1
|
Lagou MK, Karagiannis GS. Obesity-induced thymic involution and cancer risk. Semin Cancer Biol 2023; 93:3-19. [PMID: 37088128 DOI: 10.1016/j.semcancer.2023.04.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 04/25/2023]
Abstract
Declining thymic functions associated either with old age (i.e., age-related thymic involution), or with acute involution as a result of stress, infectious disease, or cytoreductive therapies (e.g., chemotherapy/radiotherapy), have been associated with cancer development. A key mechanism underlying such increased cancer risk is the thymus-dependent debilitation of adaptive immunity, which is responsible for orchestrating immunoediting mechanisms and tumor immune surveillance. In the past few years, a blooming set of evidence has intriguingly linked obesity with cancer development and progression. The majority of such studies has focused on obesity-driven chronic inflammation, steroid/sex hormone and adipokine production, and hyperinsulinemia, as principal factors affecting the tumor microenvironment and driving the development of primary malignancy. However, experimental observations about the negative impact of obesity on T cell development and maturation have existed for more than half a century. Here, we critically discuss the molecular and cellular mechanisms of obesity-driven thymic involution as a previously underrepresented intermediary pathology leading to cancer development and progression. This knowledge could be especially relevant in the context of childhood obesity, because impaired thymic function in young individuals leads to immune system abnormalities, and predisposes to various pediatric cancers. A thorough understanding behind the molecular and cellular circuitries governing obesity-induced thymic involution could therefore help towards the rationalized development of targeted thymic regeneration strategies for obese individuals at high risk of cancer development.
Collapse
Affiliation(s)
- Maria K Lagou
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA; Tumor Microenvironment of Metastasis Program, Albert Einstein Cancer Center, Bronx, NY, USA
| | - George S Karagiannis
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA; Tumor Microenvironment of Metastasis Program, Albert Einstein Cancer Center, Bronx, NY, USA; Cancer Dormancy and Tumor Microenvironment Institute, Albert Einstein College of Medicine, Bronx, NY, USA; Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA; Integrated Imaging Program for Cancer Research, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
2
|
Petrušić M, Stojić-Vukanić Z, Pilipović I, Kosec D, Prijić I, Leposavić G. Thymic changes as a contributing factor in the increased susceptibility of old Albino Oxford rats to EAE development. Exp Gerontol 2023; 171:112009. [PMID: 36334894 DOI: 10.1016/j.exger.2022.112009] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022]
Abstract
The study was aimed to examine putative contribution of thymic involution to ageing-associated increase in susceptibility of Albino Oxford (AO) rats to the development of clinical EAE, and vice versa influence of the disease on the progression of thymic involution. To this end we examined (i) the parameters of thymocyte negative selection efficacy, the thymic generation of CD4+CD25+Foxp3+ T regulatory cells (Tregs) and thymic capacity to instruct/predetermine IL-17-producing T-cell differentiation, and thymopietic efficacy-associated accumulation of "inflammescent" cytotoxic CD28- T cells in the periphery, and (ii) the key underlying mechanisms in young and old non-immunised AO rats and their counterparts immunised for EAE (on the 16th day post-immunisation when the disease in old rats reached the plateau) using flow cytometry analysis and/or RT-qPCR. It was found that thymic involution impairs: (i) the efficacy of negative selection (by affecting thymocyte expression of CD90, negative regulator of selection threshold and the expression of thymic stromal cell integrity factors) and (ii) Treg generation (by diminishing expression of cytokines supporting their differentiation/maturation). Additionally, the results suggest that thymic involution facilitates CD8+ T-cell differentiation into IL-17-producing cells (previously linked to the development of clinical EAE in old AO rats). Furthermore, they confirmed that ageing-related decrease in thymic T-cell output (as indicated by diminished frequency of recent thymic emigrants in peripheral blood) resulted in the accumulation of CD28- T cells in peripheral blood and, upon immunisation, in the target organ. On the other hand, the development of EAE (most likely by increasing circulatory levels of proinflammatory cytokines) contributed to the decline in thymic output of T cells, including Tregs, and thereby to the progression/maintenance of clinical EAE. Thus, in AO rats thymic involution via multi-layered mechanisms may favour the development of clinically manifested autoimmunity, which, in turn, precipitates the thymus atrophy.
Collapse
Affiliation(s)
- Marija Petrušić
- Department of Pathobiology, University of Belgrade, Faculty of Pharmacy, 450 Vojvode Stepe, 11221 Belgrade, Serbia
| | - Zorica Stojić-Vukanić
- Department of Microbiology and Immunology, University of Belgrade, Faculty of Pharmacy, 450 Vojvode Stepe, 11221 Belgrade, Serbia
| | - Ivan Pilipović
- Immunology Research Centre "Branislav Janković", Institute of Virology, Vaccines and Sera "Torlak", 458 Vojvode Stepe, 11221 Belgrade, Serbia
| | - Duško Kosec
- Immunology Research Centre "Branislav Janković", Institute of Virology, Vaccines and Sera "Torlak", 458 Vojvode Stepe, 11221 Belgrade, Serbia
| | - Ivana Prijić
- Immunology Research Centre "Branislav Janković", Institute of Virology, Vaccines and Sera "Torlak", 458 Vojvode Stepe, 11221 Belgrade, Serbia
| | - Gordana Leposavić
- Department of Pathobiology, University of Belgrade, Faculty of Pharmacy, 450 Vojvode Stepe, 11221 Belgrade, Serbia.
| |
Collapse
|
3
|
A Mathematical Study of the Role of tBregs in Breast Cancer. Bull Math Biol 2022; 84:112. [PMID: 36048369 DOI: 10.1007/s11538-022-01054-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 07/12/2022] [Indexed: 12/24/2022]
Abstract
A model for the mathematical study of immune response to breast cancer is proposed and studied, both analytically and numerically. It is a simplification of a complex one, recently introduced by two of the present authors. It serves for a compact study of the dynamical role in cancer promotion of a relatively recently described subgroup of regulatory B cells, which are evoked by the tumour.
