1
|
Coope A, Ghanameh Z, Kingston O, Sheridan CM, Barrett-Jolley R, Phelan MM, Oldershaw RA. 1H NMR Metabolite Monitoring during the Differentiation of Human Induced Pluripotent Stem Cells Provides New Insights into the Molecular Events That Regulate Embryonic Chondrogenesis. Int J Mol Sci 2022; 23:ijms23169266. [PMID: 36012540 PMCID: PMC9409419 DOI: 10.3390/ijms23169266] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/05/2022] [Accepted: 08/11/2022] [Indexed: 11/16/2022] Open
Abstract
The integration of cell metabolism with signalling pathways, transcription factor networks and epigenetic mediators is critical in coordinating molecular and cellular events during embryogenesis. Induced pluripotent stem cells (IPSCs) are an established model for embryogenesis, germ layer specification and cell lineage differentiation, advancing the study of human embryonic development and the translation of innovations in drug discovery, disease modelling and cell-based therapies. The metabolic regulation of IPSC pluripotency is mediated by balancing glycolysis and oxidative phosphorylation, but there is a paucity of data regarding the influence of individual metabolite changes during cell lineage differentiation. We used 1H NMR metabolite fingerprinting and footprinting to monitor metabolite levels as IPSCs are directed in a three-stage protocol through primitive streak/mesendoderm, mesoderm and chondrogenic populations. Metabolite changes were associated with central metabolism, with aerobic glycolysis predominant in IPSC, elevated oxidative phosphorylation during differentiation and fatty acid oxidation and ketone body use in chondrogenic cells. Metabolites were also implicated in the epigenetic regulation of pluripotency, cell signalling and biosynthetic pathways. Our results show that 1H NMR metabolomics is an effective tool for monitoring metabolite changes during the differentiation of pluripotent cells with implications on optimising media and environmental parameters for the study of embryogenesis and translational applications.
Collapse
Affiliation(s)
- Ashley Coope
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, Faculty of Health and Life Sciences, University of Liverpool, William Henry Duncan Building, 6 West Derby Street, Liverpool L7 8TX, UK
- Clinical Directorate Professional Services, Aintree University Hospital, Liverpool University Hospitals NHS Foundation Trust, Lower Lane, Liverpool L9 7AL, UK
| | - Zain Ghanameh
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, Faculty of Health and Life Sciences, University of Liverpool, William Henry Duncan Building, 6 West Derby Street, Liverpool L7 8TX, UK
| | - Olivia Kingston
- Department of Eye and Vision Sciences, Institute of Life Course and Medical Sciences, Faculty of Health and Life Sciences, University of Liverpool, William Henry Duncan Building, 6 West Derby Street, Liverpool L7 8TX, UK
| | - Carl M. Sheridan
- Department of Eye and Vision Sciences, Institute of Life Course and Medical Sciences, Faculty of Health and Life Sciences, University of Liverpool, William Henry Duncan Building, 6 West Derby Street, Liverpool L7 8TX, UK
| | - Richard Barrett-Jolley
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, Faculty of Health and Life Sciences, University of Liverpool, William Henry Duncan Building, 6 West Derby Street, Liverpool L7 8TX, UK
| | - Marie M. Phelan
- Department of Biochemistry, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Biosciences Building, Crown Street, Liverpool L7 7BE, UK
- High Field NMR Facility, Liverpool Shared Research Facilities (LIV-SRF), Faculty of Health and Life Sciences, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK
| | - Rachel A. Oldershaw
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, Faculty of Health and Life Sciences, University of Liverpool, William Henry Duncan Building, 6 West Derby Street, Liverpool L7 8TX, UK
- Correspondence:
| |
Collapse
|
2
|
Eguizabal C, Aran B, Chuva de Sousa Lopes SM, Geens M, Heindryckx B, Panula S, Popovic M, Vassena R, Veiga A. Two decades of embryonic stem cells: a historical overview. Hum Reprod Open 2019; 2019:hoy024. [PMID: 30895264 PMCID: PMC6396646 DOI: 10.1093/hropen/hoy024] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 12/10/2018] [Indexed: 12/12/2022] Open
Abstract
STUDY QUESTION How did the field of stem cell research develop in the years following the derivation of the first human embryonic stem cell (hESC) line? SUMMARY ANSWER Supported by the increasing number of clinical trials to date, significant technological advances in the past two decades have brought us ever closer to clinical therapies derived from pluripotent cells. WHAT IS KNOWN ALREADY Since their discovery 20 years ago, the use of human pluripotent stem cells has progressed tremendously from bench to bedside. Here, we provide a concise review of the main keystones of this journey and focus on ongoing clinical trials, while indicating the most relevant future research directions. STUDY DESIGN, SIZE, DURATION This is a historical narrative, including relevant publications in the field of pluripotent stem cells (PSC) derivation and differentiation, recounted both through scholarly research of published evidence and interviews of six pioneers who participated in some of the most relevant discoveries in the field. PARTICIPANTS/MATERIALS, SETTING, METHODS The authors all contributed by researching the literature and agreed upon body of works. Portions of the interviews of the field pioneers have been integrated into the review and have also been included in full for advanced reader interest. MAIN RESULTS AND THE ROLE OF CHANCE The stem cell