1
|
Aragoneses-Fenoll L, Montes-Casado M, Ojeda G, García-Paredes L, Arimura Y, Yagi J, Dianzani U, Portolés P, Rojo JM. Role of endocytosis and trans-endocytosis in ICOS costimulator-induced downmodulation of the ICOS Ligand. J Leukoc Biol 2021; 110:867-884. [PMID: 33527556 PMCID: PMC8597029 DOI: 10.1002/jlb.2a0220-127r] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 12/16/2020] [Accepted: 01/13/2020] [Indexed: 12/20/2022] Open
Abstract
The interaction between the T-lymphocyte costimulatory molecule ICOS and its ligand (ICOS-L) is needed for efficient immune responses, but expression levels are tightly controlled, as altered expression of ICOS or ICOS-L may lead to immunodeficiency, or favor autoimmune diseases and tumor growth. Using cells of mouse B cell lymphoma (M12.C3) and melanoma (B16), or hamster CHO cells transfected with various forms of mouse ICOS-L, and ICOS+ T cell lines, we show that, within minutes, ICOS induces significant downmodulation of surface ICOS-L that is largely mediated by endocytosis and trans-endocytosis. So, after interaction with ICOS+ cells, ICOS-L was found inside permeabilized cells, or in cell lysates, with significant transfer of ICOS from ICOS+ T cells to ICOS-L-expressing cells, and simultaneous loss of surface ICOS by the T cells. Data from cells expressing ICOS-L mutants show that conserved, functionally important residues in the cytoplasmic domain of mouse ICOS-L (Arg300 , Ser307 and Tyr308 ), or removal of ICOS-L cytoplasmic tail have minor effect on its internalization. Internalization was dependent on temperature, and was partially dependent on actin polymerization, the GTPase dynamin, protein kinase C, or the integrity of lipid rafts. In fact, a fraction of ICOS-L was detected in lipid rafts. On the other hand, proteinase inhibitors had negligible effects on early modulation of ICOS-L from the cell surface. Our data add a new mechanism of control of ICOS-L expression to the regulation of ICOS-dependent responses.
Collapse
Affiliation(s)
- Laura Aragoneses-Fenoll
- Unidad de Inmunología Celular, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, 28220, Spain
| | - María Montes-Casado
- Unidad de Inmunología Celular, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, 28220, Spain
| | - Gloria Ojeda
- Unidad de Inmunología Celular, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, 28220, Spain
| | - Lucía García-Paredes
- Departamento de Biomedicina Molecular, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Madrid, 28040, Spain.,Current address: Hospital 12 de Octubre, Departamento de Oncología Médica, Av. de Córdoba, s/n, Madrid, 28041, Spain
| | - Yutaka Arimura
- Host Defense for Animals, Nippon Veterinary and Life Science University, 1-7-1 Kyonan, Musashino, Tokyo, 180-8602, Japan
| | - Junji Yagi
- Department of Microbiology and Immunology, Tokyo Women's Medical University, Tokyo, 108-8639, Japan
| | - Umberto Dianzani
- Interdisciplinary Research Center of Autoimmune Diseases (IRCAD) and Department of Health Sciences, University of Piemonte Orientale (UPO), Novara, 28100, Italy
| | - Pilar Portolés
- Unidad de Inmunología Celular, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, 28220, Spain.,Presidencia, Consejo Superior de Investigaciones Científicas, Madrid, 28006, Spain
| | - José M Rojo
- Departamento de Biomedicina Molecular, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Madrid, 28040, Spain
| |
Collapse
|
2
|
Sainson RCA, Thotakura AK, Kosmac M, Borhis G, Parveen N, Kimber R, Carvalho J, Henderson SJ, Pryke KL, Okell T, O'Leary S, Ball S, Van Krinks C, Gamand L, Taggart E, Pring EJ, Ali H, Craig H, Wong VWY, Liang Q, Rowlands RJ, Lecointre M, Campbell J, Kirby I, Melvin D, Germaschewski V, Oelmann E, Quaratino S, McCourt M. An Antibody Targeting ICOS Increases Intratumoral Cytotoxic to Regulatory T-cell Ratio and Induces Tumor Regression. Cancer Immunol Res 2020; 8:1568-1582. [PMID: 32999002 DOI: 10.1158/2326-6066.cir-20-0034] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 06/01/2020] [Accepted: 09/18/2020] [Indexed: 11/16/2022]
Abstract