Collapse
|
4
|
Bitsouni V, Tsilidis V. Mathematical modeling of tumor-immune system interactions: the effect of rituximab on breast cancer immune response. J Theor Biol 2022; 539:111001. [PMID: 34998860 DOI: 10.1016/j.jtbi.2021.111001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 12/25/2021] [Indexed: 12/11/2022]
Abstract
tBregs are a newly discovered subcategory of B regulatory cells, which are generated by breast cancer, resulting in the increase of Tregs and therefore in the death of NK cells. In this study, we use a mathematical and computational approach to investigate the complex interactions between the aforementioned cells as well as CD8+ T cells, CD4+ T cells and B cells. Furthermore, we use data fitting to prove that the functional response regarding the lysis of breast cancer cells by NK cells has a ratio-dependent form. Additionally, we include in our model the concentration of rituximab - a monoclonal antibody that has been suggested as a potential breast cancer therapy - and test its effect, when the standard, as well as experimental dosages, are administered.
Collapse
Affiliation(s)
- Vasiliki Bitsouni
- Department of Mathematics, National and Kapodistrian University of Athens, Panepistimioupolis, GR-15784 Athens, Greece; School of Science and Technology, Hellenic Open University, 18 Parodos Aristotelous Str., GR-26335 Patras, Greece.
| | - Vasilis Tsilidis
- School of Science and Technology, Hellenic Open University, 18 Parodos Aristotelous Str., GR-26335 Patras, Greece.
| |
Collapse
|
5
|
Sex as a confounding factor in the effects of ageing on rat lymph node t cell compartment. Exp Gerontol 2020; 142:111140. [PMID: 33129930 DOI: 10.1016/j.exger.2020.111140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 01/20/2023]
Abstract
The study examined the influence of sex on the alterations occurring with ageing in rat lymph node (LN) T cell compartment. In female and male rats the decrease in LN T cell counts was followed by a shift in CD4+/CD8+ T cell ratio towards CD8+ T cells, which was more prominent in males than in females. With ageing, in both major LN T cell subpopulations naïve (recent thymic emigrants and mature naïve cells) to memory/activated T cell ratio shifted to the side of memory/activated cells in female, and particularly in male rats. The frequency of regulatory CD25+Foxp3+ cells increased among LN CD4+/CD8+ T cells with ageing, reflecting, at least partly, an enhanced conversion of effector T cells into regulatory cells. This was also more prominent in male rats. The more prounounced increase in LN oxidative damage and the expression levels of proinflammatory cytokines in male rats with ageing, most likely contributed to the greater frequency of proinflammatory, replicatively senescent CD28- cells expressing CD11b (innate cell marker), among T cells of old male rats compared with age-matched females. The increase in LN oxidation/proinflammatory state with ageing was also consistent with the accumulation of exhausted PD-1high cells among T lymphocytes, particularly prominent among CD8+ T cells from male rats. Finally, by calculating a summary score for the key ageing-relevant parameters (an ageing index), a faster development of the deleterious changes in the T cell compartment occurring with ageing was confirmed in male rat LNs. Additionally, the study pointed to indices of LN T cell compartment ageing which correlate with those in peripheral blood.
Collapse
|
6
|
Nacka-Aleksić M, Stojanović M, Pilipović I, Stojić-Vukanić Z, Kosec D, Leposavić G. Strain differences in thymic atrophy in rats immunized for EAE correlate with the clinical outcome of immunization. PLoS One 2018; 13:e0201848. [PMID: 30086167 PMCID: PMC6080797 DOI: 10.1371/journal.pone.0201848] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 07/22/2018] [Indexed: 01/03/2023] Open
Abstract
An accumulating body of evidence suggests that development of autoimmune pathologies leads to thymic dysfunction and changes in peripheral T-cell compartment, which, in turn, perpetuate their pathogenesis. To test this hypothesis, thymocyte differentiation/maturation in rats susceptible (Dark Agouti, DA) and relatively resistant (Albino Oxford, AO) to experimental autoimmune encephalomyelitis (EAE) induction was examined. Irrespective of strain, immunization for EAE (i) increased the circulating levels of IL-6, a cytokine causally linked with thymic atrophy, and (ii) led to thymic atrophy reflecting partly enhanced thymocyte apoptosis associated with downregulated thymic IL-7 expression. Additionally, immunization diminished the expression of Thy-1, a negative regulator of TCRαβ-mediated signaling and activation thresholds, on CD4+CD8+ TCRαβlo/hi thymocytes undergoing selection and thereby impaired thymocyte selection/survival. This diminished the generation of mature CD4+ and CD8+ single positive TCRαβhi thymocytes and, consequently, CD4+ and CD8+ recent thymic emigrants. In immunized rats, thymic differentiation of natural regulatory CD4+Foxp3+CD25+ T cells (nTregs) was particularly affected reflecting a diminished expression of IL-7, IL-2 and IL-15. The decline in the overall thymic T-cell output and nTreg generation was more pronounced in DA than AO rats. Additionally, differently from immunized AO rats, in DA ones the frequency of CD28- cells secreting cytolytic enzymes within peripheral blood CD4+ T lymphocytes increased, as a consequence of thymic atrophy-related replicative stress (mirrored in CD4+ cell memory pool expansion and p16INK4a accumulation). The higher circulating level of TNF-α in DA compared with AO rats could also contribute to this difference. Consistently, higher frequency of cytolytic CD4+ granzyme B+ cells (associated with greater tissue damage) was found in spinal cord of immunized DA rats compared with their AO counterparts. In conclusion, the study indicated that strain differences in immunization-induced changes in thymopoiesis and peripheral CD4+CD28- T-cell generation could contribute to rat strain-specific clinical outcomes of immunization for EAE.