field is ever expanding. We find that in the 20 years since the derivation of the first hESC lines, several relevant developments have shaped the pluripotent cell field, from the discovery of different states of pluripotency, the derivation of induced PSC, the refinement of differentiation protocols with several clinical trials underway, as well as the recent development of organoids. The challenge for the years to come will be to validate and refine PSCs for clinical use, from the production of highly defined cell populations in clinical grade conditions to the possibility of creating replacement organoids for functional, if not anatomical, function restoration. LIMITATIONS, REASONS FOR CAUTION This is a non-systematic review of current literature. Some references may have escaped the experts’ analysis due to the exceedingly diverse nature of the field. As the field of regenerative medicine is rapidly advancing, some of the most recent developments may have not been captured entirely. WIDER IMPLICATIONS OF THE FINDINGS The multi-disciplinary nature and tremendous potential of the stem cell field has important implications for basic as well as translational research. Recounting these activities will serve to provide an in-depth overview of the field, fostering a further understanding of human stem cell and developmental biology. The comprehensive overview of clinical trials and expert opinions included in this narrative may serve as a valuable scientific resource, supporting future efforts in translational approaches. STUDY FUNDING/COMPETING INTEREST(S) ESHRE provided funding for the authors’ on-site meeting and discussion during the preparation of this manuscript. S.M.C.S.L. is funded by the European Research Council Consolidator (ERC-CoG-725722-OVOGROWTH). M.P. is supported by the Special Research Fund, Bijzonder Onderzoeksfonds (BOF01D08114). M.G. is supported by the Methusalem grant of Vrije Universiteit Brussel, in the name of Prof. Karen Sermon and by Innovation by Science and Technology in Flanders (IWT, Project Number: 150042). A.V. and B.A. are supported by the Plataforma de Proteomica, Genotipado y Líneas Celulares (PT1770019/0015) (PRB3), Instituto de Salud Carlos III. Research grant to B.H. by the Research Foundation—Flanders (FWO) (FWO.KAN.2016.0005.01 and FWO.Project G051516N). There are no conflicts of interest to declare. TRIAL REGISTRATION NUMBER Not applicable. ESHRE Pages are not externally peer reviewed. This article has been approved by the Executive Committee of ESHRE.
Collapse
Affiliation(s)
- C Eguizabal
- Cell Therapy and Stem Cell Group, Basque Center for Blood Transfusion and Human Tissues, Barrio Labeaga S/N, Galdakao, Spain
| | - B Aran
- Barcelona Stem Cell Bank, Centre of Regenerative Medicine in Barcelona, Barcelona, Spain
| | - S M Chuva de Sousa Lopes
- Department of Anatomy and Embryology, Leiden University Medical Center, Einthovenweg 20, Leiden, The Netherlands.,Ghent Fertility and Stem cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium
| | - M Geens
- Research Group Reproduction and Genetics, Vrije Univeristeit Brussel, Laarbeeklaan 103, Jette (Brussels), Belgium
| | - B Heindryckx
- Ghent Fertility and Stem cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium
| | - S Panula
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - M Popovic
- Ghent Fertility and Stem cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium
| | | | - A Veiga
- Barcelona Stem Cell Bank, Centre of Regenerative Medicine in Barcelona, Barcelona, Spain.,Dexeus Mujer, Hospital Universitari Dexeus, Barcelona, Spain
| |
Collapse
|
3
|
Differentiation of Human Embryonic Stem Cells to Sympathetic Neurons: A Potential Model for Understanding Neuroblastoma Pathogenesis. Stem Cells Int 2018; 2018:4391641. [PMID: 30515222 PMCID: PMC6236576 DOI: 10.1155/2018/4391641] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 08/17/2018] [Accepted: 09/16/2018] [Indexed: 12/31/2022] Open
Abstract
Background and Aims Previous studies modelling human neural crest differentiation from stem cells have resulted in a low yield of sympathetic neurons. Our aim was to optimise a method for the differentiation of human embryonic stem cells (hESCs) to sympathetic neuron-like cells (SN) to model normal human SNS development. Results Using stromal-derived inducing activity (SDIA) of PA6 cells plus BMP4 and B27 supplements, the H9 hESC line was differentiated to neural crest stem-like cells and SN-like cells. After 7 days of PA6 cell coculture, mRNA expression of SNAIL and SOX-9 neural crest specifier genes and the neural marker peripherin (PRPH) increased. Expression of the pluripotency marker OCT 4 decreased, whereas TP53 and LIN28B expression remained high at levels similar to SHSY5Y and IMR32 neuroblastoma cell lines. A 5-fold increase in the expression of the catecholaminergic marker tyrosine hydroxylase (TH) and the noradrenergic marker dopamine betahydroxylase (DBH) was observed by day 7 of differentiation. Fluorescence-activated cell sorting for the neural crest marker p75, enriched for cells expressing p75, DBH, TH, and PRPH, was more specific than p75 neural crest stem cell (NCSC) microbeads. On day 28 post p75 sorting, dual immunofluorescence identified sympathetic neurons by PRPH and TH copositivity cells in 20% of the cell population. Noradrenergic sympathetic neurons, identified by copositivity for both PHOX2B and DBH, were present in 9.4% ± 5.5% of cells. Conclusions We have optimised a method for noradrenergic SNS development using the H9 hESC line to improve our understanding of normal human SNS development and, in a future work, the pathogenesis of neuroblastoma.
