1
|
Shah SS, Stone EF, Francis RO, Karafin MS. The global role of G6PD in infection and immunity. Front Immunol 2024; 15:1393213. [PMID: 38938571 PMCID: PMC11208698 DOI: 10.3389/fimmu.2024.1393213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/24/2024] [Indexed: 06/29/2024] Open
Abstract
Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common enzymopathy in humans. G6PD is an essential enzyme in the pentose phosphate pathway (PPP), generating NADPH needed for cellular biosynthesis and reactive oxygen species (ROS) homeostasis, the latter especially key in red blood cells (RBCs). Beyond the RBC, there is emerging evidence that G6PD exerts an immunologic role by virtue of its functions in leukocyte oxidative metabolism and anabolic synthesis necessary for immune effector function. We review these here, and consider the global immunometabolic role of G6PD activity and G6PD deficiency in modulating inflammation and immunopathology.
Collapse
Affiliation(s)
- Shivang S. Shah
- Department of Pediatrics, Columbia University, New York, NY, United States
| | - Elizabeth F. Stone
- Department of Pathology and Cell Biology, Columbia University, New York, NY, United States
| | - Richard O. Francis
- Department of Pathology and Cell Biology, Columbia University, New York, NY, United States
| | - Matthew S. Karafin
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, United States
| |
Collapse
|
2
|
Kull T, Schroeder T. Analyzing signaling activity and function in hematopoietic cells. J Exp Med 2021; 218:e20201546. [PMID: 34129015 PMCID: PMC8210623 DOI: 10.1084/jem.20201546] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/14/2020] [Accepted: 01/07/2021] [Indexed: 11/25/2022] Open
Abstract
Cells constantly sense their environment, allowing the adaption of cell behavior to changing needs. Fine-tuned responses to complex inputs are computed by signaling pathways, which are wired in complex connected networks. Their activity is highly context-dependent, dynamic, and heterogeneous even between closely related individual cells. Despite lots of progress, our understanding of the precise implementation, relevance, and possible manipulation of cellular signaling in health and disease therefore remains limited. Here, we discuss the requirements, potential, and limitations of the different current technologies for the analysis of hematopoietic stem and progenitor cell signaling and its effect on cell fates.
Collapse
Affiliation(s)
| | - Timm Schroeder
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule Zurich, Basel, Switzerland
| |
Collapse
|
3
|
CD86-based analysis enables observation of bona fide hematopoietic responses. Blood 2021; 136:1144-1154. [PMID: 32438398 DOI: 10.1182/blood.2020004923] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 05/01/2020] [Indexed: 12/23/2022] Open
Abstract
Hematopoiesis is a system that provides red blood cells (RBCs), leukocytes, and platelets, which are essential for oxygen transport, biodefense, and hemostasis; its balance thus affects the outcome of various disorders. Here, we report that stem cell antigen-1 (Sca-1), a cell surface marker commonly used for the identification of multipotent hematopoietic progenitors (Lin-Sca-1+c-Kit+ cells; LSKs), is not suitable for the analysis of hematopoietic responses under biological stresses with interferon production. Lin-Sca-1-c-Kit+ cells (LKs), downstream progenitors of LSKs, acquire Sca-1 expression upon inflammation, which makes it impossible to distinguish between LSKs and LKs. As an alternative and stable marker even under such stresses, we identified CD86 by screening 180 surface markers. The analysis of infection/inflammation-triggered hematopoiesis on the basis of CD86 expression newly revealed urgent erythropoiesis producing stress-resistant RBCs and intact reconstitution capacity of LSKs, which could not be detected by conventional Sca-1-based analysis.
Collapse
|
4
|
Lima Correa B, El Harane N, Gomez I, Rachid Hocine H, Vilar J, Desgres M, Bellamy V, Keirththana K, Guillas C, Perotto M, Pidial L, Alayrac P, Tran T, Tan S, Hamada T, Charron D, Brisson A, Renault NK, Al-Daccak R, Menasché P, Silvestre JS. Extracellular vesicles from human cardiovascular progenitors trigger a reparative immune response in infarcted hearts. Cardiovasc Res 2021; 117:292-307. [PMID: 32049348 DOI: 10.1093/cvr/cvaa028] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/14/2020] [Accepted: 02/03/2020] [Indexed: 12/18/2022] Open
Abstract
AIMS The cardioprotective effects of human induced pluripotent stem cell-derived cardiovascular progenitor cells (CPC) are largely mediated by the paracrine release of extracellular vesicles (EV). We aimed to assess the immunological behaviour of EV-CPC, which is a prerequisite for their clinical translation. METHODS AND RESULTS Flow cytometry demonstrated that EV-CPC expressed very low levels of immune relevant molecules including HLA Class I, CD80, CD274 (PD-L1), and CD275 (ICOS-L); and moderate levels of ligands of the natural killer (NK) cell activating receptor, NKG2D. In mixed lymphocyte reactions, EV-CPC neither induced nor modulated adaptive allogeneic T cell immune responses. They also failed to induce NK cell degranulation, even at high concentrations. These in vitro effects were confirmed in vivo as repeated injections of EV-CPC did not stimulate production of immunoglobulins or affect the interferon (IFN)-γ responses from primed splenocytes. In a mouse model of chronic heart failure, intra-myocardial injections of EV-CPC, 3 weeks after myocardial infarction, decreased both the number of cardiac pro-inflammatory Ly6Chigh monocytes and circulating levels of pro-inflammatory cytokines (IL-1α, TNF-α, and IFN-γ). In a model of acute infarction, direct cardiac injection of EV-CPC 2 days after infarction reduced pro-inflammatory macrophages, Ly6Chigh monocytes, and neutrophils in heart tissue as compared to controls. EV-CPC also reduced levels of pro-inflammatory cytokines IL-1α, IL-2, and IL-6, and increased levels of the anti-inflammatory cytokine IL-10. These effects on human macrophages and monocytes were reproduced in vitro; EV-CPC reduced the number of pro-inflammatory monocytes and M1 macrophages, while increasing the number of anti-inflammatory M2 macrophages. CONCLUSIONS EV-CPC do not trigger an immune response either in in vitro human allogeneic models or in immunocompetent animal models. The capacity for orienting the response of monocyte/macrophages towards resolution of inflammation strengthens the clinical attractiveness of EV-CPC as an acellular therapy for cardiac repair.