Collapse
Affiliation(s)
- Mirjana Nacka-Aleksić
- Department of Physiology, University of Belgrade - Faculty of Pharmacy, Belgrade, Serbia
| | - Marija Stojanović
- Department of Physiology, University of Belgrade - Faculty of Pharmacy, Belgrade, Serbia
| | - Ivan Pilipović
- Immunology Research Centre “Branislav Janković”, Institute of Virology, Vaccines and Sera “Torlak”, Belgrade, Serbia
| | - Zorica Stojić-Vukanić
- Department of Microbiology and Immunology, University of Belgrade - Faculty of Pharmacy, Belgrade, Serbia
| | - Duško Kosec
- Immunology Research Centre “Branislav Janković”, Institute of Virology, Vaccines and Sera “Torlak”, Belgrade, Serbia
| | - Gordana Leposavić
- Department of Physiology, University of Belgrade - Faculty of Pharmacy, Belgrade, Serbia
- * E-mail:
| |
Collapse
|
7
|
Morales V, Soto-Ortiz L. Modeling Macrophage Polarization and Its Effect on Cancer Treatment Success. ACTA ACUST UNITED AC 2018; 8:36-80. [PMID: 35847834 PMCID: PMC9286492 DOI: 10.4236/oji.2018.82004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Positive feedback loops drive immune cell polarization toward a pro-tumor phenotype that accentuates immunosuppression and tumor angiogenesis. This phenotypic switch leads to the escape of cancer cells from immune destruction. These positive feedback loops are generated by cytokines such as TGF-β, Interleukin-10 and Interleukin-4, which are responsible for the polarization of monocytes and M1 macrophages into pro-tumor M2 macrophages, and the polarization of naive helper T cells intopro-tumor Th2 cells. In this article, we present a deterministic ordinary differential equation (ODE) model that includes key cellular interactions and cytokine signaling pathways that lead to immune cell polarization in the tumor microenvironment. The model was used to simulate various cancer treatments in silico. We identified combination therapies that consist of M1 macrophages or Th1 helper cells, coupled with an anti-angiogenic treatment, that are robust with respect to immune response strength, initial tumor size and treatment resistance. We also identified IL-4 and IL-10 as the targets that should be neutralized in order to make these combination treatments robust with respect to immune cell polarization. The model simulations confirmed a hypothesis based on published experimental evidence that a polarization into the M1 and Th1 phenotypes to increase the M1-to-M2 and Th1-to-Th2 ratios plays a significant role in treatment success. Our results highlight the importance of immune cell reprogramming as a viable strategy to eradicate a highly vascularized tumor when the strength of the immune response is characteristically weak and cell polarization to the pro-tumor phenotype has occurred.
Collapse
Affiliation(s)
- Valentin Morales
- Department of Engineering and Technologies, East Los Angeles College, Monterey Park, USA
| | - Luis Soto-Ortiz
- Department of Mathematics, East Los Angeles College, Monterey Park, USA
| |
Collapse
|
8
|
Zhang S, Zhang X, Wang K, Xu X, Li M, Zhang J, Zhang Y, Hao J, Sun X, Chen Y, Liu X, Chang Y, Jin R, Wu H, Ge Q. Newly Generated CD4 + T Cells Acquire Metabolic Quiescence after Thymic Egress. THE JOURNAL OF IMMUNOLOGY 2017; 200:1064-1077. [PMID: 29288207 DOI: 10.4049/jimmunol.1700721] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 11/27/2017] [Indexed: 12/19/2022]
Abstract
Mature naive T cells circulate through the secondary lymphoid organs in an actively enforced quiescent state. Impaired cell survival and cell functions could be found when T cells have defects in quiescence. One of the key features of T cell quiescence is low basal metabolic activity. It remains unclear at which developmental stage T cells acquire this metabolic quiescence. We compared mitochondria among CD4 single-positive (SP) T cells in the thymus, CD4+ recent thymic emigrants (RTEs), and mature naive T cells in the periphery. The results demonstrate that RTEs and naive T cells had reduced mitochondrial content and mitochondrial reactive oxygen species when compared with SP thymocytes. This downregulation of mitochondria requires T cell egress from the thymus and occurs early after young T cells enter the circulation. Autophagic clearance of mitochondria, but not mitochondria biogenesis or fission/fusion, contributes to mitochondrial downregulation in RTEs. The enhanced apoptosis signal-regulating kinase 1/MAPKs and reduced mechanistic target of rapamycin activities in RTEs relative to SP thymocytes may be involved in this mitochondrial reduction. These results indicate that the gain of metabolic quiescence is one of the important maturation processes during SP-RTE transition. Together with functional maturation, it promotes the survival and full responsiveness to activating stimuli in young T cells.