The immunosuppressive tumor microenvironment constitutes a significant hurdle to immune checkpoint inhibitor responses. Both soluble factors and specialized immune cells, such as regulatory T cells (Treg), are key components of active intratumoral immunosuppression. Inducible costimulatory receptor (ICOS) can be highly expressed in the tumor microenvironment, especially on immunosuppressive Treg, suggesting that it represents a relevant target for preferential depletion of these cells. Here, we performed immune profiling of samples from tumor-bearing mice and patients with cancer to demonstrate differential expression of ICOS in immune T-cell subsets in different tissues. ICOS expression was higher on intratumoral Treg than on effector CD8 T cells. In addition, by immunizing an Icos knockout transgenic mouse line expressing antibodies with human variable domains, we selected a fully human IgG1 antibody called KY1044 that bound ICOS from different species. We showed that KY1044 induced sustained depletion of ICOShigh T cells but was also associated with increased secretion of proinflammatory cytokines from ICOSlow effector T cells (Teff). In syngeneic mouse tumor models, KY1044 depleted ICOShigh Treg and increased the intratumoral TEff:Treg ratio, resulting in increased secretion of IFNγ and TNFα by TEff cells. KY1044 demonstrated monotherapy antitumor efficacy and improved anti-PD-L1 efficacy. In summary, we demonstrated that using KY1044, one can exploit the differential expression of ICOS on T-cell subtypes to improve the intratumoral immune contexture and restore an antitumor immune response.
Collapse
Affiliation(s)
| | | | - Miha Kosmac
- Kymab Ltd, Babraham Research Campus, Cambridge, United Kingdom
| | | | - Nahida Parveen
- Kymab Ltd, Babraham Research Campus, Cambridge, United Kingdom
| | - Rachael Kimber
- Kymab Ltd, Babraham Research Campus, Cambridge, United Kingdom
| | - Joana Carvalho
- Kymab Ltd, Babraham Research Campus, Cambridge, United Kingdom
| | | | - Kerstin L Pryke
- Kymab Ltd, Babraham Research Campus, Cambridge, United Kingdom
| | - Tracey Okell
- Kymab Ltd, Babraham Research Campus, Cambridge, United Kingdom
| | - Siobhan O'Leary
- Kymab Ltd, Babraham Research Campus, Cambridge, United Kingdom
| | - Stuart Ball
- Kymab Ltd, Babraham Research Campus, Cambridge, United Kingdom
| | | | - Lauriane Gamand
- Kymab Ltd, Babraham Research Campus, Cambridge, United Kingdom
| | - Emma Taggart
- Kymab Ltd, Babraham Research Campus, Cambridge, United Kingdom
| | - Eleanor J Pring
- Kymab Ltd, Babraham Research Campus, Cambridge, United Kingdom
| | - Hanif Ali
- Kymab Ltd, Babraham Research Campus, Cambridge, United Kingdom
| | - Hannah Craig
- Kymab Ltd, Babraham Research Campus, Cambridge, United Kingdom
| | - Vivian W Y Wong
- Kymab Ltd, Babraham Research Campus, Cambridge, United Kingdom
| | - Qi Liang
- Kymab Ltd, Babraham Research Campus, Cambridge, United Kingdom
| | | | | | - Jamie Campbell
- Kymab Ltd, Babraham Research Campus, Cambridge, United Kingdom
| | - Ian Kirby
- Kymab Ltd, Babraham Research Campus, Cambridge, United Kingdom
| | - David Melvin
- Kymab Ltd, Babraham Research Campus, Cambridge, United Kingdom
| | | | | | - Sonia Quaratino
- Kymab Ltd, Babraham Research Campus, Cambridge, United Kingdom
| | - Matthew McCourt
- Kymab Ltd, Babraham Research Campus, Cambridge, United Kingdom
| |
Collapse
|
3
|
Stone EL, Pepper M, Katayama CD, Kerdiles YM, Lai CY, Emslie E, Lin YC, Yang E, Goldrath AW, Li MO, Cantrell DA, Hedrick SM. ICOS coreceptor signaling inactivates the transcription factor FOXO1 to promote Tfh cell differentiation. Immunity 2015; 42:239-251. [PMID: 25692700 PMCID: PMC4334393 DOI: 10.1016/j.immuni.2015.01.017] [Citation(s) in RCA: 185] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 11/13/2014] [Accepted: 12/03/2014] [Indexed: 02/06/2023]
Abstract