Collapse
Affiliation(s)
- Bruna Lima Correa
- INSERM UMRS 970, Paris Centre de Recherche Cardiovasculaire (PARCC), Université de Paris, 56, rue Leblanc, F-75015 Paris, France
| | - Nadia El Harane
- INSERM UMRS 970, Paris Centre de Recherche Cardiovasculaire (PARCC), Université de Paris, 56, rue Leblanc, F-75015 Paris, France
| | - Ingrid Gomez
- INSERM UMRS 970, Paris Centre de Recherche Cardiovasculaire (PARCC), Université de Paris, 56, rue Leblanc, F-75015 Paris, France
| | | | - José Vilar
- INSERM UMRS 970, Paris Centre de Recherche Cardiovasculaire (PARCC), Université de Paris, 56, rue Leblanc, F-75015 Paris, France
| | - Manon Desgres
- INSERM UMRS 970, Paris Centre de Recherche Cardiovasculaire (PARCC), Université de Paris, 56, rue Leblanc, F-75015 Paris, France
| | - Valérie Bellamy
- INSERM UMRS 970, Paris Centre de Recherche Cardiovasculaire (PARCC), Université de Paris, 56, rue Leblanc, F-75015 Paris, France
| | - Kamaleswaran Keirththana
- INSERM UMRS 970, Paris Centre de Recherche Cardiovasculaire (PARCC), Université de Paris, 56, rue Leblanc, F-75015 Paris, France
| | - Chloé Guillas
- INSERM UMRS 970, Paris Centre de Recherche Cardiovasculaire (PARCC), Université de Paris, 56, rue Leblanc, F-75015 Paris, France
| | - Maria Perotto
- INSERM UMRS 970, Paris Centre de Recherche Cardiovasculaire (PARCC), Université de Paris, 56, rue Leblanc, F-75015 Paris, France
| | - Laetitia Pidial
- INSERM UMRS 970, Paris Centre de Recherche Cardiovasculaire (PARCC), Université de Paris, 56, rue Leblanc, F-75015 Paris, France
| | - Paul Alayrac
- INSERM UMRS 970, Paris Centre de Recherche Cardiovasculaire (PARCC), Université de Paris, 56, rue Leblanc, F-75015 Paris, France
| | - Thi Tran
- INSERM UMRS 970, Paris Centre de Recherche Cardiovasculaire (PARCC), Université de Paris, 56, rue Leblanc, F-75015 Paris, France
| | - Sisareuth Tan
- UMR-CBMN, CNRS-Université de Bordeaux-IPB, F-33600 Pessac, France
| | - Thomas Hamada
- INSERM UMRS 970, Paris Centre de Recherche Cardiovasculaire (PARCC), Université de Paris, 56, rue Leblanc, F-75015 Paris, France
| | | | - Alain Brisson
- UMR-CBMN, CNRS-Université de Bordeaux-IPB, F-33600 Pessac, France
| | | | - Reem Al-Daccak
- INSERM, UMRS-976, Hôpital Saint-Louis, F-75015 Paris, France
| | - Philippe Menasché
- INSERM UMRS 970, Paris Centre de Recherche Cardiovasculaire (PARCC), Université de Paris, 56, rue Leblanc, F-75015 Paris, France
- Department of Cardiovascular Surgery, Hôpital Européen Georges Pompidou, 20, rue Leblanc, F-75015 Paris, France
| | - Jean-Sébastien Silvestre
- INSERM UMRS 970, Paris Centre de Recherche Cardiovasculaire (PARCC), Université de Paris, 56, rue Leblanc, F-75015 Paris, France
| |
Collapse
|
5
|
Horiguchi H, Loftus TJ, Hawkins RB, Raymond SL, Stortz JA, Hollen MK, Weiss BP, Miller ES, Bihorac A, Larson SD, Mohr AM, Brakenridge SC, Tsujimoto H, Ueno H, Moore FA, Moldawer LL, Efron PA. Innate Immunity in the Persistent Inflammation, Immunosuppression, and Catabolism Syndrome and Its Implications for Therapy. Front Immunol 2018; 9:595. [PMID: 29670613 PMCID: PMC5893931 DOI: 10.3389/fimmu.2018.00595] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 03/09/2018] [Indexed: 12/12/2022] Open
Abstract
Clinical and technological advances promoting early hemorrhage control and physiologic resuscitation as well as early diagnosis and optimal treatment of sepsis have significantly decreased in-hospital mortality for many critically ill patient populations. However, a substantial proportion of severe trauma and sepsis survivors will develop protracted organ dysfunction termed chronic critical illness (CCI), defined as ≥14 days requiring intensive care unit (ICU) resources with ongoing organ dysfunction. A subset of CCI patients will develop the persistent inflammation, immunosuppression, and catabolism syndrome (PICS), and these individuals are predisposed to a poor quality of life and indolent death. We propose that CCI and PICS after trauma or sepsis are the result of an inappropriate bone marrow response characterized by the generation of dysfunctional myeloid populations at the expense of lympho- and erythropoiesis. This review describes similarities among CCI/PICS phenotypes in sepsis, cancer, and aging and reviews the role of aberrant myelopoiesis in the pathophysiology of CCI and PICS. In addition, we characterize pathogen recognition, the interface between innate and adaptive immune systems, and therapeutic approaches including immune modulators, gut microbiota support, and nutritional and exercise therapy. Finally, we discuss the future of diagnostic and prognostic approaches guided by machine and deep-learning models trained and validated on big data to identify patients for whom these approaches will yield the greatest benefits. A deeper understanding of the pathophysiology of CCI and PICS and continued investigation into novel therapies harbor the potential to improve the current dismal long-term outcomes for critically ill post-injury and post-infection patients.
