugal; (T.P.); (R.A.); (M.C.M.); (I.O.)
| | - Maria Cristina Morais
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-of-Montes and Alto Douro, Quinta de Prados, P-5000-801 Vila Real, Portugal; (T.P.); (R.A.); (M.C.M.); (I.O.)
| | - Ivo Oliveira
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-of-Montes and Alto Douro, Quinta de Prados, P-5000-801 Vila Real, Portugal; (T.P.); (R.A.); (M.C.M.); (I.O.)
| | - Alice Vilela
- Chemistry Research Centre–Vila Real (CQ-VR), Department of Agronomy, School of Agrarian and Veterinary Sciences (ECAV), University of Trás-os-Montes and Alto Douro, P-5000-801 Vila Real, Portugal;
| | - Fernanda Cosme
- Chemistry Research Centre–Vila Real (CQ-VR), Department of Biology and Environment, School of Life Sciences and Environment, University of Trás-os-Montes and Alto Douro, P-5000-801 Vila Real, Portugal;
| |
Collapse
|
6
|
Martín-Valmaseda M, Devin SR, Ortuño-Hernández G, Pérez-Caselles C, Mahdavi SME, Bujdoso G, Salazar JA, Martínez-Gómez P, Alburquerque N. CRISPR/Cas as a Genome-Editing Technique in Fruit Tree Breeding. Int J Mol Sci 2023; 24:16656. [PMID: 38068981 PMCID: PMC10705926 DOI: 10.3390/ijms242316656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
CRISPR (short for "Clustered Regularly Interspaced Short Palindromic Repeats") is a technology that research scientists use to selectively modify the DNA of living organisms. CRISPR was adapted for use in the laboratory from the naturally occurring genome-editing systems found in bacteria. In this work, we reviewed the methods used to introduce CRISPR/Cas-mediated genome editing into fruit species, as well as the impacts of the application of this technology to activate and knock out target genes in different fruit tree species, including on tree development, yield, fruit quality, and tolerance to biotic and abiotic stresses. The application of this gene-editing technology could allow the development of new generations of fruit crops with improved traits by targeting different genetic segments or even could facilitate the introduction of traits into elite cultivars without changing other traits. However, currently, the scarcity of efficient regeneration and transformation protocols in some species, the fact that many of those procedures are genotype-dependent, and the convenience of segregating the transgenic parts of the CRISPR system represent the main handicaps limiting the potential of genetic editing techniques for fruit trees. Finally, the latest news on the legislation and regulations about the use of plants modified using CRISPR/Cas systems has been also discussed.
Collapse
Affiliation(s)
- Marina Martín-Valmaseda
- Fruit Biotechnology Group, Department of Plant Breeding, CEBAS-CSIC (Centro de Edafología y Biología Aplicada del Segura-Consejo Superior de Investigaciones Científicas), Campus Universitario Espinardo, E-30100 Murcia, Spain (C.P.-C.); (N.A.)
| | - Sama Rahimi Devin
- Department of Horticultural Science, College of Agriculture, Shiraz University, Shiraz 7144165186, Iran; (S.R.D.); (S.M.E.M.)
| | - Germán Ortuño-Hernández
- Fruit Breeding Group, Department of Plant Breeding, CEBAS-CSIC (Centro de Edafología y Biología Aplicada del Segura-Consejo Superior de Investigaciones Científicas), Campus Universitario Espinardo, E-30100 Murcia, Spain; (G.O.-H.); (J.A.S.)
| | - Cristian Pérez-Caselles
- Fruit Biotechnology Group, Department of Plant Breeding, CEBAS-CSIC (Centro de Edafología y Biología Aplicada del Segura-Consejo Superior de Investigaciones Científicas), Campus Universitario Espinardo, E-30100 Murcia, Spain (C.P.-C.); (N.A.)
| | - Sayyed Mohammad Ehsan Mahdavi
- Department of Horticultural Science, College of Agriculture, Shiraz University, Shiraz 7144165186, Iran; (S.R.D.); (S.M.E.M.)
| | - Geza Bujdoso
- Research Centre for Fruit Growing, Hungarian University of Agriculture and Life Sciences, 1223 Budapest, Hungary;
| | - Juan Alfonso Salazar
- Fruit Breeding Group, Department of Plant Breeding, CEBAS-CSIC (Centro de Edafología y Biología Aplicada del Segura-Consejo Superior de Investigaciones Científicas), Campus Universitario Espinardo, E-30100 Murcia, Spain; (G.O.-H.); (J.A.S.)
| | - Pedro Martínez-Gómez
- Fruit Breeding Group, Department of Plant Breeding, CEBAS-CSIC (Centro de Edafología y Biología Aplicada del Segura-Consejo Superior de Investigaciones Científicas), Campus Universitario Espinardo, E-30100 Murcia, Spain; (G.O.-H.); (J.A.S.)
| | - Nuria Alburquerque
- Fruit Biotechnology Group, Department of Plant Breeding, CEBAS-CSIC (Centro de Edafología y Biología Aplicada del Segura-Consejo Superior de Investigaciones Científicas), Campus Universitario Espinardo, E-30100 Murcia, Spain (C.P.-C.); (N.A.)
| |
Collapse
|