Collapse
|
4
|
|
5
|
Izrael M, Slutsky SG, Admoni T, Cohen L, Granit A, Hasson A, Itskovitz-Eldor J, Krush Paker L, Kuperstein G, Lavon N, Yehezkel Ionescu S, Solmesky LJ, Zaguri R, Zhuravlev A, Volman E, Chebath J, Revel M. Safety and efficacy of human embryonic stem cell-derived astrocytes following intrathecal transplantation in SOD1 G93A and NSG animal models. Stem Cell Res Ther 2018; 9:152. [PMID: 29871694 PMCID: PMC5989413 DOI: 10.1186/s13287-018-0890-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 04/30/2018] [Accepted: 05/01/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is a motor neuron (MN) disease characterized by the loss of MNs in the central nervous system. As MNs die, patients progressively lose their ability to control voluntary movements, become paralyzed and eventually die from respiratory/deglutition failure. Despite the selective MN death in ALS, there is growing evidence that malfunctional astrocytes play a crucial role in disease progression. Thus, transplantation of healthy astrocytes may compensate for the diseased astrocytes. METHODS We developed a good manufacturing practice-grade protocol for generation of astrocytes from human embryonic stem cells (hESCs). The first stage of our protocol is derivation of astrocyte progenitor cells (APCs) from hESCs. These APCs can be expanded in large quantities and stored frozen as cell banks. Further differentiation of the APCs yields an enriched population of astrocytes with more than 90% GFAP expression (hES-AS). hES-AS were injected intrathecally into hSOD1G93A transgenic mice and rats to evaluate their therapeutic potential. The safety and biodistribution of hES-AS were evaluated in a 9-month study conducted in immunodeficient NSG mice under good laboratory practice conditions. RESULTS In vitro, hES-AS possess the activities of functional healthy astrocytes, including glutamate uptake, promotion of axon outgrowth and protection of MNs from oxidative stress. A secretome analysis shows that these hES-AS also secrete several inhibitors of metalloproteases as well as a variety of neuroprotective factors (e.g. TIMP-1, TIMP-2, OPN, MIF and Midkine). Intrathecal injections of the hES-AS into transgenic hSOD1G93A mice and rats significantly delayed disease onset and improved motor performance compared to sham-injected animals. A safety study in immunodeficient mice showed that intrathecal transplantation of hES-AS is safe. Transplanted hES-AS attached to the meninges along the neuroaxis and survived for the entire duration of the study without formation of tumors or teratomas. Cell-injected mice gained similar body weight to the sham-injected group and did not exhibit clinical signs that could be related to the treatment. No differences from the vehicle control were observed in hematological parameters or blood chemistry. CONCLUSION Our findings demonstrate the safety and potential therapeutic benefits of intrathecal injection of hES-AS for the treatment of ALS.
Collapse
Affiliation(s)
- Michal Izrael
- Neurodegenerative Diseases Department at Kadimastem Ltd, Pinchas Sapir 7, Weizmann Science Park, Nes-Ziona, Israel
| | - Shalom Guy Slutsky
- Neurodegenerative Diseases Department at Kadimastem Ltd, Pinchas Sapir 7, Weizmann Science Park, Nes-Ziona, Israel
| | - Tamar Admoni
- Neurodegenerative Diseases Department at Kadimastem Ltd, Pinchas Sapir 7, Weizmann Science Park, Nes-Ziona, Israel
| | - Louisa Cohen
- Neurodegenerative Diseases Department at Kadimastem Ltd, Pinchas Sapir 7, Weizmann Science Park, Nes-Ziona, Israel
| | - Avital Granit
- Neurodegenerative Diseases Department at Kadimastem Ltd, Pinchas Sapir 7, Weizmann Science Park, Nes-Ziona, Israel
| | - Arik Hasson
- Neurodegenerative Diseases Department at Kadimastem Ltd, Pinchas Sapir 7, Weizmann Science Park, Nes-Ziona, Israel
| | - Joseph Itskovitz-Eldor
- Neurodegenerative Diseases Department at Kadimastem Ltd, Pinchas Sapir 7, Weizmann Science Park, Nes-Ziona, Israel
| | - Lena Krush Paker
- Neurodegenerative Diseases Department at Kadimastem Ltd, Pinchas Sapir 7, Weizmann Science Park, Nes-Ziona, Israel
| | - Graciela Kuperstein
- Neurodegenerative Diseases Department at Kadimastem Ltd, Pinchas Sapir 7, Weizmann Science Park, Nes-Ziona, Israel
| | - Neta Lavon
- Neurodegenerative Diseases Department at Kadimastem Ltd, Pinchas Sapir 7, Weizmann Science Park, Nes-Ziona, Israel
| | - Shiran Yehezkel Ionescu
- Neurodegenerative Diseases Department at Kadimastem Ltd, Pinchas Sapir 7, Weizmann Science Park, Nes-Ziona, Israel
| | - Leonardo Javier Solmesky
- Neurodegenerative Diseases Department at Kadimastem Ltd, Pinchas Sapir 7, Weizmann Science Park, Nes-Ziona, Israel
| | - Rachel Zaguri
- Neurodegenerative Diseases Department at Kadimastem Ltd, Pinchas Sapir 7, Weizmann Science Park, Nes-Ziona, Israel
| | - Alina Zhuravlev
- Neurodegenerative Diseases Department at Kadimastem Ltd, Pinchas Sapir 7, Weizmann Science Park, Nes-Ziona, Israel
| | - Ella Volman
- Neurodegenerative Diseases Department at Kadimastem Ltd, Pinchas Sapir 7, Weizmann Science Park, Nes-Ziona, Israel