T follicular helper (Tfh) cells are essential in the induction of high-affinity, class-switched antibodies. The differentiation of Tfh cells is a multi-step process that depends upon the co-receptor ICOS and the activation of phosphoinositide-3 kinase leading to the expression of key Tfh cell genes. We report that ICOS signaling inactivates the transcription factor FOXO1, and a Foxo1 genetic deletion allowed for generation of Tfh cells with reduced dependence on ICOS ligand. Conversely, enforced nuclear localization of FOXO1 inhibited Tfh cell development even though ICOS was overexpressed. FOXO1 regulated Tfh cell differentiation through a broad program of gene expression exemplified by its negative regulation of Bcl6. Final differentiation to germinal center Tfh cells (GC-Tfh) was instead FOXO1 dependent as the Foxo1−/− GC-Tfh cell population was substantially reduced. We propose that ICOS signaling transiently inactivates FOXO1 to initiate a Tfh cell contingency that is completed in a FOXO1-dependent manner. ICOS signaling transiently inactivates FOXO1 to generate Tfh cells FOXO1 regulates a Tfh cell gene program exemplified by negative regulation of Bcl6 Enforced nuclear localization of FOXO1 prevents Tfh cell differentiation FOXO1 promotes final GC-Tfh cell differentiation
Collapse
Affiliation(s)
- Erica L Stone
- Department of Cellular and Molecular Medicine, School of Medicine, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093-0377, USA
| | - Marion Pepper
- Department of Immunology, University of Washington, 750 Republican Street, Seattle, WA 98109, USA
| | - Carol D Katayama
- Department of Cellular and Molecular Medicine, School of Medicine, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093-0377, USA
| | - Yann M Kerdiles
- Department of Cellular and Molecular Medicine, School of Medicine, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093-0377, USA
| | - Chen-Yen Lai
- Department of Cellular and Molecular Medicine, School of Medicine, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093-0377, USA
| | - Elizabeth Emslie
- College of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, Scotland, UK
| | - Yin C Lin
- Molecular Biology Section, Division of Biological Sciences, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093-0377, USA
| | - Edward Yang
- Molecular Biology Section, Division of Biological Sciences, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093-0377, USA
| | - Ananda W Goldrath
- Molecular Biology Section, Division of Biological Sciences, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093-0377, USA
| | - Ming O Li
- Immunology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Doreen A Cantrell
- College of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, Scotland, UK
| | - Stephen M Hedrick
- Department of Cellular and Molecular Medicine, School of Medicine, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093-0377, USA; Molecular Biology Section, Division of Biological Sciences, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093-0377, USA.
| |
Collapse
|
4
|
Boyd-Tressler A, Penuela S, Laird DW, Dubyak GR. Chemotherapeutic drugs induce ATP release via caspase-gated pannexin-1 channels and a caspase/pannexin-1-independent mechanism. J Biol Chem 2014; 289:27246-27263. [PMID: 25112874 DOI: 10.1074/jbc.m114.590240] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Anti-tumor immune responses have been linked to the regulated release of ATP from apoptotic cancer cells to engage P2 purinergic receptor signaling cascades in nearby leukocytes. We used the Jurkat T cell acute lymphocytic leukemia model to characterize the role of pannexin-1 (Panx1) channels in the release of nucleotides during chemotherapeutic drug-induced apoptosis. Diverse pro-apoptotic drugs, including topoisomerase II inhibitors, kinase inhibitors, and proteosome inhibitors, induced functional activation of Panx1 channels via caspase-3-mediated cleavage of the Panx1 autoinhibitory C-terminal domain. The caspase-activated Panx1 channels mediated efflux of ATP, but also ADP and AMP, with the latter two comprising >90% of the released adenine nucleotide pool as cells transitioned from the early to late stages of apoptosis. Chemotherapeutic drugs also activated an alternative caspase- and Panx1-independent pathway for ATP release from Jurkat cells in the presence of benzyloxycarbonyl-VAD, a pan-caspase inhibitor. Comparison of Panx1 levels indicated much higher expression in leukemic T lymphocytes than in normal, untransformed T lymphoblasts. This suggests that signaling roles for Panx1 may be amplified in leukemic leukocytes. Together, these results identify chemotherapy-activated pannexin-1 channels and ATP release as possible mediators of paracrine interaction between dying tumor cells and the effector leukocytes that mediate immunogenic anti-tumor responses.
