1
|
Paquin-Proulx D, Gibbs A, Bächle SM, Checa A, Introini A, Leeansyah E, Wheelock CE, Nixon DF, Broliden K, Tjernlund A, Moll M, Sandberg JK. Innate Invariant NKT Cell Recognition of HIV-1-Infected Dendritic Cells Is an Early Detection Mechanism Targeted by Viral Immune Evasion. THE JOURNAL OF IMMUNOLOGY 2016; 197:1843-51. [PMID: 27481843 DOI: 10.4049/jimmunol.1600556] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 07/01/2016] [Indexed: 12/21/2022]
Abstract
Invariant NKT (iNKT) cells are innate-like T cells that respond rapidly with a broad range of effector functions upon recognition of glycolipid Ags presented by CD1d. HIV-1 carries Nef- and Vpu-dependent mechanisms to interfere with CD1d surface expression, indirectly suggesting a role for iNKT cells in control of HIV-1 infection. In this study, we investigated whether iNKT cells can participate in the innate cell-mediated immune response to HIV-1. Infection of dendritic cells (DCs) with Nef- and Vpu-deficient HIV-1 induced upregulation of CD1d in a TLR7-dependent manner. Infection of DCs caused modulation of enzymes in the sphingolipid pathway and enhanced expression of the endogenous glucosylceramide Ag. Importantly, iNKT cells responded specifically to rare DCs productively infected with Nef- and Vpu-defective HIV-1. Transmitted founder viral isolates differed in their CD1d downregulation capacity, suggesting that diverse strains may be differentially successful in inhibiting this pathway. Furthermore, both iNKT cells and DCs expressing CD1d and HIV receptors resided in the female genital mucosa, a site where HIV-1 transmission occurs. Taken together, these findings suggest that innate iNKT cell sensing of HIV-1 infection in DCs is an early immune detection mechanism, which is independent of priming and adaptive recognition of viral Ag, and is actively targeted by Nef- and Vpu-dependent viral immune evasion mechanisms.
Collapse
Affiliation(s)
- Dominic Paquin-Proulx
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, 14186 Stockholm, Sweden
| | - Anna Gibbs
- Center for Molecular Medicine, Department of Medicine Solna, Karolinska Institutet, 17176 Stockholm, Sweden
| | - Susanna M Bächle
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, 14186 Stockholm, Sweden
| | - Antonio Checa
- Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden; and
| | - Andrea Introini
- Center for Molecular Medicine, Department of Medicine Solna, Karolinska Institutet, 17176 Stockholm, Sweden
| | - Edwin Leeansyah
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, 14186 Stockholm, Sweden
| | - Craig E Wheelock
- Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden; and
| | - Douglas F Nixon
- Department of Microbiology, Immunology and Tropical Medicine, George Washington University, Washington, DC 20037
| | - Kristina Broliden
- Center for Molecular Medicine, Department of Medicine Solna, Karolinska Institutet, 17176 Stockholm, Sweden
| | - Annelie Tjernlund
- Center for Molecular Medicine, Department of Medicine Solna, Karolinska Institutet, 17176 Stockholm, Sweden
| | - Markus Moll
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, 14186 Stockholm, Sweden
| | - Johan K Sandberg
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, 14186 Stockholm, Sweden;
| |
Collapse
|
2
|
Involvement of a C-terminal motif in the interference of primate lentiviral Vpu proteins with CD1d-mediated antigen presentation. Sci Rep 2015; 5:9675. [PMID: 25872908 PMCID: PMC4397644 DOI: 10.1038/srep09675] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Accepted: 03/16/2015] [Indexed: 01/01/2023] Open
Abstract
The HIV-1 accessory protein Vpu is emerging as a critical factor for viral evasion from innate immunity. We have previously shown that the Vpu proteins of two HIV-1 group M subtype B strains (NL4-3 and BaL) down-regulate CD1d from the surface of infected dendritic cells (DCs) and inhibit their crosstalk with the innate invariant natural killer T (iNKT) cells. In the present study, we have investigated the ability of a comprehensive set of primate lentiviral Vpu proteins to interfere with CD1d-mediated immunity. We found that CD1d down-regulation is a conserved function of Vpu proteins from HIV-1 groups M, O and P as well as their direct precursors SIVcpzPtt and SIVgor. At the group M subtype level, subtype C Vpu proteins were significantly weaker CD1d antagonists than subtype B Vpu proteins. Functional characterization of different mutants and chimeras derived from active subtype B and inactive subtype C Vpu proteins revealed that residues in the cytoplasmic domain are important for CD1d down-regulation. Specifically, we identified a C-terminal APW motif characteristic for group M subtype B Vpu proteins necessary for interference with CD1d surface expression. These findings support the notion that Vpu plays an important role in lentiviral evasion from innate immunity.
Collapse
|
3
|
Helminth-induced interleukin-4 abrogates invariant natural killer T cell activation-associated clearance of bacterial infection. Infect Immun 2014; 82:2087-97. [PMID: 24643536 DOI: 10.1128/iai.01578-13] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Helminth infections affect 1 billion people worldwide and render these individuals susceptible to bacterial coinfection through incompletely understood mechanisms. This includes urinary tract coinfection by bacteria and Schistosoma haematobium worms, the etiologic agent of urogenital schistosomiasis. To study the mechanisms of S. haematobium-bacterial urinary tract coinfections, we combined the first tractable model of urogenital schistosomiasis with an established mouse model of bacterial urinary tract infection (UTI). A single bladder exposure to S. haematobium eggs triggers interleukin-4 (IL-4) production and makes BALB/c mice susceptible to bacterial UTI when they are otherwise resistant. Ablation of IL-4 receptor alpha (IL-4Rα) signaling restored the baseline resistance of BALB/c mice to bacterial UTI despite prior exposure to S. haematobium eggs. Interestingly, numbers of NKT cells were decreased in coexposed versus bacterially monoinfected bladders. Given that schistosome-induced, non-natural killer T (NKT) cell leukocyte infiltration may dilute NKT cell numbers in the bladders of coexposed mice without exerting a specific functional effect on these cells, we next examined NKT cell biology on a per-cell basis. Invariant NKT (iNKT) cells from coexposed mice expressed less gamma interferon (IFN-γ) per cell than did those from mice with UTI alone. Moreover, coexposure resulted in lower CD1d expression in bladder antigen-presenting cells (APC) than did bacterial UTI alone in an IL-4Rα-dependent fashion. Finally, coexposed mice were protected from prolonged bacterial infection by administration of α-galactosylceramide, an iNKT cell agonist. Our findings point to a previously unappreciated role for helminth-induced IL-4 in impairment of iNKT cell-mediated clearance of bacterial coexposure.
Collapse
|