Collapse
Affiliation(s)
- Shusong Zhang
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China.,Key Laboratory of Medical Immunology, Ministry of Health, Peking University Health Science Center, Beijing 100191, China
| | - Xinwei Zhang
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China.,Key Laboratory of Medical Immunology, Ministry of Health, Peking University Health Science Center, Beijing 100191, China
| | - Ke Wang
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China.,Key Laboratory of Medical Immunology, Ministry of Health, Peking University Health Science Center, Beijing 100191, China
| | - Xi Xu
- Center for Molecular Metabolism, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Mingyang Li
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China.,Key Laboratory of Medical Immunology, Ministry of Health, Peking University Health Science Center, Beijing 100191, China
| | - Jun Zhang
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China.,Key Laboratory of Medical Immunology, Ministry of Health, Peking University Health Science Center, Beijing 100191, China
| | - Yan Zhang
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China.,Key Laboratory of Medical Immunology, Ministry of Health, Peking University Health Science Center, Beijing 100191, China
| | - Jie Hao
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China.,Key Laboratory of Medical Immunology, Ministry of Health, Peking University Health Science Center, Beijing 100191, China
| | - Xiuyuan Sun
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China.,Key Laboratory of Medical Immunology, Ministry of Health, Peking University Health Science Center, Beijing 100191, China
| | - Yingyu Chen
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China.,Key Laboratory of Medical Immunology, Ministry of Health, Peking University Health Science Center, Beijing 100191, China
| | - Xiaohui Liu
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yingjun Chang
- Peking University Institute of Hematology, People's Hospital, Beijing 100044, China; and
| | - Rong Jin
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; .,Key Laboratory of Medical Immunology, Ministry of Health, Peking University Health Science Center, Beijing 100191, China
| | - Hounan Wu
- Peking University Medical and Health Analytical Center, Peking University Health Science Center, Beijing 100191, China
| | - Qing Ge
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; .,Key Laboratory of Medical Immunology, Ministry of Health, Peking University Health Science Center, Beijing 100191, China
| |
Collapse
|
9
|
Sex and age as determinants of rat T-cell phenotypic characteristics: influence of peripubertal gonadectomy. Mol Cell Biochem 2017; 431:169-185. [PMID: 28281185 DOI: 10.1007/s11010-017-2989-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 02/24/2017] [Indexed: 12/19/2022]
Abstract
The study examined the influence of age, sex and peripubertal gonadectomy on a set of T-cell phenotypic parameters. Rats of both sexes were gonadectomised at the age of 1 month and peripheral blood and spleen T lymphocytes from non-gonadectomised and gonadectomised 3- and 11-month-old rats were examined for the expression of differentiation/activation (CD90/CD45RC) and immunoregulatory markers. Peripheral blood T lymphocytes from non-gonadectomised rats showed age-dependent sexual dimorphisms in (1) total count (lower in female than male 11-month-old rats); (2) CD4+:CD8 + cell ratio (higher in female than male rats of both ages); (3) the proportion of recent thymic emigrants in CD8 + T cells (lower in female than male 3-month-old rats) and (4) the proportions of mature naïve and memory/activated cells (irrespective of age, the proportion of naïve cells was higher, whereas that of memory/activated cells was lower in females). Gonadectomy influenced magnitudes or direction of these sex differences. Additionally, sex differences in peripheral blood T-lymphocyte parameters did not fully correspond to those observed in T-splenocyte parameters, suggesting the compartment-specific regulation of the major T-cell subpopulations' and their subsets' composition. Furthermore, there was no sexual dimorphism in the proportion of either CD25 + Foxp3 + cells among CD4 + or CD161+ (NKT) cells within CD8 + T lymphocytes. However, there was gonadal hormone-independent age-associated sexual dimorphism in the proportion of CD161 + cells (NKT cells) in CD8 + T splenocytes. Overall, the study revealed age-dependent variations in sexual dimorphisms in T-cell parameters relevant for immune response efficacy and showed that they are T-cell compartment-specific and partly gonadal hormone-related.
Collapse
|
10
|
Rodríguez-Perea AL, Arcia ED, Rueda CM, Velilla PA. Phenotypical characterization of regulatory T cells in humans and rodents. Clin Exp Immunol 2016; 185:281-91. [PMID: 27124481 DOI: 10.1111/cei.12804] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2016] [Indexed: 12/15/2022] Open
Abstract
Regulatory T cells (Tregs ) constitute a fascinating subpopulation of CD4(+) T cells due to their ability to limit the immune response against self and non-self antigens. Murine models and antibodies directed against surface and intracellular molecules have allowed elucidation of the mechanisms that govern their development and function. However, these markers used to their classification lack of specificity, as they can be expressed by activated T cells. Similarly, there are slight differences between animal models, in steady state and pathological conditions, anatomical localization and strategy of analysis by flow cytometry. Here, we revised the most common markers utilized for Treg typification by flow cytometry such as CD25, forkhead box protein 3 (FoxP3) and CD127, along with our data obtained in different body compartments of humans, mice and rats. Furthermore, we revised and determined the expression of other molecules important for the phenotypical characterization of Treg cells. We draw attention to the drawbacks of those markers used in chronic states of inflammation. However, until a specific marker for the identification of Tregs is discovered, the best combination of markers will depend upon the tissue or the degree of inflammation from which Tregs derive.
Collapse
Affiliation(s)
- A L Rodríguez-Perea
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia
| | - E D Arcia
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia
| | - C M Rueda
- Clinical Laboratory, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - P A Velilla
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, Colombia
| |
Collapse
|
11
|
Yang WY, Shao Y, Lopez-Pastrana J, Mai J, Wang H, Yang XF. Pathological conditions re-shape physiological Tregs into pathological Tregs. BURNS & TRAUMA 2015; 3. [PMID: 26623425 PMCID: PMC4662545 DOI: 10.1186/s41038-015-0001-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
CD4+FOXP3+ regulatory T cells (Tregs) are a subset of CD4 T cells that play an essential role in maintaining peripheral immune tolerance, controlling acute and chronic inflammation, allergy, autoimmune diseases, and anti-cancer immune responses. Over the past 20 years, significant progress has been made since Tregs were first characterized in 1995. Many concepts and principles regarding Tregs generation, phenotypic features, subsets (tTregs, pTregs, iTregs, and iTreg35), tissue specificity (central Tregs, effector Tregs, and tissue resident Tregs), homeostasis (highly dynamic and apoptotic), regulation of Tregs by receptors for PAMPs and DAMPs, Treg plasticity (re-differentiation to other CD4 T helper cell subsets, Th1, Th2, Tfh and Th17), and epigenetic regulation of Tregs phenotypes and functions have been innovated. In this concise review, we want to briefly analyze these eight new progresses in the study of Tregs. We have also proposed for the first time a novel concept that "physiological Tregs" have been re-shaped into "pathological Tregs" in various pathological environments. Continuing of the improvement in our understanding on this important cellular component about the immune tolerance and immune suppression, would lead to the future development of novel therapeutics approaches for acute and chronic inflammatory diseases, allergy, allogeneic transplantation-related immunity, sepsis, autoimmune diseases, and cancers.