Collapse
Affiliation(s)
- Andrea Boyd-Tressler
- Departments of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106
| | - Silvia Penuela
- Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario N6A-SC1, Canada
| | - Dale W Laird
- Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario N6A-SC1, Canada
| | - George R Dubyak
- Departments of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106; Departments of Physiology and Biophysics and Case Western Reserve University School of Medicine, Cleveland, Ohio 44106; Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106 and.
| |
Collapse
|
5
|
Dianzani C, Minelli R, Gigliotti CL, Occhipinti S, Giovarelli M, Conti L, Boggio E, Shivakumar Y, Baldanzi G, Malacarne V, Orilieri E, Cappellano G, Fantozzi R, Sblattero D, Yagi J, Rojo JM, Chiocchetti A, Dianzani U. B7h Triggering Inhibits the Migration of Tumor Cell Lines. THE JOURNAL OF IMMUNOLOGY 2014; 192:4921-31. [DOI: 10.4049/jimmunol.1300587] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
6
|
Acosta YY, Ojeda G, Zafra MP, Bernardone IS, Sánchez A, Dianzani U, Portolés P, Rojo JM. Dissociation of actin polymerization and lipid raft accumulation by ligation of the Inducible Costimulator (ICOS, CD278). ACTA ACUST UNITED AC 2012. [DOI: 10.1016/j.inmuno.2011.06.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
7
|
Acosta YY, Zafra MP, Ojeda G, Bernardone IS, Dianzani U, Portolés P, Rojo JM. Biased binding of class IA phosphatidyl inositol 3-kinase subunits to inducible costimulator (CD278). Cell Mol Life Sci 2011; 68:3065-79. [PMID: 21188463 PMCID: PMC11115116 DOI: 10.1007/s00018-010-0606-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Revised: 11/12/2010] [Accepted: 11/26/2010] [Indexed: 12/01/2022]
Abstract
To better understand T lymphocyte costimulation by inducible costimulator (ICOS; H4; CD278), we analyzed proteins binding to ICOS peptides phosphorylated at the Y(191)MFM motif. Phosphorylated ICOS binds class IA phosphatidyl inositol 3-kinase (PI3-K) p85α, p50-55α and p85β regulatory subunits and p110α, p110δ and p110β catalytic subunits. Intriguingly, T cells expressed high levels of both p110α or p110δ catalytic subunits, yet ICOS peptides, cell surface ICOS or PI3-kinase class IA regulatory subunits preferentially coprecipitated p110α catalytic subunits. Silencing p110α or p110δ partially inhibited Akt/PKB activation induced by anti-CD3 plus anti-ICOS antibodies. However, silencing p110α enhanced and silencing p110δ inhibited Erk activation. Both p110α- and p110δ-specific inhibitors blocked cytokine secretion induced by TCR/CD3 activation with or without ICOS costimulus, but only p110α inhibitors blocked ICOS-induced cell elongation. Thus, p110α and p110δ are essential to optimal T cell activation, but their abundance and activity differentially tune up distinct ICOS signaling pathways.
