1
|
Nguyen HD, Kim WK, Huong Vu G. Molecular mechanisms implicated in protein changes in the Alzheimer's disease human hippocampus. Mech Ageing Dev 2024; 219:111930. [PMID: 38554950 DOI: 10.1016/j.mad.2024.111930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/18/2024] [Accepted: 03/25/2024] [Indexed: 04/02/2024]
Abstract
This study aimed to elucidate the specific biochemical pathways linked to changes in proteins in the Alzheimer's disease (AD) human hippocampus. Our data demonstrate a constant rise in the expression of four proteins (VGF, GFAP, HSPB1, and APP) across all eleven studies. Notably, UBC was the most centrally involved and had increased expression in the hippocampus tissue of individuals with AD. Modified proteins in the hippocampal tissue were found to activate the innate immune system and disrupt communication across chemical synapses. Four hub proteins (CD44, APP, ITGB2, and APOE) are connected to amyloid plaques, whereas two hub proteins (RPL24 and RPS23) are related to neurofibrillary tangles (NFTs). The presence of modified proteins was discovered to trigger the activation of microglia and decrease the functioning of ribosomes and mitochondria in the hippocampus. Three significant microRNAs (hsa-miR-106b-5p, hsa-miR-17-5p, and hsa-miR-16-5p) and transcription factors (MYT1L, PIN1, and CSRNP3) have been discovered to improve our understanding of the alterations in proteins within the hippocampal tissues that lead to the progression of AD. These findings establish a path for possible treatments for AD to employ therapeutic strategies that specifically focus on the proteins or processes linked to the illness.
Collapse
Affiliation(s)
- Hai Duc Nguyen
- Department of Pharmacy, College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Republic of Korea; Division of Microbiology, Tulane National Primate Research Center, Tulane University, Louisiana, USA.
| | - Woong-Ki Kim
- Division of Microbiology, Tulane National Primate Research Center, Tulane University, Louisiana, USA; Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Giang Huong Vu
- Department of Public Health, Hong Bang Health Center, Hai Phong, Vietnam
| |
Collapse
|
2
|
Chen XY, Chen Y, Fang WH, Wu ZY, Wang DL, Xu YW, Yu LH, Lin YX, Kang DZ, Ding CY. Integrative and comparative single-cell analysis reveals transcriptomic difference between human tumefactive demyelinating lesion and glioma. Commun Biol 2022; 5:941. [PMID: 36085357 PMCID: PMC9463163 DOI: 10.1038/s42003-022-03900-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 08/25/2022] [Indexed: 11/09/2022] Open
Abstract
Tumefactive demyelinating lesion (TDL) is an immune-mediated disease which can be misdiagnosed as glioma. At present, there is no study comparing difference between the two disorders at the cellular level. Here, we perform integrative and comparative single-cell RNA sequencing (ScRNA-seq) transcriptomic analysis on TDL and glioma lesions. At single-cell resolution, TDL is comprised primarily of immune cells, which is completely different from glioma. The integrated analysis reveals a TDL-specific microglial subset involving in B cell activation and proliferation. Comparative analysis highlights remyelination function of glial cells and demyelination function of T cells in TDL. Subclustering and pseudotime trajectory analysis of T cells in TDL reveal their heterogeneity and diverse functions involving in TDL pathogenesis and recovery process. Our study identifies substantial differences between TDL and glioma at single-cell resolution. The observed heterogeneity and potentially diverse functions of cells in TDL may be critical in disease progression. Integrative and comparative single-cell analysis reveals transcriptomic difference between human tumefactive demyelinating lesion and glioma.
Collapse
|
3
|
Velázquez FE, Anastasiou M, Carrillo-Salinas FJ, Ngwenyama N, Salvador AM, Nevers T, Alcaide P. Sialomucin CD43 regulates T helper type 17 cell intercellular adhesion molecule 1 dependent adhesion, apical migration and transendothelial migration. Immunology 2019; 157:52-69. [PMID: 30690734 DOI: 10.1111/imm.13047] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 12/07/2018] [Accepted: 01/15/2019] [Indexed: 01/10/2023] Open
Abstract
T helper type 17 lymphocytes (Th17 cells) infiltrate the central nervous system (CNS), induce inflammation and demyelination and play a pivotal role in the pathogenesis of multiple sclerosis. Sialomucin CD43 is highly expressed in Th17 cells and mediates adhesion to endothelial selectin (E-selectin), an initiating step in Th17 cell recruitment to sites of inflammation. CD43-/- mice have impaired Th17 cell recruitment to the CNS and are protected from experimental autoimmune encephalomyelitis (EAE), the mouse model of multiple sclerosis. However, E-selectin is dispensable for the development of EAE, in contrast to intercellular and vascular cell adhesion molecules (ICAM-1 and VCAM-1). We report that CD43-/- mice have decreased demyelination and T-cell infiltration, but similar up-regulation of ICAM-1 and VCAM-1 in the spinal cord, compared with wild-type (WT) mice, at the initiation of EAE. CD43-/- Th17 cells have impaired adhesion to ICAM-1 under flow conditions in vitro, despite having similar expression of LFA-1, the main T-cell ligand for ICAM-1, as WT Th17 cells. Regardless of the route of integrin activation, CD43-/- Th17 cell firm arrest on ICAM-1 was comparable to that of WT Th17 cells, but CD43-/- Th17 cells failed to optimally apically migrate on immobilized ICAM-1-coated coverslips and endothelial cells, and to transmigrate under shear flow conditions in an ICAM-1-dependent manner. Collectively, these findings unveil novel roles for CD43, facilitating adhesion of Th17 cells to ICAM-1 and modulating apical and transendothelial migration, as mechanisms potentially responsible for Th17 cell recruitment to sites of inflammation such as the CNS.