| | - Judith Chebath
- Neurodegenerative Diseases Department at Kadimastem Ltd, Pinchas Sapir 7, Weizmann Science Park, Nes-Ziona, Israel
- Department of Molecular Genetics, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Michel Revel
- Neurodegenerative Diseases Department at Kadimastem Ltd, Pinchas Sapir 7, Weizmann Science Park, Nes-Ziona, Israel
- Department of Molecular Genetics, Weizmann Institute of Science, 76100 Rehovot, Israel
| |
Collapse
|
6
|
Teotia P, Sharma S, Airan B, Mohanty S. Feeder & basic fibroblast growth factor-free culture of human embryonic stem cells: Role of conditioned medium from immortalized human feeders. Indian J Med Res 2018; 144:838-851. [PMID: 28474621 PMCID: PMC5433277 DOI: 10.4103/ijmr.ijmr_424_15] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND & OBJECTIVES Human embryonic stem cell (hESC) lines are commonly maintained on inactivated feeder cells, in the medium supplemented with basic fibroblast growth factor (bFGF). However, limited availability of feeder cells in culture, and the high cost of growth factors limit their use in scalable expansion of hESC cultures for clinical application. Here, we describe an efficient and cost-effective feeder and bFGF-free culture of hESCs using conditioned medium (CM) from immortalized feeder cells. METHODS KIND-1 hESC cell line was cultured in CM, collected from primary mouse embryonic fibroblast, human foreskin fibroblast (HFF) and immortalized HFF (I-HFF). Pluripotency of KIND-1 hESC cell line was confirmed by expression of genes, proteins and cell surface markers. RESULTS In culture, these cells retained normal morphology, expressed all cell surface markers, could differentiate to embryoid bodies upon culture in vitro. Furthermore, I-HFF feeder cells without supplementation of bFGF released ample amount of endogenous bFGF to maintain stemness of hESC cells. INTERPRETATION & CONCLUSIONS The study results described the use of CM from immortalized feeder cells as a consistent source and an efficient, inexpensive feeder-free culture system for the maintenance of hESCs. Moreover, it was possible to maintain hESCs without exogenous supplementation of bFGF. Thus, the study could be extended to scalable expansion of hESC cultures for therapeutic purposes.
Collapse
Affiliation(s)
- Pooja Teotia
- Stem Cell Facility, Cardio Thoracic Sciences Centre, All India Institute of Medical Sciences, New Delhi, India
| | - Shilpa Sharma
- Department of Pediatric Surgery, All India Institute of Medical Sciences, New Delhi, India
| | - Balram Airan
- Cardio Thoracic Vascular Surgery, All India Institute of Medical Sciences, New Delhi, India
| | - Sujata Mohanty
- Stem Cell Facility, Cardio Thoracic Sciences Centre, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
7
|
Suchorska WM, Augustyniak E, Richter M, Łukjanow M, Filas V, Kaczmarczyk J, Trzeciak T. Modified methods for efficiently differentiating human embryonic stem cells into chondrocyte-like cells. POSTEP HIG MED DOSW 2017; 71:500-509. [PMID: 28665279 DOI: 10.5604/01.3001.0010.3831] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
INTRODUCTION Human articular cartilage has a poor regenerative capacity. This often results in the serious joint disease- osteoarthritis (OA) that is characterized by cartilage degradation. An inability to self-repair provided extensive studies on AC regeneration. The cell-based cartilage tissue engineering is a promising approach for cartilage regeneration. So far, numerous cell types have been reported to show chondrogenic potential, among others human embryonic stem cells (hESCs). MATERIALS AND METHODS However, the currently used methods for directed differentiation of human ESCs into chondrocyte-like cells via embryoid body (EB) formation, micromass culture (MC) and pellet culture (PC) are not highly efficient and require further improvement. In the present study, these three methods for hESCs differentiation into chondrocyte-like cells in the presence of chondrogenic medium supplemented with diverse combination of growth factors (GFs) were evaluated and modified. RESULTS The protocols established here allow highly efficient, simple and inexpensive production of a large number of chondrocyte-like cells suitable for transplantation into the sites of cartilage injury. The most crucial issue is the selection of appropriate GFs in defined concentration. The obtained stem-derived cells reveal the presence of chondrogenic markers such as type II collagen, Sox6 and Sox9 as well as the lack or significantly lower level of pluripotency markers including Nanog and Oct3/4. DISCUSSION The most efficient method is the differentiation throughout embryoid bodies. In turn, chondrogenic differentiation via pellet culture is the most promising method for implementation on clinical scale. The most useful GFs are TGF-β1, -3 and BMP-2 that possess the most chondrogenic potential. These methods can also be used to obtain chondrocyte-like cells from differentiating induced pluripotent stem cells (iPSCs).