Collapse
Affiliation(s)
- William Y Yang
- Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research, Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA 19140, U.S.A
| | - Ying Shao
- Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research, Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA 19140, U.S.A
| | - Jahaira Lopez-Pastrana
- Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research, Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA 19140, U.S.A
| | - Jietang Mai
- Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research, Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA 19140, U.S.A
| | - Hong Wang
- Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research, Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA 19140, U.S.A
| | - Xiao-Feng Yang
- Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research, Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA 19140, U.S.A ; Department of Microbiology and Immunology, Temple University School of Medicine, Philadelphia, PA 19140, U.S.A
| |
Collapse
|
12
|
Arsenović-Ranin N, Kosec D, Nacka-Aleksić M, Pilipović I, Stojić-Vukanić Z, Djikić J, Bufan B, Leposavić G. Ovarian hormone level alterations during rat post-reproductive life-span influence CD8 + T-cell homeostasis. Exp Biol Med (Maywood) 2015; 240:1319-32. [PMID: 25716018 DOI: 10.1177/1535370215570817] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 12/21/2014] [Indexed: 01/01/2023] Open
Abstract
The study examined the putative role of ovarian hormones in shaping of rat peripheral T-cell compartment during post-reproductive period. In 20-month-old rats ovariectomized (Ox) at the very end of reproductive period, thymic output, cellularity and composition of major TCRαβ + peripheral blood lymphocyte and splenocyte subsets were analyzed. Ovariectomy led to the enlargement of CD8 + peripheral blood lymphocyte and splenocyte subpopulations. This reflected: (i) a more efficient thymic generation of CD8 + cells as indicated by increased number of CD4+CD8 + double positive and the most mature CD4-CD8+TCRαβ(high) thymocytes and CD8 + recent thymic emigrants (RTEs) in peripheral blood, but not in the spleen of Ox rats, and (ii) the expansion of CD8 + memory/activated peripheral blood lymphocytes and splenocytes. The latter was consistent with a greater frequency of proliferating cells among freshly isolated memory/activated CD8 + peripheral blood lymphocytes and splenocytes and increased proliferative response of CD8 + splenocytes to stimulation with plate-bound anti-CD3 antibody. The former could be related to the rise in splenic IL-7 and IL-15 mRNA expression. Although ovariectomy affected the overall number of CD4 + T cells in none of the examined compartments, it increased CD4+FoxP3 + peripheral blood lymphocyte and splenocyte counts by enhancing their generation in periphery. Collectively, the results suggest that ovariectomy-induced long-lasting disturbances in ovarian hormone levels (mirrored in diminished progesterone serum level in 20-month-old rats) affects both thymic CD8 + cell generation and peripheral homeostasis and leads to the expansion of CD4+FoxP3 + cells in the periphery, thereby enhancing autoreactive cell control on account of immune system efficacy to combat infections and tumors.
Collapse
Affiliation(s)
- Nevena Arsenović-Ranin
- Department of Microbiology and Immunology, Faculty of Pharmacy, University of Belgrade, 11221 Belgrade, Serbia
| | - Duško Kosec
- Immunology Research Centre "Branislav Janković", Institute of Virology, Vaccines and Sera "Torlak", 11221 Belgrade, Serbia
| | - Mirjana Nacka-Aleksić
- Department of Physiology, Faculty of Pharmacy, University of Belgrade, 11221 Belgrade, Serbia
| | - Ivan Pilipović
- Immunology Research Centre "Branislav Janković", Institute of Virology, Vaccines and Sera "Torlak", 11221 Belgrade, Serbia
| | - Zorica Stojić-Vukanić
- Department of Microbiology and Immunology, Faculty of Pharmacy, University of Belgrade, 11221 Belgrade, Serbia
| | - Jasmina Djikić
- Department of Physiology, Faculty of Pharmacy, University of Belgrade, 11221 Belgrade, Serbia
| | - Biljana Bufan
- Department of Microbiology and Immunology, Faculty of Pharmacy, University of Belgrade, 11221 Belgrade, Serbia
| | - Gordana Leposavić
- Department of Physiology, Faculty of Pharmacy, University of Belgrade, 11221 Belgrade, Serbia
| |
Collapse
|
13
|
Xu X, Zhang S, Jin R, Wang K, Li P, Lin L, Dong J, Hao J, Zhang Y, Sun X, Pang X, Qian X, Zhang J, Wu H, Zhang Y, Ge Q. Retention and tolerance of autoreactive CD4(+) recent thymic emigrants in the liver. J Autoimmun 2015; 56:87-97. [PMID: 25468259 DOI: 10.1016/j.jaut.2014.10.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Revised: 10/15/2014] [Accepted: 10/23/2014] [Indexed: 12/18/2022]
Abstract
Mechanisms of peripheral tolerance play a critical role in preventing T cells that escape from negative selection in the thymus from initiating autoimmune reactions. To investigate the site of peripheral tolerance induction, we examined migration and activation of recent thymic emigrants (RTEs) in liver, spleen, lymph node and peripheral blood. We show that a fraction of RTE precursors were retained in the liver independent of the secondary lymphoid organs. Compared to RTEs from the lymph nodes, RTEs from the liver proliferated more and many exhibited an activated phenotype with the capability of producing IL-10 upon activation. Liver RTEs also responded poorly to interleukin (IL)-7 and were more prone to apoptosis. Following transfer into RAG(-/-) recipients, liver RTEs induced more severe inflammation and T cell infiltration in the lung and colon. The extrathymic expression of MHC and Aire is required for the acquisition of tolerogenic phenotype of newly generated thymic emigrants in the liver. These results suggest that the liver is the first checkpoint in the periphery to filter, retain, and enforce tolerance to autoreactive CD4(+) thymic emigrants that escape from negative selection.