Collapse
Affiliation(s)
| | - Marina Anastasiou
- Department of Immunology, Tufts University School of Medicine, Boston, MA, USA.,Laboratory of Autoimmunity and Inflammation, University of Crete Medical School, Crete, Greece
| | | | - Njabulo Ngwenyama
- Department of Immunology, Tufts University School of Medicine, Boston, MA, USA
| | - Ane M Salvador
- Department of Immunology, Tufts University School of Medicine, Boston, MA, USA
| | - Tania Nevers
- Department of Immunology, Tufts University School of Medicine, Boston, MA, USA
| | - Pilar Alcaide
- Department of Immunology, Tufts University School of Medicine, Boston, MA, USA
| |
Collapse
|
4
|
Vorup-Jensen T, Jensen RK. Structural Immunology of Complement Receptors 3 and 4. Front Immunol 2018; 9:2716. [PMID: 30534123 PMCID: PMC6275225 DOI: 10.3389/fimmu.2018.02716] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 11/05/2018] [Indexed: 01/10/2023] Open
Abstract
Complement receptors (CR) 3 and 4 belong to the family of beta-2 (CD18) integrins. CR3 and CR4 are often co-expressed in the myeloid subsets of leukocytes, but they are also found in NK cells and activated T and B lymphocytes. The heterodimeric ectodomain undergoes considerable conformational change in order to switch the receptor from a structurally bent, ligand-binding in-active state into an extended, ligand-binding active state. CR3 binds the C3d fragment of C3 in a way permitting CR2 also to bind concomitantly. This enables a hand-over of complement-opsonized antigens from the cell surface of CR3-expressing macrophages to the CR2-expressing B lymphocytes, in consequence acting as an antigen presentation mechanism. As a more enigmatic part of their functions, both CR3 and CR4 bind several structurally unrelated proteins, engineered peptides, and glycosaminoglycans. No consensus motif in the proteinaceous ligands has been established. Yet, the experimental evidence clearly suggest that the ligands are primarily, if not entirely, recognized by a single site within the receptors, namely the metal-ion dependent adhesion site (MIDAS). Comparison of some recent identified ligands points to CR3 as inclined to bind positively charged species, while CR4, by contrast, binds strongly negative-charged species, in both cases with the critical involvement of deprotonated, acidic groups as ligands for the Mg2+ ion in the MIDAS. These properties place CR3 and CR4 firmly within the realm of modern molecular medicine in several ways. The expression of CR3 and CR4 in NK cells was recently demonstrated to enable complement-dependent cell cytotoxicity toward antibody-coated cancer cells as part of biological therapy, constituting a significant part of the efficacy of such treatment. With the flexible principles of ligand recognition, it is also possible to propose a response of CR3 and CR4 to existing medicines thereby opening a possibility of drug repurposing to influence the function of these receptors. Here, from advances in the structural and cellular immunology of CR3 and CR4, we review insights on their biochemistry and functions in the immune system.