Collapse
Affiliation(s)
| | | | - Magdalena Richter
- Department of Orthopaedics and Traumatology, Poznan University of Medical Sciences, Poland
| | | | - Violetta Filas
- Pathology Department, Greater Poland Cancer Centre, Poznan, Poland Poznan University of Medical Sciences, Poland
| | - Jacek Kaczmarczyk
- Department of Orthopaedics and Traumatology, Poznan University of Medical Sciences, Poland
| | - Tomasz Trzeciak
- Department of Orthopaedics and Traumatology, Poznan University of Medical Sciences, Poland
| |
Collapse
|
8
|
Human Umbilical Cord Blood-Derived Serum for Culturing the Supportive Feeder Cells of Human Pluripotent Stem Cell Lines. Stem Cells Int 2015; 2016:4626048. [PMID: 26839561 PMCID: PMC4709772 DOI: 10.1155/2016/4626048] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 09/02/2015] [Accepted: 09/13/2015] [Indexed: 12/24/2022] Open
Abstract
Although human pluripotent stem cells (hPSCs) can proliferate robustly on the feeder-free culture system, genetic instability of hPSCs has been reported in such environment. Alternatively, feeder cells enable hPSCs to maintain their pluripotency. The feeder cells are usually grown in a culture medium containing fetal bovine serum (FBS) prior to coculture with hPSCs. The use of FBS might limit the clinical application of hPSCs. Recently, human cord blood-derived serum (hUCS) showed a positive effect on culture of mesenchymal stem cells. It is interesting to test whether hUCS can be used for culture of feeder cells of hPSCs. This study was aimed to replace FBS with hUCS for culturing the human foreskin fibroblasts (HFFs) prior to feeder cell preparation. The results showed that HFFs cultured in hUCS-containing medium (HFF-hUCS) displayed fibroblastic features, high proliferation rates, short population doubling times, and normal karyotypes after prolonged culture. Inactivated HFF-hUCS expressed important genes, including Activin A, FGF2, and TGFβ1, which have been implicated in the maintenance of hPSC pluripotency. Moreover, hPSC lines maintained pluripotency, differentiation capacities, and karyotypic stability after being cocultured for extended period with inactivated HFF-hUCS. Therefore, the results demonstrated the benefit of hUCS for hPSCs culture system.
Collapse
|
9
|
Canham MA, Van Deusen A, Brison DR, De Sousa PA, Downie J, Devito L, Hewitt ZA, Ilic D, Kimber SJ, Moore HD, Murray H, Kunath T. The Molecular Karyotype of 25 Clinical-Grade Human Embryonic Stem Cell Lines. Sci Rep 2015; 5:17258. [PMID: 26607962 PMCID: PMC4660465 DOI: 10.1038/srep17258] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 10/27/2015] [Indexed: 12/22/2022] Open
Abstract
The application of human embryonic stem cell (hESC) derivatives to regenerative medicine is now becoming a reality. Although the vast majority of hESC lines have been derived for research purposes only, about 50 lines have been established under Good Manufacturing Practice (GMP) conditions. Cell types differentiated from these designated lines may be used as a cell therapy to treat macular degeneration, Parkinson’s, Huntington’s, diabetes, osteoarthritis and other degenerative conditions. It is essential to know the genetic stability of the hESC lines before progressing to clinical trials. We evaluated the molecular karyotype of 25 clinical-grade hESC lines by whole-genome single nucleotide polymorphism (SNP) array analysis. A total of 15 unique copy number variations (CNVs) greater than 100 kb were detected, most of which were found to be naturally occurring in the human population and none were associated with culture adaptation. In addition, three copy-neutral loss of heterozygosity (CN-LOH) regions greater than 1 Mb were observed and all were relatively small and interstitial suggesting they did not arise in culture. The large number of available clinical-grade hESC lines with defined molecular karyotypes provides a substantial starting platform from which the development of pre-clinical and clinical trials in regenerative medicine can be realised.