Collapse
Affiliation(s)
- Hiroyuki Horiguchi
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States.,Department of Surgery, National Defense Medical College, Tokorozawa, Japan
| | - Tyler J Loftus
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Russell B Hawkins
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Steven L Raymond
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Julie A Stortz
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - McKenzie K Hollen
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Brett P Weiss
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Elizabeth S Miller
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Azra Bihorac
- Department of Medicine, University of Florida College of Medicine, Gainesville, FL, United States
| | - Shawn D Larson
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Alicia M Mohr
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Scott C Brakenridge
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Hironori Tsujimoto
- Department of Surgery, National Defense Medical College, Tokorozawa, Japan
| | - Hideki Ueno
- Department of Surgery, National Defense Medical College, Tokorozawa, Japan
| | - Frederick A Moore
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Lyle L Moldawer
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Philip A Efron
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | | |
Collapse
|
6
|
Kong Y, Li Y, Zhang W, Yuan S, Winkler R, Kröhnert U, Han J, Lin T, Zhou Y, Miao P, Wang B, Zhang J, Yu Z, Zhang Y, Kosan C, Zeng H. Sepsis-Induced Thymic Atrophy Is Associated with Defects in Early Lymphopoiesis. Stem Cells 2016; 34:2902-2915. [PMID: 27422171 DOI: 10.1002/stem.2464] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 06/28/2016] [Accepted: 07/06/2016] [Indexed: 12/24/2022]
Abstract
Impaired T lymphopoiesis is associated with immunosuppression of the adaptive immune response and plays a role in the morbidity and mortality of patients and animal models of sepsis. Although previous studies examined several intrathymic mechanisms that negatively affect T lymphopoiesis, the extrathymic mechanisms remain poorly understood. Here, we report a dramatic decrease in the percentage of early T lineage progenitors (ETPs) in three models of sepsis in mice (cecal ligation and puncture, lipopolysaccharide continuous injection, and poly I:C continuous injection). However, septic mice did not show a decrease in the number of bone marrow (BM) precursor cells. Instead, the BM progenitors for ETPs expressed reduced mRNA levels of CC chemokine receptor (CCR) 7, CCR9 and P-selectin glycoprotein ligand 1, and exhibited impaired homing capacity in vitro and in vivo. Furthermore, RNA-Seq analysis and real-time PCR showed a marked downregulation of several lymphoid-related genes in hematopoietic stem and progenitor cells. Hematopoietic stem and progenitor cells differentiated into myeloid cells but failed to generate T lymphocytes in vitro and in vivo. Our results indicate that the depletion of ETPs in septic mice might be a consequence of an impaired migration of BM progenitors to the thymus, as well as a defect in lymphoid lineage commitment. Stem Cells 2016;34:2902-2915.
Collapse
Affiliation(s)
- Yaxian Kong
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Emerging Infectious Diseases, Beijing, China
| | - Yajie Li
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Emerging Infectious Diseases, Beijing, China
| | - Weimei Zhang
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Emerging Infectious Diseases, Beijing, China
| | - Shaoxin Yuan
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Emerging Infectious Diseases, Beijing, China
| | - René Winkler
- Department of Biochemistry, Center for Molecular Biomedicine (CMB), Friedrich-Schiller-University, Jena, Germany
| | - Ulrike Kröhnert
- Department of Biochemistry, Center for Molecular Biomedicine (CMB), Friedrich-Schiller-University, Jena, Germany
| | - Junyan Han
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Emerging Infectious Diseases, Beijing, China
| | - Tao Lin
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Emerging Infectious Diseases, Beijing, China
| | - Yu Zhou
- Department of Immunology, School of Basic Medical Sciences, Key Laboratory of Medical Immunology (Ministry of Health), Peking University Health Science Center, Beijing, China
| | - Peng Miao
- Department of Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Beibei Wang
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Emerging Infectious Diseases, Beijing, China
| | - Jianping Zhang
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Emerging Infectious Diseases, Beijing, China
| | - Zhengya Yu
- Department of Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Yu Zhang
- Department of Immunology, School of Basic Medical Sciences, Key Laboratory of Medical Immunology (Ministry of Health), Peking University Health Science Center, Beijing, China
| | - Christian Kosan
- Department of Biochemistry, Center for Molecular Biomedicine (CMB), Friedrich-Schiller-University, Jena, Germany
| | - Hui Zeng
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Emerging Infectious Diseases, Beijing, China
| |
Collapse
|
7
|
Abstract
In this meta-study, we aimed to integrate biological insights gained from two levels of -omics analyses on the response to systemic inflammation induced by lipopolysaccharide in humans. We characterized the interplay between plasma metabolite compositions and transcriptional response of leukocytes through integration of transcriptomics with plasma metabonomics. We hypothesized that the drastic changes in the immediate environment of the leukocytes might have an adaptive effect on shaping their transcriptional response in conjunction with the initial inflammatory stimuli. Indeed, we observed that leukocytes, most notably, tune the activity of lipid- and protein-associated processes at the transcriptional level in accordance with the fluctuations in metabolite compositions of surrounding plasma. A closer look into the transcriptional control of only metabolic pathways uncovered alterations in bioenergetics and defenses against oxidative stress closely associated with mitochondrial dysfunction and shifts in energy production observed during inflammatory processes.