Collapse
Affiliation(s)
- Xi Xu
- Key Laboratory of Medical Immunology, Ministry of Health, Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xue Yuan Road, Beijing 100191, PR China
| | - Shusong Zhang
- Key Laboratory of Medical Immunology, Ministry of Health, Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xue Yuan Road, Beijing 100191, PR China
| | - Rong Jin
- Key Laboratory of Medical Immunology, Ministry of Health, Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xue Yuan Road, Beijing 100191, PR China
| | - Ke Wang
- Key Laboratory of Medical Immunology, Ministry of Health, Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xue Yuan Road, Beijing 100191, PR China
| | - Pingping Li
- Key Laboratory of Medical Immunology, Ministry of Health, Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xue Yuan Road, Beijing 100191, PR China
| | - Liang Lin
- Key Laboratory of Medical Immunology, Ministry of Health, Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xue Yuan Road, Beijing 100191, PR China
| | - Jie Dong
- Key Laboratory of Medical Immunology, Ministry of Health, Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xue Yuan Road, Beijing 100191, PR China
| | - Jie Hao
- Key Laboratory of Medical Immunology, Ministry of Health, Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xue Yuan Road, Beijing 100191, PR China
| | - Yan Zhang
- Key Laboratory of Medical Immunology, Ministry of Health, Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xue Yuan Road, Beijing 100191, PR China
| | - Xiuyuan Sun
- Key Laboratory of Medical Immunology, Ministry of Health, Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xue Yuan Road, Beijing 100191, PR China
| | - Xuewen Pang
- Key Laboratory of Medical Immunology, Ministry of Health, Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xue Yuan Road, Beijing 100191, PR China
| | - Xiaoping Qian
- Key Laboratory of Medical Immunology, Ministry of Health, Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xue Yuan Road, Beijing 100191, PR China
| | - Jun Zhang
- Key Laboratory of Medical Immunology, Ministry of Health, Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xue Yuan Road, Beijing 100191, PR China
| | - Hounan Wu
- Peking University Medical and Health Analytical Center, Peking University Health Science Center, Beijing, PR China.
| | - Yu Zhang
- Key Laboratory of Medical Immunology, Ministry of Health, Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xue Yuan Road, Beijing 100191, PR China.
| | - Qing Ge
- Key Laboratory of Medical Immunology, Ministry of Health, Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xue Yuan Road, Beijing 100191, PR China.
| |
Collapse
|
14
|
Age-associated changes in rat immune system: Lessons learned from experimental autoimmune encephalomyelitis. Exp Gerontol 2014; 58:179-97. [DOI: 10.1016/j.exger.2014.08.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 07/24/2014] [Accepted: 08/12/2014] [Indexed: 01/15/2023]
|
15
|
Abstract
Regulatory T (TReg) cells constitute an essential counterbalance to adaptive immune responses. Failure to maintain appropriate TReg cell numbers or function leads to autoimmune, malignant and immunodeficient conditions. Dynamic homeostatic processes preserve the number of forkhead box P3-expressing (FOXP3(+)) TReg cells within a healthy range, with high rates of cell division being offset by apoptosis under steady-state conditions. Recent studies have shown that TReg cells become specialized for different environmental contexts, tailoring their functions and homeostatic properties to a wide range of tissues and immune conditions. In this Review, we describe new insights into the molecular controls that maintain the steady-state homeostasis of TReg cells and the cues that drive TReg cell adaptation to inflammation and/or different locations. We highlight how differing local milieu might drive context-specific TReg cell function and restoration of immune homeostasis, and how dysregulation of these processes can precipitate disease.
Collapse
Affiliation(s)
- Adrian Liston
- 1] Autoimmune Genetics Laboratory, VIB, Leuven 3000, Belgium. [2] Department of Microbiology and Immunology, University of Leuven, Leuven 3000, Belgium
| | - Daniel H D Gray
- 1] The Walter and Eliza Hall Institute of Medical Research, Melbourne 3053, Australia. [2] Department of Medical Biology, University of Melbourne, Melbourne 3052, Australia
| |
Collapse
|
16
|
Leposavić G, Nanut MP, Pilipović I, Kosec D, Arsenović-Ranin N, Stojić-Vukanić Z, Djikić J, Nacka-Aleksić M. Reshaping of T-lymphocyte compartment in adult prepubertaly ovariectomised rats: a putative role for progesterone deficiency. Immunobiology 2013; 219:118-30. [PMID: 24054944 DOI: 10.1016/j.imbio.2013.08.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 07/05/2013] [Accepted: 08/16/2013] [Indexed: 01/09/2023]
Abstract
This study explores the role of ovarian hormones in the phenotypic shaping of peripheral T-cell pool over the reproductive lifespan of rats. For this purpose, 2-month-old prepubertally ovariectomised (Ox) rats, showing oestrogen and progesterone deficiency, and 11-month-old Ox rats, exhibiting only progesterone deficiency, were examined for thymus output, and cellularity and composition of major TCRαβ+ peripheral blood lymphocyte (PBL) and splenocyte subsets. Although ovariectomy increased thymic output in both 2- and 11-month-old rats, the count of both CD4+ and CD8+ PBLs and splenocytes increased only in the former. In the blood and spleen of 11-month-old Ox rats only the count of CD8+ cells increased. Although ovariectomy affected the total CD4+ count in none of the examined compartments from the 11-month-old rats, it increased CD4+FoxP3+ PBL and splenocyte relative proportions over those in the age-matched controls. The age-related differences in the cellularity and the major subset composition in Ox rats were linked to the differences in the ovarian steroid hormone levels registered in 2- and 11-month-old rats. The administration of progesterone to Ox rats during the seven days before the sacrificing confirmed contribution of this hormone deficiency to the ovariectomy-induced changes in the TCRαβ+ PBL and splenocyte pool from 11-month-old rats. The expansion of the CD8+ splenocyte subset in the 11-month-old Ox rats reflected increases in cellularity of memory and, particularly, naïve cells. This was due to greater thymic output of CD8+ cells and homeostatic proliferation than apoptosis in 11-month-old Ox rats when compared with age-matched sham-Ox control rats. The homeostatic changes within CD8+ splenocyte pool from 11-month-old Ox rats, most likely, reflected the enhanced splenic IL-7 and TGF-β mRNA expression. Overall, in adult female rats, circulating oestrogen and progesterone provide maintenance of T-cell counts, a diversity of T-cell repertoire, and the main T-cell subset composition in the periphery. Progesterone deficiency affects mainly the CD8+ lymphocyte compartment through increasing thymic CD8+ cell export and upsetting homeostatic regulation within the CD8+ splenocyte pool. These alterations were reversible through progesterone supplementation.