Collapse
Affiliation(s)
- Maurice A Canham
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, The University of Edinburgh, UK
| | - Amy Van Deusen
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, The University of Edinburgh, UK
| | - Daniel R Brison
- Department of Reproductive Medicine, St. Mary's Hospital, Central Manchester NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, UK
| | - Paul A De Sousa
- Roslin Cells Limited, Nine Edinburgh BioQuarter, Edinburgh, UK.,Centre for Clinical Brain Sciences and MRC Centre for Regenerative Medicine, The University of Edinburgh, UK
| | - Janet Downie
- Roslin Cells Limited, Nine Edinburgh BioQuarter, Edinburgh, UK
| | - Liani Devito
- Stem Cell Laboratories, Guy's Assisted Conception Unit, Division of Women's Health, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Zoe A Hewitt
- Centre for Stem Cell Biology, Department of Biomedical Science, The University of Sheffield, Sheffield, UK
| | - Dusko Ilic
- Stem Cell Laboratories, Guy's Assisted Conception Unit, Division of Women's Health, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Susan J Kimber
- Faculty of Life Sciences, The University of Manchester, Manchester, UK
| | - Harry D Moore
- Centre for Stem Cell Biology, Department of Biomedical Science, The University of Sheffield, Sheffield, UK
| | - Helen Murray
- Roslin Cells Limited, Nine Edinburgh BioQuarter, Edinburgh, UK
| | - Tilo Kunath
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, The University of Edinburgh, UK
| |
Collapse
|
10
|
Modo M, Kolosnjaj-Tabi J, Nicholls F, Ling W, Wilhelm C, Debarge O, Gazeau F, Clement O. Considerations for the clinical use of contrast agents for cellular MRI in regenerative medicine. CONTRAST MEDIA & MOLECULAR IMAGING 2014; 8:439-55. [PMID: 24375900 DOI: 10.1002/cmmi.1547] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 04/21/2013] [Accepted: 05/09/2013] [Indexed: 12/24/2022]
Abstract
Advances in regenerative medicine are rapidly transforming healthcare. A cornerstone of regenerative medicine is the introduction of cells that were grown or manipulated in vitro. Key questions that arise after these cells are re-introduced are: whether these cells are localized in the appropriate site; whether cells survive; and whether these cells migrate. These questions predominantly relate to the safety of the therapeutic approach (i.e. tumorigenesis), but certain aspects can also influence the efficacy of the therapeutic approach (e.g. site of injection). The European Medicines Agency has indicated that suitable methods for stem cell tracking should be applied where these methods are available. We here discuss the European regulatory framework, as well as the scientific evidence, that should be considered to facilitate the potential clinical implementation of magnetic resonance imaging contrast media to track implanted/injected cells in human studies.
Collapse
Affiliation(s)
- Michel Modo
- University of Pittsburgh, Department of Radiology, McGowan Institute for Regenerative Medicine, Pittsburgh, PA, 15203, USA
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Liu CX, Zhang RL, Gao J, Li T, Ren Z, Zhou CQ, Wen AM. Derivation of human embryonic stem cell lines without any exogenous growth factors. Mol Reprod Dev 2014; 81:470-9. [PMID: 24554631 DOI: 10.1002/mrd.22312] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 02/11/2014] [Indexed: 01/16/2023]
Abstract
Human embryonic stem cell (hESC) lines are traditionally derived through immunosurgery. Their maintenance in culture requires the presence of mouse embryonic fibroblasts (MEFs) as feeder cells and media supplemented with basic fibroblast growth factor (bFGF) or other growth factors-both of which might introduce animal-derived culture components. The drawbacks associated with immunosurgery, MEF co-culture, and the cost of growth factors necessitate the exploration of a xeno-free method to maintain the self-renewal capacity of hESCs. Here, we describe an isolation method for the human inner cell mass (ICM), which was then cultured in the absence of exogenous growth factors and in the presence of human foreskin fibroblasts (HFFs) as feeder cells. Three hESC lines were obtained from poor-quality embryos by this near-xeno-free protocol. After culturing for more than 10 months, the hESCs retained normal morphology, expressed all expected cell surface markers, could differentiate to embryoid bodies upon culture in vitro, and formed teratomas in vivo. Furthermore, secretion of bFGF by HFFs was observed. In conclusion, this is the first study to describe an inexpensive, xeno-free culture system for the isolation and maintenance of hESCs that does not require bFGF supplementation.
Collapse
Affiliation(s)
- Cai Xia Liu
- Reproductive Medicine Center, Guangdong Academy of Medical Sciences/Guangdong General Hospital, Guangzhou, China
| | | | | | | | | | | | | |
Collapse
|
12
|
Greggains GD, Lister LM, Tuppen HAL, Zhang Q, Needham LH, Prathalingam N, Hyslop LA, Craven L, Polanski Z, Murdoch AP, Turnbull DM, Herbert M. Therapeutic potential of somatic cell nuclear transfer for degenerative disease caused by mitochondrial DNA mutations. Sci Rep 2014; 4:3844. [PMID: 24457623 PMCID: PMC5379195 DOI: 10.1038/srep03844] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 12/24/2013] [Indexed: 01/16/2023] Open
Abstract
Induced pluripotent stem cells (iPSCs) hold much promise in the quest for personalised cell therapies. However, the persistence of founder cell mitochondrial DNA (mtDNA) mutations limits the potential of iPSCs in the development of treatments for mtDNA disease. This problem may be overcome by using oocytes containing healthy mtDNA, to induce somatic cell nuclear reprogramming. However, the extent to which somatic cell mtDNA persists following fusion with human oocytes is unknown. Here we show that human nuclear transfer (NT) embryos contain very low levels of somatic cell mtDNA. In light of a recent report that embryonic stem cells can be derived from human NT embryos, our results highlight the therapeutic potential of NT for mtDNA disease, and underscore the importance of using human oocytes to pursue this goal.