Collapse
Affiliation(s)
- Thomas Vorup-Jensen
- Biophysical Immunology Laboratory, Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Interdisciplinary Nanoscience Center, Aarhus University, Aarhus, Denmark
| | - Rasmus Kjeldsen Jensen
- Department of Molecular Biology and Genetics-Structural Biology, Aarhus University, Aarhus, Denmark
| |
Collapse
|
5
|
Enzmann GU, Pavlidou S, Vaas M, Klohs J, Engelhardt B. ICAM-1 null C57BL/6 Mice Are Not Protected from Experimental Ischemic Stroke. Transl Stroke Res 2018; 9:608-621. [PMID: 29399739 DOI: 10.1007/s12975-018-0612-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 01/19/2018] [Accepted: 01/19/2018] [Indexed: 11/29/2022]
Abstract
Accumulation of neutrophils in the brain is a hallmark of cerebral ischemia and considered central in exacerbating tissue injury. Intercellular adhesion molecule (ICAM)-1 is upregulated on brain endothelial cells after ischemic stroke and considered pivotal in neutrophil recruitment as ICAM-1-deficient mouse lines were found protected from experimental stroke. Translation of therapeutic inhibition of ICAM-1 into the clinic however failed. This prompted us to investigate stroke pathogenesis in Icam1tm1Alb C57BL/6 mutants, a true ICAM-1null mouse line. Performing transient middle cerebral artery occlusion, we found that absence of ICAM-1 did not ameliorate stroke pathology at acute time points after reperfusion. Near-infrared imaging showed comparable accumulation of neutrophils in the ischemic hemispheres of ICAM-1null and wild type C57BL/6 mice. We also isolated equal numbers of neutrophils from the ischemic brains of ICAM-1null and wild type C57BL/6 mice. Immunostaining of the brains showed neutrophils to equally accumulate in the leptomeninges and brain parenchymal vessels of ICAM-1null and wild type C57BL/6 mice. In addition, the lesion size was comparable in ICAM-1null and wild type mice. Our study demonstrates that absence of ICAM-1 neither inhibits cerebral ischemia-induced accumulation of neutrophils in the brain nor provides protection from ischemic stroke.
Collapse
Affiliation(s)
- Gaby U Enzmann
- Theodor Kocher Institute, University of Bern, Freiestrasse 1, 3012, Bern, Switzerland
| | - Sofia Pavlidou
- Theodor Kocher Institute, University of Bern, Freiestrasse 1, 3012, Bern, Switzerland
| | - Markus Vaas
- Institute for Biomedical Engineering, ETH and University of Zurich, 8093, Zurich, Switzerland.,Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Jan Klohs
- Institute for Biomedical Engineering, ETH and University of Zurich, 8093, Zurich, Switzerland.,Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Britta Engelhardt
- Theodor Kocher Institute, University of Bern, Freiestrasse 1, 3012, Bern, Switzerland.
| |
Collapse
|
6
|
Itoh Y, Voskuhl RR. Cell specificity dictates similarities in gene expression in multiple sclerosis, Parkinson's disease, and Alzheimer's disease. PLoS One 2017; 12:e0181349. [PMID: 28715462 PMCID: PMC5513529 DOI: 10.1371/journal.pone.0181349] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 06/29/2017] [Indexed: 12/21/2022] Open
Abstract
Drug repurposing is an efficient approach in new treatment development since it leverages previous work from one disease to another. While multiple sclerosis (MS), Parkinson's disease (PD), and Alzheimer's disease (AD) are all neurodegenerative diseases of the central nervous system (CNS) and differ in many clinical and pathological aspects, it is possible that they may share some mechanistic features. We hypothesized that focusing on gene expression in a CNS cell type specific manner might uncover similarities between diseases that could be missed using whole tissue gene expression analyses. We found similarities and differences in gene expression in these three distinct diseases, depending upon cell type. Microglia genes were increased in all three diseases, and gene expression levels were correlated strongly among these three neurodegenerative diseases. In astrocytes and endothelia, upregulation and correlations were observed only between MS and PD, but not AD. Neuronal genes were down-regulated in all three diseases, but correlations of changes of individual genes between diseases were not strong. Oligodendrocyte showed gene expression changes that were not shared among the three diseases. Together these data suggest that treatments targeting microglia are most amenable to drug repurposing in MS, PD, and AD, while treatments targeting other CNS cells must be tailored to each disease.
Collapse
Affiliation(s)
- Yuichiro Itoh
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, California, United States of America
| | - Rhonda R. Voskuhl
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, California, United States of America
| |
Collapse
|
7
|
Koizume S, Miyagi Y. Potential Coagulation Factor-Driven Pro-Inflammatory Responses in Ovarian Cancer Tissues Associated with Insufficient O₂ and Plasma Supply. Int J Mol Sci 2017; 18:ijms18040809. [PMID: 28417928 PMCID: PMC5412393 DOI: 10.3390/ijms18040809] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 04/05/2017] [Accepted: 04/06/2017] [Indexed: 02/07/2023] Open
Abstract
Tissue factor (TF) is a cell surface receptor for coagulation factor VII (fVII). The TF-activated fVII (fVIIa) complex is an essential initiator of the extrinsic blood coagulation process. Interactions between cancer cells and immune cells via coagulation factors and adhesion molecules can promote progression of cancer, including epithelial ovarian cancer (EOC). This process is not necessarily advantageous, as tumor tissues generally undergo hypoxia due to aberrant vasculature, followed by reduced access to plasma components such as coagulation factors. However, hypoxia can activate TF expression. Expression of fVII, intercellular adhesion molecule-1 (ICAM-1), and multiple pro-inflammatory cytokines can be synergistically induced in EOC cells in response to hypoxia along with serum deprivation. Thus, pro-inflammatory responses associated with the TF-fVIIa-ICAM-1 interaction are expected within hypoxic tissues. Tumor tissue consists of multiple components such as stromal cells, interstitial fluid, albumin, and other micro-factors such as proton and metal ions. These factors, together with metabolism reprogramming in response to hypoxia and followed by functional modification of TF, may contribute to coagulation factor-driven inflammatory responses in EOC tissues. The aim of this review was to describe potential coagulation factor-driven inflammatory responses in hypoxic EOC tissues. Arguments were extended to clinical issues targeting this characteristic tumor environment.