Collapse
|
8
|
Sahakian E, Powers JJ, Chen J, Deng SL, Cheng F, Distler A, Woods DM, Rock-Klotz J, Sodre AL, Youn JI, Woan KV, Villagra A, Gabrilovich D, Sotomayor EM, Pinilla-Ibarz J. Histone deacetylase 11: A novel epigenetic regulator of myeloid derived suppressor cell expansion and function. Mol Immunol 2014; 63:579-85. [PMID: 25155994 DOI: 10.1016/j.molimm.2014.08.002] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 07/29/2014] [Accepted: 08/03/2014] [Indexed: 12/14/2022]
Abstract
Myeloid-derived suppressor cells (MDSCs), a heterogeneous population of cells capable of suppressing anti-tumor T cell function in the tumor microenvironment, represent an imposing obstacle in the development of cancer immunotherapeutics. Thus, identifying elements essential to the development and perpetuation of these cells will undoubtedly improve our ability to circumvent their suppressive impact. HDAC11 has emerged as a key regulator of IL-10 gene expression in myeloid cells, suggesting that this may represent an important targetable axis through which to dampen MDSC formation. Using a murine transgenic reporter model system where eGFP expression is controlled by the HDAC11 promoter (Tg-HDAC11-eGFP), we provide evidence that HDAC11 appears to function as a negative regulator of MDSC expansion/function in vivo. MDSCs isolated from EL4 tumor-bearing Tg-HDAC11-eGFP display high expression of eGFP, indicative of HDAC11 transcriptional activation at steady state. In striking contrast, immature myeloid cells in tumor-bearing mice display a diminished eGFP expression, implying that the transition of IMC to MDSC's require a decrease in the expression of HDAC11, where we postulate that it acts as a gate-keeper of myeloid differentiation. Indeed, tumor-bearing HDAC11-knockout mice (HDAC11-KO) demonstrate a more suppressive MDSC population as compared to wild-type (WT) tumor-bearing control. Notably, the HDAC11-KO tumor-bearing mice exhibit enhanced tumor growth kinetics when compare to the WT control mice. Thus, through a better understanding of this previously unknown role of HDAC11 in MDSC expansion and function, rational development of targeted epigenetic modifiers may allow us to thwart a powerful barrier to efficacious immunotherapies.
Collapse
Affiliation(s)
- Eva Sahakian
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States; Department of Malignant Hematology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
| | - John J Powers
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
| | - Jie Chen
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
| | - Susan L Deng
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
| | - Fengdong Cheng
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
| | - Allison Distler
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
| | - David M Woods
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
| | - Jennifer Rock-Klotz
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
| | - Andressa L Sodre
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
| | - Je-In Youn
- The Wistar Institute, Philadelphia, PA, United States
| | - Karrune V Woan
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
| | - Alejandro Villagra
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
| | | | - Eduardo M Sotomayor
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States; Department of Malignant Hematology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
| | - Javier Pinilla-Ibarz
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States; Department of Malignant Hematology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States.
| |
Collapse
|
9
|
Cuenca AG, Cuenca AL, Gentile LF, Efron PA, Islam S, Moldawer LL, Kays DW, Larson SD. Delayed emergency myelopoiesis following polymicrobial sepsis in neonates. Innate Immun 2014; 21:386-91. [PMID: 25106654 DOI: 10.1177/1753425914542445] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 05/26/2014] [Indexed: 12/20/2022] Open
Abstract
Neonates have increased susceptibility to infection, which leads to increased mortality. Whether or not this as a result of implicit deficits in neonatal innate immune function or recapitulation of innate immune effector cell populations following infection is unknown. Here, we examine the process of emergency myelopoiesis whereby the host repopulates peripheral myeloid cells lost following the initial infectious insult. As early inflammatory responses are often dependent upon NF-κB and type I IFN signaling, we also examined whether the absence of MyD88, TRIF or MyD88 and TRIF signaling altered the myelopoietic response in neonates to polymicrobial sepsis. Following neonatal polymicrobial septic challenge, hematopoietic stem cell (HSC) expansion in bone marrow and the spleen were both attenuated and delayed in neonates compared with adults. Similar reductions in other precursors were observed in neonates. Similar to adult studies, the expansion of progenitor stem cell populations was also seen in the absence of MyD88 and/or TRIF signaling. Overall, neonates have impaired emergency myelopoiesis in response to sepsis compared with young adults. Despite reports that this expansion may be related to TLR signaling, our data suggest that other factors may be important, as TRIF(-/-) and MyD88(-/-) neonatal HSCs are still able to expand in response to polymicrobial neonatal sepsis.
Collapse
Affiliation(s)
- Alex G Cuenca
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, USA
| | - Angela L Cuenca
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, USA
| | - Lori F Gentile
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, USA
| | - Philip A Efron
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, USA
| | - Saleem Islam
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, USA
| | - Lyle L Moldawer
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, USA
| | - David W Kays
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, USA
| | - Shawn D Larson
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, USA
| |
Collapse
|
10
|
Abstract
Interleukin-1 receptor-associated kinase (IRAK1) is a key regulatory protein in TLR/IL1R-mediated cell activation during inflammatory response. Studies indicated that pending on the nature of the used inflammatory model, downregulation of IRAK1 may be beneficial or detrimental. However, the role of IRAK1 in affecting outcome in polymicrobial sepsis is unknown. We tested this question using an IRAK1-deficient mouse strain and cecal ligation and puncture (CLP) procedure, which is a clinically relevant rodent septic model. Sepsis-induced mortality was markedly lower in IRAK1-deficient mice (35 %) compared to WT (85 %). Sepsis-induced increases in blood IL-6 and IL-10 levels were blunted at 6 h post-CLP in IRAK1 deficiency compared to WT, but cytokine levels were similar at 20 h post-CLP. Sepsis-induced blood granulocytosis and depletion of splenic B cells were also blunted in IRAK1-deficient mice as compared to WT. Analysis of TLR-mediated cytokine responses by IRAK1-deficient and WT macrophages ex vivo indicated a TLR4-dependent downregulation of IL-6 and IL1β in IRAK1 deficiency, whereas TLR2-dependent responses were unaffected. TLR7/8-mediated IL-6, IL1β, and IL-10 production was also blunted in IRAK1 macrophages as compared to WT. The study shows that IRAK1 deficiency impacts multiple TLR-dependent pathways and decreases early cytokine responses following polymicrobial sepsis. The delayed inflammatory response caused by the lack of IRAK1 expression is beneficial, as it manifests a marked increased chance of survival after polymicrobial sepsis.