Collapse
Affiliation(s)
- Gordana Leposavić
- Department of Physiology, University of Belgrade, Faculty of Pharmacy, 450 Vojvode Stepe, 11221 Belgrade, Serbia.
| | - Milica Perišić Nanut
- Immunology Research Centre "Branislav Janković", Institute of Virology, Vaccines and Sera, "Torlak", 458 Vojvode Stepe, 11221 Belgrade, Serbia
| | - Ivan Pilipović
- Immunology Research Centre "Branislav Janković", Institute of Virology, Vaccines and Sera, "Torlak", 458 Vojvode Stepe, 11221 Belgrade, Serbia
| | - Duško Kosec
- Immunology Research Centre "Branislav Janković", Institute of Virology, Vaccines and Sera, "Torlak", 458 Vojvode Stepe, 11221 Belgrade, Serbia
| | - Nevena Arsenović-Ranin
- Department of Microbiology and Immunology, University of Belgrade, Faculty of Pharmacy, 450 Vojvode Stepe, 11221 Belgrade, Serbia
| | - Zorica Stojić-Vukanić
- Department of Microbiology and Immunology, University of Belgrade, Faculty of Pharmacy, 450 Vojvode Stepe, 11221 Belgrade, Serbia
| | - Jasmina Djikić
- Department of Physiology, University of Belgrade, Faculty of Pharmacy, 450 Vojvode Stepe, 11221 Belgrade, Serbia
| | - Mirjana Nacka-Aleksić
- Department of Physiology, University of Belgrade, Faculty of Pharmacy, 450 Vojvode Stepe, 11221 Belgrade, Serbia
| |
Collapse
|
17
|
dePillis L, Caldwell T, Sarapata E, Williams H. Mathematical modeling of regulatory T cell effects on renal cell carcinoma treatment. ACTA ACUST UNITED AC 2013. [DOI: 10.3934/dcdsb.2013.18.915] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
18
|
Perišić M, Stojić-Vukanić Z, Pilipović I, Kosec D, Nacka-Aleksić M, Dikić J, Arsenović-Ranin N, Leposavić G. Role of ovarian hormones in T-cell homeostasis: from the thymus to the periphery. Immunobiology 2012; 218:353-67. [PMID: 22704521 DOI: 10.1016/j.imbio.2012.05.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Revised: 03/27/2012] [Accepted: 05/16/2012] [Indexed: 01/08/2023]
Abstract
The study explored the putative role of ovarian hormones in the peripubertal remodelling of peripheral T-cell compartment. Ovariectomy at age of 1 month enhanced the peripubertal rise in CD4+ and CD8+ cell numbers in peripheral blood (PB) and spleen from 2-month-old rats. This reflected maintenance of thymopoietic efficiency at the prepubertal level (judging by numbers of the most mature CD4+ and CD8+ thymocytes and recent thymic emigrants) and alterations in T-cell survival/proliferation in the periphery. Compared with age-matched controls, the frequency of apoptotic cells among CD8+ peripheral blood lymphocytes (PBLs) and CD4+ and CD8+ splenocytes was diminished in ovariectomized (Ox) rats, at least partly, due to lower CD95 surface density. The diminished frequency of the apoptotic T splenocytes could also be associated with the rise in the amount of splenic IL-7 mRNA. Additionally, the latter finding was consistent with the augmented proliferation of CD4+ and CD8+ splenocytes. However, the enhanced proliferation of these cells could also be linked to the rise in IL-2 receptor surface density. This increase was related to the enhanced splenic TNF-α mRNA expression. Additionally, ovariectomy led to the phenotypic alterations in the major PBL and splenic T-cell subsets by diminishing/preventing the peripubertal changes in the frequency of cells at distinct stages of post-thymic differentiation/maturation (recent thymic emigrants, mature naïve and memory cells), and by decreasing the frequency of NKT cells within peripheral CD8+ subsets. In addition to numerical and phenotypic changes in T-cell compartment (due to the lack of ovarian hormone action at both the thymic and peripheral level), Ox rats exhibited a much larger delayed-type hypersensitivity (DTH) response compared with age-matched controls. This suggested the augmented T-cell-mediated immune response in Ox rats compared with aged-matched controls.
Collapse
Affiliation(s)
- Milica Perišić
- Immunology Research Centre Branislav Janković, Institute of Virology, Vaccines and Sera Torlak, Belgrade, Serbia
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Memory and naive-like regulatory CD4+ T cells expand during HIV-2 infection in direct association with CD4+ T-cell depletion irrespectively of viremia. AIDS 2011; 25:1961-70. [PMID: 21811143 DOI: 10.1097/qad.0b013e32834b3554] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVE The dynamics of CD4(+) regulatory T cells (Treg) during HIV-1 infection remains unclear. To further investigate Treg in this context, we characterized, for the first time, this population in HIV-2-positive individuals. Although both HIV infections are associated with hyperimmune activation and CD4(+) T-cell lymphopenia, most HIV-2-positive individuals display slower disease progression and low-to-undetectable viremia. DESIGN/METHODS Samples were obtained from cohorts of untreated HIV-2-positive and HIV-1-positive, treated HIV-1-positive and seronegative individuals. The proportion of CD4(+) T cells bearing a Treg phenotype, defined in terms of high-level CD25 or Foxp3 expression, was assessed by flow cytometry and correlated with markers of disease progression. The proportions of naive and memory-like subsets as well as cycling cells were determined. RESULTS We observed an increased proportion of Treg, associated with disease progression, as well as increased proportions of cycling (Ki67(+)) memory Treg, in untreated HIV-2-positive and HIV-1-positive individuals. We also noted an expansion of Treg that persisted over time in treated, immunologically discordant HIV-1-positive individuals, who, similarly to HIV-2-positive patients, present undetectable viremia and low CD4 T-cell count. CONCLUSION Overall, we demonstrated that Treg frequency was increased in all lymphopenic HIV-2-positive and HIV-1-positive individuals irrespective of the presence or absence of viremia or antiretroviral treatment. This, in turn, suggests that the observed alterations in Treg frequency in HIV/AIDS are more directly related to the degree of CD4 depletion than to viremia.