Collapse
Affiliation(s)
- Shiro Koizume
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, 2-3-2 Nakao, Asahi-ku, Yokohama 241-8515, Japan.
| | - Yohei Miyagi
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, 2-3-2 Nakao, Asahi-ku, Yokohama 241-8515, Japan.
| |
Collapse
|
8
|
Kemmer A, Bieber K, Abadpour A, Yu X, Mitschker N, Roth S, Kauderer C, Ludwig RJ, Seeger K, Köhl J, Zillikens D, Recke A. A recombinant fusion protein derived from dog hookworm inhibits autoantibody-induced dermal-epidermal separation ex vivo. Exp Dermatol 2015; 24:872-8. [PMID: 26174039 DOI: 10.1111/exd.12804] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2015] [Indexed: 02/06/2023]
Abstract
The proteins secreted by parasitic nematodes are evolutionarily optimized molecules with unique capabilities of suppressing the immune response of the host organism. Neutrophil inhibitory factor (NIF), which is secreted by the dog hookworm Ancylostoma caninum, binds to the β2 integrin CD11b/CD18, which is expressed on human neutrophils, eosinophils, monocytes and macrophages and inhibits neutrophil-dependent lung injury and neutrophil invasion of ischaemic brain tissue. Neutrophils are key players in the pathogenesis of subepidermal autoimmune blistering diseases (sAIBDs), and their pathogenic activities are crucially dependent on β2 integrin functionality. Based on the template of single-stranded, dimerizing antibody derivatives, which are already used in cancer treatment, we designed a novel biologic, NIF-IGHE-CH4, comprising NIF and the dimerizing but otherwise inert constant heavy subdomain 4 (CH4) of human IgE (IGHE). This molecule was evaluated in a variety of in vitro assays, demonstrating its ability to inhibit pathogenically relevant neutrophil functions such as migration, adhesion and spreading, and release of reactive oxygen species. Finally, we confirmed that NIF-IGHE-CH4 inhibits blister formation in an ex vivo assay of sAIBD. These results suggest that NIF-IGHE-CH4 is a novel potential anti-inflammatory drug for the treatment of neutrophil-mediated diseases such as sAIBDs. This study promotes the drugs from bugs concept and encourages further research and development focused on turning parasite proteins into useful anti-inflammatory biologics.
Collapse
Affiliation(s)
- Annette Kemmer
- Department of Dermatology Allergology and Venereology, University of Lübeck, Lübeck, Germany
| | - Katja Bieber
- Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Aida Abadpour
- Department of Dermatology Allergology and Venereology, University of Lübeck, Lübeck, Germany
| | - Xinhua Yu
- Biochemical Immunology, Research Center Borstel, Leibniz-Center for Medicine and Biosciences, Borstel (Sülfeld), Germany
| | - Nina Mitschker
- Department of Dermatology Allergology and Venereology, University of Lübeck, Lübeck, Germany
| | - Sara Roth
- Institute for Medical Microbiology and Hygiene, University of Lübeck, Lübeck, Germany
| | - Claudia Kauderer
- Department of Dermatology Allergology and Venereology, University of Lübeck, Lübeck, Germany
| | - Ralf J Ludwig
- Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Karsten Seeger
- Institute of Chemistry, University of Lübeck, Lübeck, Germany
| | - Jörg Köhl
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Detlef Zillikens
- Department of Dermatology Allergology and Venereology, University of Lübeck, Lübeck, Germany.,Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Andreas Recke
- Department of Dermatology Allergology and Venereology, University of Lübeck, Lübeck, Germany.,Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| |
Collapse
|
9
|
Glatigny S, Duhen R, Arbelaez C, Kumari S, Bettelli E. Integrin alpha L controls the homing of regulatory T cells during CNS autoimmunity in the absence of integrin alpha 4. Sci Rep 2015; 5:7834. [PMID: 25592296 PMCID: PMC4296287 DOI: 10.1038/srep07834] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Accepted: 12/12/2014] [Indexed: 12/23/2022] Open
Abstract
Experimental autoimmune encephalomyelitis (EAE), the animal model of multiple sclerosis (MS), results from an autoimmune attack of the central nervous system (CNS) by effector T helper (Th) 1 and Th17 cells. Regulatory T cells (Treg) can control effector T cells and limit the progression of CNS autoimmunity. Integrin alpha 4 (Itga4) is critical for the entry of Th1 but not Th17 cells into the CNS during EAE. Whether Itga4 controls the homing of Tregs in the CNS and whether Tregs can limit Th17-mediated EAE has, however, not been addressed. Through selective elimination of Itga4 in Foxp3-expressing cells, we show here that Tregs can suppress Th17-mediated EAE and enter into the CNS independently of Itga4. Furthermore, similarly to Th17 cells and in contrast to Th1 cells, Tregs depend on LFA-1 for their entry into the CNS in the absence of Itga4. Therefore, these data suggest that the efficacy of Itga4 neutralization on MS progression may be associated with the prevention of Th1 cells and the maintenance of Tregs migration into the CNS.