Collapse
|
11
|
Chandra R, Federici S, Németh ZH, Csóka B, Thomas JA, Donnelly R, Spolarics Z. Cellular mosaicism for X-linked polymorphisms and IRAK1 expression presents a distinct phenotype and improves survival following sepsis. J Leukoc Biol 2013; 95:497-507. [PMID: 24193737 DOI: 10.1189/jlb.0713397] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
ChrX cellular mosaicism for X-linked genetic polymorphisms in females versus the single ChrX representation in males denotes a genetic difference, which may contribute to gender bias in the inflammatory response. This hypothesis was tested in female F1 offspring of consomic mice (BL6J-ChrX(A/J)/NaJ) that were homokaryotic or mosaic for the active BL6 and AJ ChrXs or for IRAK1 deficiency linked to the BL6 ChrX. Sepsis was initiated by CLP. IRAK1-deficient and IRAK1-mosaic mice showed similar protection from sepsis-induced mortality and reduced IL-6 and IL-10 release compared with WT. BM cellularity and blood B cell counts were increased in naive IRAK1-mosaic mice compared with WT-mosaic or IRAK1-deficient animals. Sepsis-induced BM cell depletion was greater in IRAK1-mosaic mice compared with WT-mosaic or IRAK1-deficient subjects, whereas splenic B and T cell depletion was less in IRAK1-mosaic and IRAK1-deficient than WT-mosaic mice. Skewing toward AJ or BL6-ChrX-expressing cells was assessed by testing allele-specific expression of strain-variant Xkrx and BTK genes. In naive IRAK1-mosaic mice, BM and blood cells with the active BL6-ChrX, were greater than cells expressing the AJ-ChrX (cell ratio 2.5 in IRAK1-mosaic; 1.5 in WT-mosaic mice). Sepsis decreased cell ratios more in IRAK1-mosaic than in WT-mosaic mice. The study reveals functional variability in cellular mosaicism for IRAK1 expression and natural X-linked polymorphisms during sepsis. Mosaicism for IRAK1 expression is accompanied by skewing toward deficient immune cell populations, producing a phenotype that is preconditioned for improved sepsis outcome similar to that observed in IRAK1 deficiency.
Collapse
Affiliation(s)
- Rachna Chandra
- 1.Rutgers New Jersey Medical School, 185 South Orange Ave., MSB G-578, Newark, NJ 07103, USA.
| | | | | | | | | | | | | |
Collapse
|
12
|
Zimecki M, Artym J, Kocięba M, Kaleta-Kuratewicz K, Kuropka P, Kuryszko J, Kruzel M. Homologous lactoferrin triggers mobilization of the myelocytic lineage of bone marrow in experimental mice. Stem Cells Dev 2013; 22:3261-70. [PMID: 23879888 DOI: 10.1089/scd.2013.0242] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The effects of lactoferrin (LF), an iron binding protein, on myelopoiesis have been studied extensively in vitro and in vivo in human and murine models over the past three decades. Due to the lack of high-quality homologous LFs, however, the conclusions are still unequivocal. Recently, both human and murine LFs have become available as recombinant products expressed in Chinese hamster ovary (CHO) cell lines showing mammalian type of glycosylation, thus apparently species compatible. In this study, we present the effects of homologous recombinant mouse LF (rmLF) on myelopoiesis in CBA mice. The myelocytic lineage has been assessed by their appearance in circulating blood and bone marrow, and induction of relevant mediators of inflammation. Intravenous injection of rmLF (100 μg/mouse) resulted in a significantly increased number of myelocytic cells in the circulating blood after 24 h. Mouse serum transferrin, used as a control protein, showed no stimulatory effect. The increase in output of neutrophil precursors, neutrophils, and eosinophils was correlated with a twofold increase of leukocyte concentrations. The analysis of the bone marrow sections confirmed increased myelopoiesis. The alterations in the bone marrow cell composition were statistically significant regarding mature neutrophils (10.8% vs. 27.7%), metamyelocytes (11.4% vs. 16.0%), and myelocytes (2.4% vs. 4.0%). The mobilization of the myelocytic cells in the bone marrow and the increased output of these cells into circulation were accompanied by elevated serum concentrations of interleukin-6 at 6 h and haptoglobin at 24 h following administration of rmLF. In conclusion, the homologous LF elicits significant and transient myelopoiesis in experimental mice.
