1
|
Lactococcus lactis subsp. Cremoris C60 restores T Cell Population in Small Intestinal Lamina Propria in Aged Interleukin-18 Deficient Mice. Nutrients 2020; 12:nu12113287. [PMID: 33121026 PMCID: PMC7693701 DOI: 10.3390/nu12113287] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 10/20/2020] [Accepted: 10/23/2020] [Indexed: 12/18/2022] Open
Abstract
Lactic acid bacteria (LAB), a major commensal bacterium in the small intestine, are well known beneficial bacteria which promote establishment of gut-centric immunity, such as anti-inflammation and anti-infection. In this report, we show that a LAB strain Lactococcus lactis subsp. Cremoris C60 possess an ability to activate antigen presenting cells, such as dendritic cells (DCs), and intestinal T cells which possibly support to maintain healthy intestinal immunological environment in aging process. We found that CD4+ T cells in the small intestine are dramatically decreased in aged Interleukin-18 knock out (IL-18KO) mice, associated with the impairment of IFN-γ production in the CD4+ T cells, especially in small intestinal lamina propria (LP). Surprisingly, heat killed-C60 (HK-C60) diet completely recovered the CD4+ T cells population and activity in SI-LP and over activated the population in Peyer's patches (PPs) of IL-18KO mice. The HK-C60 diet was effective approach not only to restore the number of cells, but also to recover IFN-γ production in the CD4+ T cell population in the small intestine of IL-18-deficient mice. As a possible cause in the age-associated impairment of CD4+ T cells activity in IL-18KO mice, we found that the immunological activity was downregulated in the IL-18-deficient DCs. The cytokines production and cellular activation markers expression were downregulated in the IL-18-deficient bone marrow derived dendritic cells (BMDCs) at the basal level, however, both activities were highly upregulated in HK-C60 stimulation as compared to those of WT cells. Antigen uptake was also attenuated in the IL-18-deficient BMDCs, and it was significantly enhanced in the cells as compared to WT cells in HK-60 stimulation. An in vitro antigen presentation assay showed that IFN-γ production in the CD4+ T cells was significantly enhanced in the culture of IL-18-deficient BMDCs compared with WT cells in the presence of HK-C60. Thus, we conclude that HK-C60 diet possesses an ability to restore T cells impairment in the small intestine of IL-18-deficient environment. In addition, the positive effect is based on the immunological modification of DCs function which directory influences into the promotion of effector CD4+ T cells generation in the small intestine.
Collapse
|
2
|
Guo XZJ, Thomas PG. New fronts emerge in the influenza cytokine storm. Semin Immunopathol 2017; 39:541-550. [PMID: 28555383 PMCID: PMC5580809 DOI: 10.1007/s00281-017-0636-y] [Citation(s) in RCA: 191] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 04/23/2017] [Indexed: 12/17/2022]
Abstract
Influenza virus is a significant pathogen in humans and animals with the ability to cause extensive morbidity and mortality. Exuberant immune responses induced following infection have been described as a "cytokine storm," associated with excessive levels of proinflammatory cytokines and widespread tissue damage. Recent studies have painted a more complex picture of cytokine networks and their contributions to clinical outcomes. While many cytokines clearly inflict immunopathology, others have non-pathological delimited roles in sending alarm signals, facilitating viral clearance, and promoting tissue repair, such as the IL-33-amphiregulin axis, which plays a key role in resolving some types of lung damage. Recent literature suggests that type 2 cytokines, traditionally thought of as not involved in anti-influenza immunity, may play an important regulatory role. Here, we discuss the diverse roles played by cytokines after influenza infection and highlight new, serene features of the cytokine storm, while highlighting the specific functions of relevant cytokines that perform unique immune functions and may have applications for influenza therapy.
Collapse
Affiliation(s)
- Xi-Zhi J Guo
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Integrated Biomedical Sciences Program, Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Paul G Thomas
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
- Integrated Biomedical Sciences Program, Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, 38163, USA.
| |
Collapse
|
3
|
Geva-Zatorsky N, Sefik E, Kua L, Pasman L, Tan TG, Ortiz-Lopez A, Yanortsang TB, Yang L, Jupp R, Mathis D, Benoist C, Kasper DL. Mining the Human Gut Microbiota for Immunomodulatory Organisms. Cell 2017; 168:928-943.e11. [PMID: 28215708 DOI: 10.1016/j.cell.2017.01.022] [Citation(s) in RCA: 499] [Impact Index Per Article: 71.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 12/01/2016] [Accepted: 01/19/2017] [Indexed: 12/16/2022]
Abstract
Within the human gut reside diverse microbes coexisting with the host in a mutually advantageous relationship. Evidence has revealed the pivotal role of the gut microbiota in shaping the immune system. To date, only a few of these microbes have been shown to modulate specific immune parameters. Herein, we broadly identify the immunomodulatory effects of phylogenetically diverse human gut microbes. We monocolonized mice with each of 53 individual bacterial species and systematically analyzed host immunologic adaptation to colonization. Most microbes exerted several specialized, complementary, and redundant transcriptional and immunomodulatory effects. Surprisingly, these were independent of microbial phylogeny. Microbial diversity in the gut ensures robustness of the microbiota's ability to generate a consistent immunomodulatory impact, serving as a highly important epigenetic system. This study provides a foundation for investigation of gut microbiota-host mutualism, highlighting key players that could identify important therapeutics.
Collapse
Affiliation(s)
- Naama Geva-Zatorsky
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Esen Sefik
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Lindsay Kua
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Lesley Pasman
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Tze Guan Tan
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Adriana Ortiz-Lopez
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Tsering Bakto Yanortsang
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Liang Yang
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Ray Jupp
- UCB Pharma, Slough, Berkshire SL1 3WE, UK
| | - Diane Mathis
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Christophe Benoist
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Dennis L Kasper
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
4
|
Bajwa G, DeBerardinis RJ, Shao B, Hall B, Farrar JD, Gill MA. Cutting Edge: Critical Role of Glycolysis in Human Plasmacytoid Dendritic Cell Antiviral Responses. THE JOURNAL OF IMMUNOLOGY 2016; 196:2004-9. [PMID: 26826244 DOI: 10.4049/jimmunol.1501557] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 12/28/2015] [Indexed: 12/29/2022]
Abstract
Plasmacytoid dendritic cells (pDCs) are vital to antiviral defense, directing immune responses via secretion of huge concentrations of IFN-α. These cells are critical in protecting the lung against clinically relevant respiratory viruses, particularly influenza (Flu), a virus responsible for substantial worldwide morbidity and mortality. How pDC responses to such viral pathogens are regulated, however, is poorly understood in humans. Using an unbiased approach of gene chip analysis, we discovered that Flu significantly affects metabolism in primary human pDCs. We demonstrate that Flu and RV, another common respiratory virus, induce glycolysis in pDCs and that this metabolic pathway regulates pDC antiviral functions, including IFN-α production and phenotypic maturation. Intranasal vaccination of human volunteers with live influenza virus also increases glycolysis in circulating pDCs, highlighting a previously unrecognized potential role for metabolism in regulating pDC immune responses to viral infections in humans.
Collapse
Affiliation(s)
- Gagan Bajwa
- Division of Infectious Disease, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390; Division of Pulmonary and Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390; Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Ralph J DeBerardinis
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390; McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Baomei Shao
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390; and
| | | | - J David Farrar
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Michelle A Gill
- Division of Infectious Disease, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390; Division of Pulmonary and Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390; Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390; Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390; and
| |
Collapse
|