Collapse
Affiliation(s)
- Simon Glatigny
- 1] Benaroya Research Institute, Immunology Program, Seattle WA 98101, USA [2] University of Washington, Department of Immunology, Seattle WA 98105, USA
| | - Rebekka Duhen
- 1] Benaroya Research Institute, Immunology Program, Seattle WA 98101, USA [2] University of Washington, Department of Immunology, Seattle WA 98105, USA
| | - Carlos Arbelaez
- 1] Benaroya Research Institute, Immunology Program, Seattle WA 98101, USA [2] University of Washington, Department of Immunology, Seattle WA 98105, USA
| | - Swarnima Kumari
- 1] Benaroya Research Institute, Immunology Program, Seattle WA 98101, USA [2] University of Washington, Department of Immunology, Seattle WA 98105, USA
| | - Estelle Bettelli
- 1] Benaroya Research Institute, Immunology Program, Seattle WA 98101, USA [2] University of Washington, Department of Immunology, Seattle WA 98105, USA
| |
Collapse
|
10
|
CD8-predominant T-cell CNS infiltration accompanies GVHD in primates and is improved with immunoprophylaxis. Blood 2014; 123:1967-9. [PMID: 24652969 DOI: 10.1182/blood-2014-01-547612] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
11
|
Bullard DC, Hu X, Crawford D, McDonald K, Ramos TN, Barnum SR. Expression of a single ICAM-1 isoform on T cells is sufficient for development of experimental autoimmune encephalomyelitis. Eur J Immunol 2014; 44:1194-9. [PMID: 24435747 DOI: 10.1002/eji.201344023] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 12/02/2013] [Accepted: 01/13/2014] [Indexed: 01/30/2023]
Abstract
Intercellular adhesion molecule-1 (ICAM-1) plays an important role in leukocyte trafficking, induction of cellular immune responses, and immunological synapse formation. As a member of the immunoglobulin superfamily of adhesion proteins, ICAM-1 is composed of repeating Ig-like domains, a transmembrane domain, and short cytoplasmic tail that participates in intracellular signaling events. At least seven ICAM-1 protein isoforms are generated by alternative splicing, however little is known regarding their immunobiology. We have previously shown using different lines of ICAM-1 mutant mice (Icam1(tm1Jcgr) and Icam1(tm1Bay) ) that expression of alternatively spliced ICAM-1 isoforms can significantly influence the disease course during the development of EAE. In this study, we show using a newly developed transgenic mouse (CD2-Icam1(D4del) /Icam1(null) ) that T-cell-specific expression of a single ICAM-1 isoform composed of Ig domains 1, 2, 3, and 5 can mediate the initiation and progression of EAE. Our results indicate that the ICAM-1 isoform lacking Ig domain 4 can drive pathogenesis in demyelinating disease and may be a novel therapeutic target for treating multiple sclerosis.
Collapse
Affiliation(s)
- Daniel C Bullard
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | | | | | | | | |
Collapse
|
12
|
Dagley LF, Croft NP, Isserlin R, Olsen JB, Fong V, Emili A, Purcell AW. Discovery of novel disease-specific and membrane-associated candidate markers in a mouse model of multiple sclerosis. Mol Cell Proteomics 2013; 13:679-700. [PMID: 24361864 DOI: 10.1074/mcp.m113.033340] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Multiple sclerosis is a chronic demyelinating disorder characterized by the infiltration of auto-reactive immune cells from the periphery into the central nervous system resulting in axonal injury and neuronal cell death. Experimental autoimmune encephalomyelitis represents the best characterized animal model as common clinical, histological, and immunological features are recapitulated. A label-free mass spectrometric proteomics approach was used to detect differences in protein abundance within specific fractions of disease-affected tissues including the soluble lysate derived from the spinal cord and membrane protein-enriched peripheral blood mononuclear cells. Tissues were harvested from actively induced experimental autoimmune encephalomyelitis mice and sham-induced ("vehicle" control) counterparts at the disease peak followed by subsequent analysis by nanoflow liquid chromatography tandem mass spectrometry. Relative protein quantitation was performed using both intensity- and fragmentation-based approaches. After statistical evaluation of the data, over 500 and 250 differentially abundant proteins were identified in the spinal cord and peripheral blood mononuclear cell data sets, respectively. More than half of these observations have not previously been linked to the disease. The biological significance of all candidate disease markers has been elucidated through rigorous literature searches, pathway analysis, and validation studies. Results from comprehensive targeted mass spectrometry analyses have confirmed the differential abundance of ∼ 200 candidate markers (≥ twofold dysregulated expression) at a 70% success rate. This study is, to our knowledge, the first to examine the cell-surface proteome of peripheral blood mononuclear cells in experimental autoimmune encephalomyelitis. These data provide a unique mechanistic insight into the dynamics of peripheral immune cell infiltration into CNS-privileged sites at a molecular level and has identified several candidate markers, which represent promising targets for future multiple sclerosis therapies. The mass spectrometry proteomics data associated with this manuscript have been deposited to the ProteomeXchange Consortium with the data set identifier PXD000255.