Collapse
Affiliation(s)
- Michał Zimecki
- 1 The Institute of Immunology and Experimental Therapy , Polish Academy of Sciences, Wrocław, Poland
| | | | | | | | | | | | | |
Collapse
|
13
|
Vagima Y, Levy Y, Gur D, Tidhar A, Aftalion M, Abramovich H, Zahavy E, Zauberman A, Flashner Y, Shafferman A, Mamroud E. Early sensing of Yersinia pestis airway infection by bone marrow cells. Front Cell Infect Microbiol 2012. [PMID: 23189271 PMCID: PMC3505838 DOI: 10.3389/fcimb.2012.00143] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Bacterial infection of the lungs triggers a swift innate immune response that involves the production of cytokines and chemokines that promote recruitment of immune cells from the bone marrow (BM) into the infected tissue and limit the ability of the pathogen to replicate. Recent in vivo studies of pneumonic plague in animal models indicate that the pulmonary pro-inflammatory response to airway infection with Yersinia pestis is substantially delayed in comparison to other pathogens. Consequently, uncontrolled proliferation of the pathogen in the lungs is observed, followed by dissemination to internal organs and death. While the lack of an adequate early immune response in the lung is well described, the response of BM-derived cells is poorly understood. In this study, we show that intranasal (i.n.) infection of mice with a fully virulent Y. pestis strain is sensed early by the BM compartment, resulting in a reduction in CXCR4 levels on BM neutrophils and their subsequent release into the blood 12 hours (h) post infection. In addition, increased levels of BM-derived hematopoietic stem and progenitor cells (HSPC) were detected in the blood early after infection. Mobilization of both immature and mature cells was accompanied by the reduction of BM SDF-1 (CXCL-12) levels and the reciprocal elevation of SDF-1 in the blood 24 h post infection. RT-PCR analysis of RNA collected from total BM cells revealed an early induction of myeloid-associated genes, suggesting a prompt commitment to myeloid lineage differentiation. These findings indicate that lung infection by Y. pestis is sensed by BM cells early after infection, although bacterial colonization of the BM occurs at late disease stages, and point on a potential cross-talk between the lung and the BM at early stages of pneumonic plague.
Collapse
Affiliation(s)
- Yaron Vagima
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research Ness Ziona, Israel
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Human monocytes differentiate into dendritic cells subsets that induce anergic and regulatory T cells in sepsis. PLoS One 2012; 7:e47209. [PMID: 23071758 PMCID: PMC3468528 DOI: 10.1371/journal.pone.0047209] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 09/11/2012] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Sepsis is a multifactorial pathology with high susceptibility to secondary infections. Innate and adaptive immunity are affected in sepsis, including monocyte deactivation. METHODOLOGY/PRINCIPAL FINDINGS To better understand the effects of alterations in monocytes on the regulation of immune responses during sepsis, we analyzed their differentiation in dendritic cell (DC). Cells from septic patients differentiated overwhelmingly into CD1a-negative DC, a population that was only a minor subset in controls and that is so far poorly characterized. Analysis of T cell responses induced with purified CD1a-negative and CD1a+ DC indicated that (i) CD1a-negative DC from both healthy individuals and septic patients fail to induce T cell proliferation, (ii) TGFβ and IL-4 were strongly produced in mixed leukocyte reaction (MLR) with control CD1a-negative DC; reduced levels were produced with patients DC together with a slight induction of IFNγ, (iii) compared to controls, CD1a+ DC derived from septic patients induced 3-fold more Foxp3+ T cells. CONCLUSION/SIGNIFICANCE Our results indicate a strong shift in DC populations derived from septic patients' monocytes with expanded cell subsets that induce either T cell anergy or proliferation of T cells with regulatory potential. Lower regulatory cytokines induction on a per cell basis by CD1a-negative dendritic cells from patients points however to a down regulation of immune suppressive abilities in these cells.
Collapse
|
15
|
Swirski FK. The spatial and developmental relationships in the macrophage family. Arterioscler Thromb Vasc Biol 2011; 31:1517-22. [PMID: 21677294 DOI: 10.1161/atvbaha.110.221150] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A classic study in 1968 proposed that bone marrow-dwelling promonocytes differentiate to monocytes, which then intravasate, circulate, and, on tissue entry, differentiate to sessile macrophages. Since then, understanding of the macrophage family relationship has undergone substantial enhancement and occasional revision. It is currently recognized that in addition to their role in the bone marrow, hematopoietic progenitors circulate and give rise to their descendants in extramedullary niches. Monocytes, of which there are several subsets, are not merely circulating macrophage precursors but participate in the immune response in their own right. Macrophages are highly heterogeneous and, as recent studies indicate, can arise in the absence of a monocyte intermediate. These spatial and developmental relationships reveal a complex interactive network and underscore the importance of context in evaluating biological systems. The observations have significant implications for how we image, target, and treat disease.
Collapse
Affiliation(s)
- Filip K Swirski
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Simches Research Bldg, 185 Cambridge St, Boston, MA 02114, USA.
| |
Collapse
|
16
|
Local regulation of neutrophil elastase activity by endogenous α1-antitrypsin in lipopolysaccharide-primed hematological cells. Thromb Res 2011; 128:283-92. [PMID: 21624645 DOI: 10.1016/j.thromres.2011.04.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Revised: 04/14/2011] [Accepted: 04/26/2011] [Indexed: 11/20/2022]
Abstract
Neutrophil elastase released from activated neutrophils contributes in combating bacterial infection. While chronic inflammation results in anemia and decreased bone marrow activities, little is known about the effect of neutrophil elastase on hematological cell growth in severe inflammatory states. Here, we demonstrated that α1-antitrypsin, a physiological inhibitor of neutrophil elastase, functions as a regulator for cell growth by neutralizing neutrophil elastase activity in lipopolysaccharide-primed hematological cells. HL-60 cells were resistant to neutrophil elastase, as they also expressed α1-antitrypsin. The growth of HL-60 cells transduced with a LentiLox-short hairpin α1-antitrypsin vector was significantly suppressed by neutrophil elastase or lipopolysaccharide. When CD34(+) progenitor cells were differentiated towards a granulocytic lineage, they concomitantly expressed neutrophil elastase and α1-antitrypsin and prevented neutrophil elastase-induced growth inhibition. These results suggest that granulocytes might protect themselves from neutrophil elastase-induced cellular damage by efficiently neutralizing its activity through the simultaneous secretion of endogenous α1-antitrypsin.