Collapse
|
20
|
Immune dysregulation after cardiothoracic surgery and incidental thymectomy: maintenance of regulatory T cells despite impaired thymopoiesis. Clin Dev Immunol 2011; 2011:915864. [PMID: 21776289 PMCID: PMC3138054 DOI: 10.1155/2011/915864] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Revised: 03/30/2011] [Accepted: 04/18/2011] [Indexed: 02/06/2023]
Abstract
Thymectomy is performed in infants during cardiothoracic surgery leaving many patients with reduced thympopoiesis. An association between immune disorders and regulatory T cells (Treg) after incidental thymectomy has not been investigated. Questionnaires soliciting symptoms of atopic or autoimmune disease and biomarkers were measured in children and adults with congenital heart disease and either reduced or preserved thymopoiesis. Tregs were examined. Atopic or autoimmune-like symptoms and elevated anti-dsDNA antibodies were common after surgery in individuals with low thymopoiesis. Total Treg number and function were maintained but with fewer naïve Treg. TCR spectratypes were similar to other memory T cells. These data suggest that thymectomy does not reduce total Treg number but homeostasis is affected with reduced naïve Treg. Prevalence of autoimmune or atopic symptoms after surgery is not associated with total number or proportion of Tregs but appears to be due to otherwise unknown factors that may include altered Treg homeostasis.
Collapse
|
21
|
Ha TY. The Role of MicroRNAs in Regulatory T Cells and in the Immune Response. Immune Netw 2011; 11:11-41. [PMID: 21494372 PMCID: PMC3072673 DOI: 10.4110/in.2011.11.1.11] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Revised: 01/25/2011] [Accepted: 02/17/2011] [Indexed: 12/18/2022] Open
Abstract
The discovery of microRNA (miRNA) is one of the major scientific breakthroughs in recent years and has revolutionized current cell biology and medical science. miRNAs are small (19~25nt) noncoding RNA molecules that post-transcriptionally regulate gene expression by targeting the 3' untranslated region (3'UTR) of specific messenger RNAs (mRNAs) for degradation of translation repression. Genetic ablation of the miRNA machinery, as well as loss or degradation of certain individual miRNAs, severely compromises immune development and response, and can lead to immune disorders. Several sophisticated regulatory mechanisms are used to maintain immune homeostasis. Regulatory T (Treg) cells are essential for maintaining peripheral tolerance, preventing autoimmune diseases and limiting chronic inflammatory diseases. Recent publications have provided compelling evidence that miRNAs are highly expressed in Treg cells, that the expression of Foxp3 is controlled by miRNAs and that a range of miRNAs are involved in the regulation of immunity. A large number of studies have reported links between alterations of miRNA homeostasis and pathological conditions such as cancer, cardiovascular disease and diabetes, as well as psychiatric and neurological diseases. Although it is still unclear how miRNA controls Treg cell development and function, recent studies certainly indicate that this topic will be the subject of further research. The specific circulating miRNA species may also be useful for the diagnosis, classification, prognosis of diseases and prediction of the therapeutic response. An explosive literature has focussed on the role of miRNA. In this review, I briefly summarize the current studies about the role of miRNAs in Treg cells and in the regulation of the innate and adaptive immune response. I also review the explosive current studies about clinical application of miRNA.
Collapse
Affiliation(s)
- Tai-You Ha
- Department of Immunology, Chonbuk National University Medical School, Chonju, Chonbuk 561-180, Korea
| |
Collapse
|
22
|
Miyazaki K, Miyazaki M, Guo Y, Yamasaki N, Kanno M, Honda ZI, Oda H, Kawamoto H, Honda H. The role of the basic helix-loop-helix transcription factor Dec1 in the regulatory T cells. THE JOURNAL OF IMMUNOLOGY 2010; 185:7330-9. [PMID: 21057086 DOI: 10.4049/jimmunol.1001381] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Naturally occurring regulatory T (Treg) cells play a central role in the maintenance of immune homeostasis and in restraining the development of spontaneous inflammatory responses. However, the underlying mechanisms of Treg homeostasis remain incompletely understood. Of particular note, the IL-2Rα (CD25) is crucial for the homeostasis of Treg cells and the prevention of lymphoproliferative autoimmune disease. In this paper, we report that the basic helix-loop-helix transcription factor Dec1 is involved in the homeostasis of Treg cells and plays a role in their survival or expansion after adoptive transfer to lymphopenic recipients. Hence, it is crucial for the suppression of effector T cell-mediated inflammatory responses. Enforced expression of Dec1 upregulates CD25 expression during thymocyte development and increases the number of Treg cells in the periphery. Dec1 binds the transcription factor Runx1 and colocalizes with Runx1 in Treg cells. Specifically, we demonstrate that in Treg cells the Dec1/Runx1 complex binds to regulatory elements present in the Il-2rα locus. Collectively, these data show how Dec1 mechanistically acts in Treg cells.
Collapse
Affiliation(s)
- Kazuko Miyazaki
- Department of Developmental Biology, Research Institute for Radiation Biology and Medicine, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Ha TY. The role of regulatory T cells in cancer. Immune Netw 2009; 9:209-35. [PMID: 20157609 PMCID: PMC2816955 DOI: 10.4110/in.2009.9.6.209] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Accepted: 11/11/2009] [Indexed: 12/18/2022] Open
Abstract
There has been an explosion of literature focusing on the role of regulatory T (Treg) cells in cancer immunity. It is becoming increasingly clear that Treg cells play an active and significant role in the progression of cancer, and have an important role in suppressing tumor-specific immunity. Thus, there is a clear rationale for developing clinical strategies to diminish their regulatory influences, with the ultimate goal of augmenting antitimor immunity. Therefore, manipulation of Treg cells represent new strategies for cancer treatment. In this Review, I will summarize and review the explosive recent studies demonstrating that Treg cells are increased in patients with malignancies and restoration of antitumor immunity in mice and humans by depletion or reduction of Treg cells. In addition, I will discuss both the prognostic value of Treg cells in tumor progression in tumor-bearing hosts and the rationale for strategies for therapeutic vaccination and immunotherapeutic targeting of Treg cells with drugs and microRNA.
Collapse
Affiliation(s)
- Tai-You Ha
- Department of Immunology, Chonbuk National University Medical School, Chonju, Chonbuk, Korea
| |
Collapse
|