Collapse
Affiliation(s)
- Laura F Dagley
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, 3010, Australia
| | | | | | | | | | | | | |
Collapse
|
13
|
DiFranco KM, Kaswala RH, Patel C, Kasinathan C, Kachlany SC. Leukotoxin kills rodent WBC by targeting leukocyte function associated antigen 1. Comp Med 2013; 63:331-337. [PMID: 24209968 PMCID: PMC3750668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 02/15/2013] [Accepted: 03/12/2013] [Indexed: 06/02/2023]
Abstract
Leukotoxin is a protein that is secreted by Aggregatibacter actinomycetemcomitans and that primarily targets the active form of leukocyte function associated antigen 1 (LFA1) on WBC. Because of its specificity for WBC, leukotoxin is being developed as a novel biologic treatment for hematologic malignancies and autoimmune-inflammatory diseases. Early studies indicated that leukotoxin is specific for WBC from humans and Old World primates. In the current study, we used in vivo and in vitro assays to show that leukotoxin has a wider host range than previously believed and can kill rodent WBC. Administration of leukotoxin to rats and mice resulted in a rapid drop in WBC number but had no effect on RBC or platelet counts. Using LFA1-knockout mice, we showed that leukotoxin-mediated depletion of WBC is dependent on LFA1. In addition, similar to its effect on human monocytes, leukotoxin kills murine myeloid leukemia via a lysosome-mediated pathway that is dependent on cathepsin D. This newly described broader host range of leukotoxin enables the biology of the protein to be studied in rodent species and offers the possibility of using rodent models for evaluating the therapeutic efficacy of leukotoxin in various diseases.
Collapse
|
14
|
Ramos TN, Bullard DC, Barnum SR. Deletion of the complement phagocytic receptors CR3 and CR4 does not alter susceptibility to experimental cerebral malaria. Parasite Immunol 2013; 34:547-50. [PMID: 22882618 DOI: 10.1111/pim.12002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Complement receptors for C3-derived fragments (CR1-4) play critical roles in innate and adaptive immune responses. Of these receptors, CR3 and CR4 are important in binding and phagocytosis of complement-opsonized pathogens including parasites. The role of CR3 and CR4 in malaria or in cerebral malaria (CM) has received little attention and remains poorly understood in both human disease and rodent models of malaria. CR3 and CR4 are members of the β(2) -integrin family of adhesion molecules and are expressed on all leucocytes that participate in the development of CM, most importantly as it relates to parasite phagocytosis (monocytes/macrophages) and antigen processing and presentation (dendritic cells). Thus, it is possible that these receptors might play an important role in disease development. To address this question, we examined the role of CR3(-/-) and CR4(-/-) in experimental cerebral malaria (ECM). We found that both CR3(-/-) and CR4(-/-) mice were fully susceptible to ECM and developed disease comparable to wild-type mice. Our results indicate that CR3 and CR4 are not critical to the pathogenesis of ECM despite their role in elimination of complement-opsonized pathogens. These findings support recent studies indicating the importance of the terminal complement pathway and the membrane attack complex in ECM pathogenesis.