Collapse
Affiliation(s)
- Yenny Y. Acosta
- Departamento de Medicina Celular y Molecular, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu, 9, 28040 Madrid, Spain
| | - Maria Paz Zafra
- Departamento de Medicina Celular y Molecular, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu, 9, 28040 Madrid, Spain
| | - Gloria Ojeda
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain
| | - Ilaria Seren Bernardone
- Departamento de Medicina Celular y Molecular, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu, 9, 28040 Madrid, Spain
- Department of Medical Sciences, Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), “A. Avogadro” University of Eastern Piedmont, 28100 Novara, Italy
| | - Umberto Dianzani
- Department of Medical Sciences, Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), “A. Avogadro” University of Eastern Piedmont, 28100 Novara, Italy
| | - Pilar Portolés
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain
| | - Jose M. Rojo
- Departamento de Medicina Celular y Molecular, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu, 9, 28040 Madrid, Spain
| |
Collapse
|
8
|
Chetoui N, Boisvert M, Gendron S, Aoudjit F. Interleukin-7 promotes the survival of human CD4+ effector/memory T cells by up-regulating Bcl-2 proteins and activating the JAK/STAT signalling pathway. Immunology 2010; 130:418-26. [PMID: 20465565 DOI: 10.1111/j.1365-2567.2009.03244.x] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
SUMMARY Interleukin-7 (IL-7) is a crucial cytokine involved in T-cell survival and development but its signalling in human T cells, particularly in effector/memory T cells, is poorly documented. In this study, we found that IL-7 protects human CD4(+) effector/memory T cells from apoptosis induced upon the absence of stimulation and cytokines. We show that IL-7 up-regulates not only Bcl-2 but also Bcl-xL and Mcl-1 as well. Interleukin-7-induced activation of the janus kinase/signal transducer and activator of transcription (JAK/STAT) signalling pathway is sufficient for cell survival and up-regulation of Bcl-2 proteins. In contrast to previous studies with naive T cells, we found that IL-7 is a weak activator of the phosphatidylinositol 3 kinase (PI3K)/AKT (also referred as protein kinase B) pathway and IL-7-mediated cell survival occurs independently from the PI3K/AKT pathway as well as from activation of the mitogen-activated protein kinase/extracellular signal-regulated kinase pathway. Considering the contribution of both IL-7 and CD4(+) effector/memory T cells to the pathogenesis of autoimmune diseases such as rheumatoid arthritis and colitis, our study suggests that IL-7 can contribute to these diseases by promoting cell survival. A further understanding of the mechanisms of IL-7 signalling in effector/memory T cells associated with autoimmune inflammatory diseases may lead to potential new therapeutic avenues.
Collapse
Affiliation(s)
- Nizar Chetoui
- Centre de Recherche en Rhumatologie/Immunologie, Centre Hospitalier Universitaire de Québec, Pavillon CHUL, and Faculté de Médecine, Université Laval, Québec, PQ, Canada
| | | | | | | |
Collapse
|
9
|
Inducible costimulator promotes helper T-cell differentiation through phosphoinositide 3-kinase. Proc Natl Acad Sci U S A 2009; 106:20371-6. [PMID: 19915142 DOI: 10.1073/pnas.0911573106] [Citation(s) in RCA: 191] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The T-cell costimulatory receptors, CD28 and the inducible costimulator (ICOS), are required for the generation of follicular B helper T cells (T(FH)) and germinal center (GC) reaction. A common signal transducer used by CD28 and ICOS is the phosphoinositide 3-kinase (PI3K). Although it is known that CD28-mediated PI3K activation is dispensable for GC reaction, the role of ICOS-driven PI3K signaling has not been defined. We show here that knock-in mice that selectively lost the ability to activate PI3K through ICOS had severe defects in T(FH) generation, GC reaction, antibody class switch, and antibody affinity maturation. In preactivated CD4(+) T cells, ICOS delivered a potent PI3K signal that was critical for the induction of the key T(FH) cytokines, IL-21 and IL-4. Under the same settings, CD28 was unable to activate PI3K but supported a robust secondary expansion of T cells. Thus, our results demonstrate a nonredundant function of ICOS-PI3K pathway in the generation of T(FH) and suggest that CD28 and ICOS play differential roles during a multistep process of T(FH) differentiation.
Collapse
|