Collapse
Affiliation(s)
- Gareth D. Greggains
- Wellcome Centre for Mitochondrial Research, Institute for Ageing and Health, Newcastle University, Newcastle upon Tyne, UK
- Newcastle Fertility Centre, Centre for Life, Times Square, Newcastle upon Tyne, UK
- Department of Gynecology, Oslo University Hospital, Rikshospitalet, Oslo 0027, Norway
| | - Lisa M. Lister
- Wellcome Centre for Mitochondrial Research, Institute for Ageing and Health, Newcastle University, Newcastle upon Tyne, UK
- Newcastle Fertility Centre, Centre for Life, Times Square, Newcastle upon Tyne, UK
| | - Helen A. L. Tuppen
- Wellcome Centre for Mitochondrial Research, Institute for Ageing and Health, Newcastle University, Newcastle upon Tyne, UK
| | - Qi Zhang
- Wellcome Centre for Mitochondrial Research, Institute for Ageing and Health, Newcastle University, Newcastle upon Tyne, UK
- Newcastle Fertility Centre, Centre for Life, Times Square, Newcastle upon Tyne, UK
| | - Louise H. Needham
- Wellcome Centre for Mitochondrial Research, Institute for Ageing and Health, Newcastle University, Newcastle upon Tyne, UK
- Newcastle Fertility Centre, Centre for Life, Times Square, Newcastle upon Tyne, UK
| | - Nilendran Prathalingam
- Wellcome Centre for Mitochondrial Research, Institute for Ageing and Health, Newcastle University, Newcastle upon Tyne, UK
- Newcastle Fertility Centre, Centre for Life, Times Square, Newcastle upon Tyne, UK
| | - Louise A. Hyslop
- Wellcome Centre for Mitochondrial Research, Institute for Ageing and Health, Newcastle University, Newcastle upon Tyne, UK
- Newcastle Fertility Centre, Centre for Life, Times Square, Newcastle upon Tyne, UK
| | - Lyndsey Craven
- Wellcome Centre for Mitochondrial Research, Institute for Ageing and Health, Newcastle University, Newcastle upon Tyne, UK
| | - Zbigniew Polanski
- Department of Genetics and Evolution, Institute of Zoology, Jagiellonian University, ul. Gronostajowa 9, 30-387 Krakow, Poland
| | - Alison P. Murdoch
- Wellcome Centre for Mitochondrial Research, Institute for Ageing and Health, Newcastle University, Newcastle upon Tyne, UK
- Newcastle Fertility Centre, Centre for Life, Times Square, Newcastle upon Tyne, UK
| | - Douglass M. Turnbull
- Wellcome Centre for Mitochondrial Research, Institute for Ageing and Health, Newcastle University, Newcastle upon Tyne, UK
| | - Mary Herbert
- Wellcome Centre for Mitochondrial Research, Institute for Ageing and Health, Newcastle University, Newcastle upon Tyne, UK
- Newcastle Fertility Centre, Centre for Life, Times Square, Newcastle upon Tyne, UK
| |
Collapse
|
13
|
Lambshead JW, Meagher L, O'Brien C, Laslett AL. Defining synthetic surfaces for human pluripotent stem cell culture. CELL REGENERATION 2013; 2:7. [PMID: 25408879 PMCID: PMC4230363 DOI: 10.1186/2045-9769-2-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 11/19/2013] [Indexed: 12/29/2022]
Abstract
Human pluripotent stem cells (hPSCs) are able to self-renew indefinitely and to differentiate into all adult cell types. hPSCs therefore show potential for application to drug screening, disease modelling and cellular therapies. In order to meet this potential, culture conditions must be developed that are consistent, defined, scalable, free of animal products and that facilitate stable self-renewal of hPSCs. Several culture surfaces have recently been reported to meet many of these criteria although none of them have been widely implemented by the stem cell community due to issues with validation, reliability and expense. Most hPSC culture surfaces have been derived from extracellular matrix proteins (ECMPs) and their cell adhesion molecule (CAM) binding motifs. Elucidating the CAM-mediated cell-surface interactions that are essential for the in vitro maintenance of pluripotency will facilitate the optimisation of hPSC culture surfaces. Reports indicate that hPSC cultures can be supported by cell-surface interactions through certain CAM subtypes but not by others. This review summarises the recent reports of defined surfaces for hPSC culture and focuses on the CAMs and ECMPs involved.