Collapse
Affiliation(s)
- T N Ramos
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | |
Collapse
|
15
|
Lim J, Hotchin NA. Signalling mechanisms of the leukocyte integrin αMβ2: Current and future perspectives. Biol Cell 2012; 104:631-40. [DOI: 10.1111/boc.201200013] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 07/09/2012] [Indexed: 01/04/2023]
|
16
|
Langer HF, Choi EY, Zhou H, Schleicher R, Chung KJ, Tang Z, Göbel K, Bdeir K, Chatzigeorgiou A, Wong C, Bhatia S, Kruhlak MJ, Rose JW, Burns JB, Hill KE, Qu H, Zhang Y, Lehrmann E, Becker KG, Wang Y, Simon DI, Nieswandt B, Lambris JD, Li X, Meuth SG, Kubes P, Chavakis T. Platelets contribute to the pathogenesis of experimental autoimmune encephalomyelitis. Circ Res 2012; 110:1202-10. [PMID: 22456181 DOI: 10.1161/circresaha.111.256370] [Citation(s) in RCA: 144] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
RATIONALE Multiple sclerosis (MS) and its mouse model, experimental autoimmune encephalomyelitis (EAE), are inflammatory disorders of the central nervous system (CNS). The function of platelets in inflammatory and autoimmune pathologies is thus far poorly defined. OBJECTIVE We addressed the role of platelets in mediating CNS inflammation in EAE. METHODS AND RESULTS We found that platelets were present in human MS lesions as well as in the CNS of mice subjected to EAE but not in the CNS from control nondiseased mice. Platelet depletion at the effector-inflammatory phase of EAE in mice resulted in significantly ameliorated disease development and progression. EAE suppression on platelet depletion was associated with reduced recruitment of leukocytes to the inflamed CNS, as assessed by intravital microscopy, and with a blunted inflammatory response. The platelet-specific receptor glycoprotein Ibα (GPIbα) promotes both platelet adhesion and inflammatory actions of platelets and targeting of GPIbα attenuated EAE in mice. Moreover, targeting another platelet adhesion receptor, glycoprotein IIb/IIIa (GPIIb/IIIa), also reduced EAE severity in mice. CONCLUSIONS Platelets contribute to the pathogenesis of EAE by promoting CNS inflammation. Targeting platelets may therefore represent an important new therapeutic approach for MS treatment.
Collapse
Affiliation(s)
- Harald F Langer
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Euphol prevents experimental autoimmune encephalomyelitis in mice: Evidence for the underlying mechanisms. Biochem Pharmacol 2012; 83:531-42. [DOI: 10.1016/j.bcp.2011.11.026] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2011] [Revised: 11/22/2011] [Accepted: 11/23/2011] [Indexed: 01/13/2023]
|
18
|
Pinto-Medel MJ, García-León JA, Oliver-Martos B, López-Gómez C, Luque G, Arnáiz-Urrutia C, Orpez T, Marín-Bañasco C, Fernández O, Leyva L. The CD4+ T-cell subset lacking expression of the CD28 costimulatory molecule is expanded and shows a higher activation state in multiple sclerosis. J Neuroimmunol 2012; 243:1-11. [PMID: 22261542 DOI: 10.1016/j.jneuroim.2011.11.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Revised: 11/15/2011] [Accepted: 11/16/2011] [Indexed: 11/30/2022]
Abstract
Multiple sclerosis (MS) is a chronic debilitating disease, in which T-cells are considered to play a pivotal role. CD28 is the quintessential costimulatory molecule on T-cells and its expression declines progressively with repeated stimulations, leading to the generation of CD28(-) T-cells. Our aim was to examine whether CD4(+)CD28(-) T-cells were enriched in MS patients, and characterize the phenotype of this subset in MS patients and healthy controls (HC). All these changes could provide these CD4(+)CD28(-) T-cell characteristics that might be involved in the pathogenesis of MS, turning this T-cell subset into a potential target for future therapeutic strategies.
Collapse
Affiliation(s)
- María Jesús Pinto-Medel
- Research Laboratory, Hospital Regional Universitario Carlos Haya and Fundación IMABIS, Málaga, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Rothhammer V, Heink S, Petermann F, Srivastava R, Claussen MC, Hemmer B, Korn T. Th17 lymphocytes traffic to the central nervous system independently of α4 integrin expression during EAE. ACTA ACUST UNITED AC 2011; 208:2465-76. [PMID: 22025301 PMCID: PMC3256959 DOI: 10.1084/jem.20110434] [Citation(s) in RCA: 203] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Th1 lymphocytes preferentially infiltrate into the spinal cord during EAE via a VLA-4–mediated mechanism while Th17 lymphocyte infiltration is dependent on LFA-1 expression. The integrin α4β1 (VLA-4) is used by encephalitogenic T cells to enter the central nervous system (CNS). However, both Th1 and Th17 cells are capable of inducing experimental autoimmune encephalomyelitis (EAE), and the molecular cues mediating the infiltration of Th1 versus Th17 cells into the CNS have not yet been defined. We investigated how blocking of α4 integrins affected trafficking of Th1 and Th17 cells into the CNS during EAE. Although antibody-mediated inhibition of α4 integrins prevented EAE when MOG35-55-specific Th1 cells were adoptively transferred, Th17 cells entered the brain, but not the spinal cord parenchyma, irrespective of α4 blockade. Accordingly, T cell–conditional α4-deficient mice were not resistant to actively induced EAE but showed an ataxic syndrome with predominantly supraspinal infiltrates of IL-23R+CCR6+CD4+ T cells. The entry of α4-deficient Th17 cells into the CNS was abolished by blockade of LFA-1 (αLβ2 integrin). Thus, Th1 cells preferentially infiltrate the spinal cord via an α4 integrin–mediated mechanism, whereas the entry of Th17 cells into the brain parenchyma occurs in the absence of α4 integrins but is dependent on the expression of αLβ2. These observations have implications for the understanding of lesion localization, immunosurveillance, and drug design in multiple sclerosis.