Collapse
|
17
|
Chandra R, Federici S, Németh ZH, Horváth B, Pacher P, Haskó G, Deitch EA, Spolarics Z. Female X-chromosome mosaicism for NOX2 deficiency presents unique inflammatory phenotype and improves outcome in polymicrobial sepsis. THE JOURNAL OF IMMUNOLOGY 2011; 186:6465-73. [PMID: 21502376 DOI: 10.4049/jimmunol.1100205] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Cellular X-chromosome mosaicism, which is unique to females, may be advantageous during pathophysiological challenges compared with the single X-chromosome machinery of males, and it may contribute to gender dimorphism in the inflammatory response. We tested the hypothesis of whether cellular mosaicism for the X-linked gp91phox (NOX2) deficiency, the catalytic component of the superoxide anion-generating NADPH oxidase complex, is advantageous during polymicrobial sepsis. Deficient, wild-type (WT), and heterozygous/mosaic mice were compared following polymicrobial sepsis initiated by cecal ligation and puncture. Compared with WT littermates, sepsis-induced mortality was improved in deficient mice, as well as in mosaic animals carrying both deficient and WT phagocyte subpopulations. In contrast, blood bacterial counts were greatest in deficient mice. Consistent with poor survival, WT mice also showed the most severe organ damage following sepsis. In mosaic animals, the deficient neutrophil subpopulations displayed increased organ recruitment and elevated CD11b membrane expression compared with WT neutrophil subpopulations within the same animal. The dynamics of sepsis-induced blood and organ cytokine content and WBC composition changes, including lymphocyte subsets in blood and bone marrow, showed differences among WT, deficient, and mosaic subjects, indicating that mosaic mice are not simply the average of the deficient and WT responses. Upon oxidative burst, interchange of oxidants between WT and deficient neutrophil subpopulations occurred in mosaic mice. This study suggests that mice mosaic for gp91phox expression have multiple advantages compared with WT and deficient mice during the septic course.
Collapse
Affiliation(s)
- Rachna Chandra
- Department of Surgery, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, Newark, NJ 07103, USA
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Baldridge MT, King KY, Goodell MA. Inflammatory signals regulate hematopoietic stem cells. Trends Immunol 2011; 32:57-65. [PMID: 21233016 DOI: 10.1016/j.it.2010.12.003] [Citation(s) in RCA: 272] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Revised: 12/02/2010] [Accepted: 12/09/2010] [Indexed: 02/06/2023]
Abstract
Hematopoietic stem cells (HSCs) are the progenitors of all blood and immune cells, yet their role in immunity is not well understood. Most studies have focused on the ability of committed lymphoid and myeloid precursors to replenish immune cells during infection. Recent studies, however, have indicated that HSCs also proliferate in response to systemic infection and replenish effector immune cells. Inflammatory signaling molecules including interferons, tumor necrosis factor-α and Toll-like receptors are essential to the HSC response. Observing the biology of HSCs through the lens of infection and inflammation has led to the discovery of an array of immune-mediators that serve crucial roles in HSC regulation and function.
Collapse
Affiliation(s)
- Megan T Baldridge
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | |
Collapse
|
19
|
Female X-chromosome mosaicism for gp91phox expression diversifies leukocyte responses during endotoxemia. Crit Care Med 2010; 38:2003-10. [PMID: 20657276 DOI: 10.1097/ccm.0b013e3181eb9ed6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To test the hypothesis, using an animal model, whether female X-chromosome mosaicism for inflammatory gene expression could contribute to the gender dimorphic response during the host response. X-chromosome-linked genetic polymorphisms present a unique biological condition because females display heterozygous cellular mosaicism, due to the fact that either the maternal or the paternal X chromosomes are inactivated in each individual cell in females. This is in contrast with the conditions in males who carry exclusively the maternal X chromosome. DESIGN Prospective, randomized, laboratory investigation. SETTINGS University research laboratory. SUBJECTS Female mice deficient, heterozygous (mosaic) or WT for the X-linked gp91phox. INTERVENTIONS We compared selected inflammatory markers among heterozygous (mosaics), WT and homozygous deficient animals in response to in vivo lipopolysaccharide (Escherichia coli, 20 mg/kg body weight). To test individual mosaic subpopulations of polymorphonuclear neutrophil responses, we also developed a flow cytometry assay that identifies the active parental X chromosomes in individual cells, using gp91phox expression as a marker. MEASUREMENTS AND MAIN RESULTS Heterozygous mosaic mice presented white blood cell trafficking patterns similar to that observed in WT mice, despite the fact that the deficient subpopulation in mosaic animals displayed increased cell activation as reflected in elevated neutrophil CD11b expression and splenic infiltration. Mosaic animals also displayed splenic neutrophil infiltration, which was skewed toward the deficient subpopulation. Observations on splenic T-cell depletion and post lipopolysaccharide interleukin-10 responses indicated that the inflammatory response in mosaic animals does not simply display an average of the deficient and WT responses, but the mosaic subjects display a uniquely characteristic response. CONCLUSIONS The study supports the notion that female X chromosome mosaicism for polymorphic gene expression represents a unique condition, which may contribute to the gender dimorphic character of the inflammatory response. Mosaicism for X-linked polymorphisms may have clinical significance and needs consideration in genetic association or gender-related clinical studies.