Collapse
Affiliation(s)
- Jack W Lambshead
- CSIRO Materials Science and Engineering, Clayton, Victoria 3168 Australia ; Australian Regenerative Medicine Institute, Monash University, Kragujevac, Victoria 3800 Australia
| | - Laurence Meagher
- CSIRO Materials Science and Engineering, Clayton, Victoria 3168 Australia
| | - Carmel O'Brien
- CSIRO Materials Science and Engineering, Clayton, Victoria 3168 Australia ; Australian Regenerative Medicine Institute, Monash University, Kragujevac, Victoria 3800 Australia
| | - Andrew L Laslett
- CSIRO Materials Science and Engineering, Clayton, Victoria 3168 Australia ; Australian Regenerative Medicine Institute, Monash University, Kragujevac, Victoria 3800 Australia ; Department of Zoology, University of Melbourne, Parkville, Victoria 3101 Australia
| |
Collapse
|
14
|
Abbasalizadeh S, Baharvand H. Technological progress and challenges towards cGMP manufacturing of human pluripotent stem cells based therapeutic products for allogeneic and autologous cell therapies. Biotechnol Adv 2013; 31:1600-23. [PMID: 23962714 DOI: 10.1016/j.biotechadv.2013.08.009] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 06/20/2013] [Accepted: 08/12/2013] [Indexed: 12/16/2022]
Abstract
Recent technological advances in the generation, characterization, and bioprocessing of human pluripotent stem cells (hPSCs) have created new hope for their use as a source for production of cell-based therapeutic products. To date, a few clinical trials that have used therapeutic cells derived from hESCs have been approved by the Food and Drug Administration (FDA), but numerous new hPSC-based cell therapy products are under various stages of development in cell therapy-specialized companies and their future market is estimated to be very promising. However, the multitude of critical challenges regarding different aspects of hPSC-based therapeutic product manufacturing and their therapies have made progress for the introduction of new products and clinical applications very slow. These challenges include scientific, technological, clinical, policy, and financial aspects. The technological aspects of manufacturing hPSC-based therapeutic products for allogeneic and autologous cell therapies according to good manufacturing practice (cGMP) quality requirements is one of the most important challenging and emerging topics in the development of new hPSCs for clinical use. In this review, we describe main critical challenges and highlight a series of technological advances in all aspects of hPSC-based therapeutic product manufacturing including clinical grade cell line development, large-scale banking, upstream processing, downstream processing, and quality assessment of final cell therapeutic products that have brought hPSCs closer to clinical application and commercial cGMP manufacturing.
Collapse
Affiliation(s)
- Saeed Abbasalizadeh
- Department of Stem Cells and Developmental Biology at Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | | |
Collapse
|
15
|
Abstract
Human embryonic stem cells (hESCs) are pluripotent cells derived from the inner cell mass (ICM) of the developing embryo. hESCs culture as cell lines in vitro and possess great potential in such research fields as developmental biology and cell-based therapy, as well as such industrial purposes as drug screening and toxicology. When ESCs were first derived by Thomson and colleagues, traditional methods of immunostaining and culturing, using primary mouse embryonic fibroblasts and medium supplemented by serum were used. Considerable efforts have since led to improved methods for isolating new lines in defined and reproducible conditions. This chapter discusses sources for embryos for ESC isolation, commonly used methods for deriving hESC lines, and a number of possible culture systems.
Collapse
Affiliation(s)
- Michal Amit
- Department of Obstetrics and Gynecology, Technion Israel Institute of Technology, Rambam Medical Center, Haifa, Israel
| |
Collapse
|
16
|
Oldershaw RA. Cell sources for the regeneration of articular cartilage: the past, the horizon and the future. Int J Exp Pathol 2012; 93:389-400. [PMID: 23075006 DOI: 10.1111/j.1365-2613.2012.00837.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Accepted: 06/15/2012] [Indexed: 11/29/2022] Open
Abstract
Avascular, aneural articular cartilage has a low capacity for self-repair and as a consequence is highly susceptible to degradative diseases such as osteoarthritis. Thus the development of cell-based therapies that repair focal defects in otherwise healthy articular cartilage is an important research target, aiming both to delay the onset of degradative diseases and to decrease the need for joint replacement surgery. This review will discuss the cell sources which are currently being investigated for the generation of chondrogenic cells. Autologous chondrocyte implantation using chondrocytes expanded ex vivo was the first chondrogenic cellular therapy to be used clinically. However, limitations in expansion potential have led to the investigation of adult mesenchymal stem cells as an alternative cell source and these therapies are beginning to enter clinical trials. The chondrogenic potential of human embryonic stem cells will also be discussed as a developmentally relevant cell source, which has the potential to generate chondrocytes with phenotype closer to that of articular cartilage. The clinical application of these chondrogenic cells is much further away as protocols and tissue engineering strategies require additional optimization. The efficacy of these cell types in the regeneration of articular cartilage tissue that is capable of withstanding biomechanical loading will be evaluated according to the developing regulatory framework to determine the most appropriate cellular therapy for adoption across an expanding patient population.
Collapse
Affiliation(s)
- Rachel A Oldershaw
- North East England Stem Cell Institute (NESCI), Institute of Cellular Medicine, Newcastle University, International Centre for Life, Newcastle upon Tyne, UK.
| |
Collapse
|