Collapse
Affiliation(s)
- Veit Rothhammer
- Klinikum rechts der Isar, Department of Neurology, Technical University Munich, 81675 Munich, Germany
| | | | | | | | | | | | | |
Collapse
|
20
|
Okuzaki D, Kimura S, Yabuta N, Ohmine T, Nojima H. LeukoCatch, a quick and efficient tool for the preparation of leukocyte extracts from blood. BMC Clin Pathol 2011; 11:9. [PMID: 21849019 PMCID: PMC3170244 DOI: 10.1186/1472-6890-11-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Accepted: 08/17/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Whole-protein extracts from peripheral blood leukocytes are ideal for basic and clinical research. However, lack of a simple preparation technique has limited the use of such extracts. The aim of this study is to develop a simple and easy system that can selectively obtain leukocyte extracts without hemoglobin. METHODS A filter that captures the leukocytes but not RBCs was set at the bottom of a 10-mL medical syringe by sandwiching it between plastic stoppers. The capturing efficiency of leukocytes with this tool, called LeukoCatch, was examined using human macrophage cells (MONO-MAC-6). The abilities of LeukoCatch system to capture the leukocyte proteins and to remove the hemoglobin from RBCs were tested by western blot analysis using human blood samples. RESULTS This study presents the development of LeukoCatch, a novel tool that allows the preparation of leukocyte extracts from blood samples within 3 min without centrifugation. Tissue-cultured human macrophage cells were tested to determine the optimal filter numbers and pass-through frequencies of LeukoCatch, which was then applied to 2-mL blood samples. Samples were passed 2~5 times through a LeukoCatch equipped with 5 filters, washed twice with phosphate-buffered saline for red cell removal, and leukocyte proteins were extracted with 0.5 mL of elution buffer. Western blot analysis of the purified extract indicated that more than 90% of hemoglobin was removed by the LeukoCatch and that the protein recovery rate of leukocytes was at least 4 times better than that of the conventional centrifugation method. CONCLUSION We conclude that LeukoCatch is useful not only for diagnosis at the bedside but also for basic research using blood samples or tissue culture cells.
Collapse
Affiliation(s)
- Daisuke Okuzaki
- Department of Molecular Genetics, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | | | | | | | | |
Collapse
|
21
|
Toker A, Slaney CY, Bäckström BT, Harper JL. Glatiramer Acetate Treatment Directly Targets CD11b+
Ly6G−
Monocytes and Enhances the Suppression of Autoreactive T cells in Experimental Autoimmune Encephalomyelitis. Scand J Immunol 2011; 74:235-243. [DOI: 10.1111/j.1365-3083.2011.02575.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
22
|
Anderton SM. Treg and T-effector cells in autoimmune CNS inflammation: A delicate balance, easily disturbed. Eur J Immunol 2010; 40:3321-4. [DOI: 10.1002/eji.201041100] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
23
|
Integrin CD11b negatively regulates TLR-triggered inflammatory responses by activating Syk and promoting degradation of MyD88 and TRIF via Cbl-b. Nat Immunol 2010; 11:734-42. [PMID: 20639876 DOI: 10.1038/ni.1908] [Citation(s) in RCA: 367] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Accepted: 06/16/2010] [Indexed: 02/06/2023]
Abstract
Integrins are critical for the migration and function of leukocytes in inflammation. However, the interaction between integrin alpha(M) (CD11b), which has high expression in monocytes and macrophages, and Toll-like receptor (TLR)-triggered innate immunity remains unclear. Here we report that CD11b deficiency enhanced TLR-mediated responses in macrophages, rendering mice more susceptible to endotoxin shock and Escherichia coli-caused sepsis. CD11b was activated by TLR-triggered phosphatidylinositol 3-OH kinase (PI(3)K) and the effector RapL and fed back to inhibit TLR signaling by activating the tyrosine kinases Src and Syk. Syk interacted with and induced tyrosine phosphorylation of MyD88 and TRIF, which led to degradation of these adaptor molecules by the E3 ubiquitin ligase Cbl-b. Thus, TLR-triggered, active CD11b integrin engages in crosstalk with the MyD88 and TRIF pathways and subsequently inhibits TLR signaling in innate immune responses.
Collapse
|