Collapse
|
20
|
MicroRNA-146a disrupts hematopoietic differentiation and survival. Exp Hematol 2010; 39:167-178.e4. [PMID: 20933052 DOI: 10.1016/j.exphem.2010.09.011] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2010] [Revised: 09/15/2010] [Accepted: 09/29/2010] [Indexed: 11/21/2022]
Abstract
OBJECTIVE MicroRNAs (miRNAs) are short noncoding RNAs capable of exerting dramatic effects by postranscriptionally regulating numerous messenger RNA targets. Toll-like receptor-4 (TLR-4) activation by lipopolysaccharide (LPS) induces the expression of three miRNAs in myeloid cells. The aim of this study was to investigate the in vivo consequences of expressing one of the LPS-induced miRNA, miR-146a, in bone marrow cells. MATERIAL AND METHODS The role of miR-146a in hematopoiesis was investigated by using retroviral infection and overexpression of miR-146a in mouse hematopoietic stem/progenitor cells, followed by bone marrow transplantations. RESULTS miR-146a is mainly expressed in primitive hematopoietic stem cells and T lymphocytes. Overexpression of miR-146a in hematopoietic stem cells, followed by bone marrow transplantation, resulted in a transient myeloid expansion, decreased erythropoiesis, and impaired lymphopoiesis in select anatomical locations. Enforced expression of miR-146a also impaired bone marrow reconstitution in recipient mice and reduced survival of hematopoietic stem cells. CONCLUSIONS Our results indicate that miR-146a, an LPS-induced miRNA, regulates multiple aspects of hematopoietic differentiation and survival. Furthermore, the consequences of miR-146a expression in hematopoietic cells mimics some of the reported effects with acute LPS exposure.
Collapse
|
21
|
Phosphoinositide-dependent kinase 1 provides negative feedback inhibition to Toll-like receptor-mediated NF-kappaB activation in macrophages. Mol Cell Biol 2010; 30:4354-66. [PMID: 20584979 DOI: 10.1128/mcb.00069-10] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Phosphoinositide-dependent kinase 1 (PDK-1) represents an important signaling component in the phosphatidylinositol 3-kinase (PI3K) pathway, which plays an essential role in controlling a coordinated innate immune response. Here, we show that mice with conditional disruption of PDK-1 specifically in myeloid lineage cells (PDK-1(Deltamyel) mice) show enhanced susceptibility to lipopolysaccharide (LPS)-induced septic shock accompanied by exaggerated liver failure. Furthermore, primary macrophages derived from PDK-1(Deltamyel) mice lack LPS- and Pam3CSK4-stimulated AKT activity but exhibit increased mRNA expression and release of tumor necrosis factor alpha (TNF-alpha) and interleukin 6 (IL-6). Moreover, LPS- and Pam3CSK4-stimulated primary macrophages exhibit enhanced phosphorylation and degradation of IkappaBalpha. While immediate upstream Toll-like receptor 4 (TLR-4)-induced signaling, including IL-1 receptor (IL-1R)-associated protein kinase (IRAK) phosphorylation, is unaltered in the absence of PDK-1, macrophages from PDK-1(Deltamyel) mice exhibit prolonged ubiquitination of tumor necrosis factor receptor-associated factor 6 (TRAF-6) in response to LPS stimulation. These experiments reveal a novel PDK-1-dependent negative feedback inhibition of TLR-induced NF-kappaB activation in macrophages in vivo.
Collapse
|
22
|
CB2 cannabinoid receptors contribute to bacterial invasion and mortality in polymicrobial sepsis. PLoS One 2009; 4:e6409. [PMID: 19641602 PMCID: PMC2712683 DOI: 10.1371/journal.pone.0006409] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2009] [Accepted: 06/22/2009] [Indexed: 02/06/2023] Open
Abstract
Background Sepsis is a major healthcare problem and current estimates suggest that the incidence of sepsis is approximately 750,000 annually. Sepsis is caused by an inability of the immune system to eliminate invading pathogens. It was recently proposed that endogenous mediators produced during sepsis can contribute to the immune dysfunction that is observed in sepsis. Endocannabinoids that are produced excessively in sepsis are potential factors leading to immune dysfunction, because they suppress immune cell function by binding to G-protein-coupled CB2 receptors on immune cells. Here we examined the role of CB2 receptors in regulating the host's response to sepsis. Methods and Findings The role of CB2 receptors was studied by subjecting CB2 receptor wild-type and knockout mice to bacterial sepsis induced by cecal ligation and puncture. We report that CB2 receptor inactivation by knockout decreases sepsis-induced mortality, and bacterial translocation into the bloodstream of septic animals. Furthermore, CB2 receptor inactivation decreases kidney and muscle injury, suppresses splenic nuclear factor (NF)-κB activation, and diminishes the production of IL-10, IL-6 and MIP-2. Finally, CB2 receptor deficiency prevents apoptosis in lymphoid organs and augments the number of CD11b+ and CD19+ cells during CLP. Conclusions Taken together, our results establish for the first time that CB2 receptors are important contributors to septic immune dysfunction and mortality, indicating that CB2 receptors may be therapeutically targeted for the benefit of patients suffering from sepsis.
Collapse
|
23
|
Interleukin-6 aborts lymphopoiesis and elevates production of myeloid cells in systemic lupus erythematosus-prone B6.Sle1.Yaa animals. Blood 2009; 113:4534-40. [PMID: 19224760 DOI: 10.1182/blood-2008-12-192559] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We previously reported the inhibitory action of interleukin-6 (IL-6) on B lymphopoiesis with SHIP(-/-) mice and showed that IL-6 biases lineage commitment toward myeloid cell fates in vitro and in vivo. Because elevated IL-6 is a feature of chronic inflammatory diseases, we applied an animal model of systemic lupus erythematosus (SLE) to determine whether IL-6 has similar effects on hematopoiesis. We found that IL-6 levels were elevated in the B6.Sle1.Yaa mice, and the increase was accompanied by losses of CD19(+) B cells and more primitive B-lymphoid progenitors in bone marrow. Both the CD19(+) B-cell population and their progenitors recovered in an IL-6(-/-) background. The uncommitted progenitors, containing precursors for both lymphoid and myeloid fates, expressed IL-6 receptor-alpha chain and responded to IL-6 by phosphorylation of STAT3. IL-6 stimulation caused uncommitted progenitors to express the Id1 transcription factor, which is known to inhibit lymphopoiesis and elevate myelopoiesis, and its expression was MAPK dependent. We conclude that chronic inflammatory conditions accompanied by increased IL-6 production bias uncommitted progenitors to a myeloid fate by inducing Id1 expression.
Collapse
|