1
|
Solórzano JL, Menéndez V, Parra E, Solis L, Salazar R, García-Cosío M, Climent F, Fernández S, Díaz E, Francisco-Cruz A, Khoury J, Jiang M, Tamegnon A, Montalbán C, Melero I, Wistuba I, De Andrea C, F. García J. Multiplex spatial analysis reveals increased CD137 expression and m-MDSC neighboring tumor cells in refractory classical Hodgkin Lymphoma. Oncoimmunology 2024; 13:2388304. [PMID: 39135889 PMCID: PMC11318683 DOI: 10.1080/2162402x.2024.2388304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/15/2024] Open
Abstract
The Hodgkin and Reed - Sternberg (HRS) cells in classical Hodgkin Lymphoma (cHL) actively modify the immune tumor microenvironment (TME) attracting immunosuppressive cells and expressing inhibitory molecules. A high frequency of myeloid cells in the TME is correlated with an unfavorable prognosis, but more specific and rare cell populations lack precise markers. Myeloid-derived suppressor cells (MDSCs) have been identified in the peripheral blood of cHL patients, where they appear to be correlated with disease aggressiveness. TNFRSF9 (CD137) is a T cell co-stimulator expressed by monocytic and dendritic cells. Its expression has also been described in HRS cells, where it is thought to play a role in reducing antitumor responses. Here, we perform qualitative and quantitative analyses of lymphocytic and MDSC subtypes and determine the CD137 cell distribution in cHL primary tumors using multiplex immunofluorescence and automated multispectral imaging. The results were correlated with patients' clinical features. Cells were stained with specific panels of immune checkpoint markers (PD-1, PD-L1, CD137), tumor-infiltrating T lymphocytes (CD3, PD-1), and monocytic cells/MDSCs (CD68, CD14, CD33, Arg-1, CD11b). This approach allowed us to identify distinct phenotypes and to analyze spatial interactions between immune subpopulations and tumor cells. The results confirm CD137 expression by T, monocytic and HRS cells. In addition, the expression of CD137, T exhausted cells, and monocytic MDSCs (m-MDSCs) in the vicinity of malignant HRS cells were associated with a worse prognosis. Our findings reveal new elements of the TME that mediate immune escape, and confirm CD137 as a candidate target for immunotherapy in cHL.
Collapse
Affiliation(s)
- José L. Solórzano
- Pathology and Molecular Department, MD Anderson Cancer Center, Madrid, Spain
- Translational Research Department, MD Anderson Foundation, Madrid, Madrid, Spain
| | - Victoria Menéndez
- Translational Research Department, MD Anderson Foundation, Madrid, Madrid, Spain
| | - Edwin Parra
- Department of Translational Molecular Pathology, MD Anderson Cancer Center, Houston, Houston, TX, USA
| | - Luisa Solis
- Department of Translational Molecular Pathology, MD Anderson Cancer Center, Houston, Houston, TX, USA
| | | | | | - Fina Climent
- Pathology Department, Hospital Universitari de Bellvitge, IDIBELL, L’Hospitalet De Llobregat, Barcelona, Spain
| | - Sara Fernández
- Pathology and Molecular Department, MD Anderson Cancer Center, Madrid, Spain
| | - Eva Díaz
- Translational Research Department, MD Anderson Foundation, Madrid, Madrid, Spain
| | | | - Joseph Khoury
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Mei Jiang
- Department of Translational Molecular Pathology, MD Anderson Cancer Center, Houston, Houston, TX, USA
| | - Auriole Tamegnon
- Department of Translational Molecular Pathology, MD Anderson Cancer Center, Houston, Houston, TX, USA
| | - Carlos Montalbán
- Translational Research Department, MD Anderson Foundation, Madrid, Madrid, Spain
| | - Ignacio Melero
- University of Navarra and Instituto de Investigación Sanitaria de Navarra, Pamplona, Navarra, Spain
| | - Ignacio Wistuba
- Department of Translational Molecular Pathology, MD Anderson Cancer Center, Houston, Houston, TX, USA
| | - Carlos De Andrea
- University of Navarra and Instituto de Investigación Sanitaria de Navarra, Pamplona, Navarra, Spain
| | - Juan F. García
- Pathology and Molecular Department, MD Anderson Cancer Center, Madrid, Spain
- Translational Research Department, MD Anderson Foundation, Madrid, Madrid, Spain
| |
Collapse
|
2
|
Ramezani F, Panahi Meymandi AR, Akbari B, Tamtaji OR, Mirzaei H, Brown CE, Mirzaei HR. Outsmarting trogocytosis to boost CAR NK/T cell therapy. Mol Cancer 2023; 22:183. [PMID: 37974170 PMCID: PMC10652537 DOI: 10.1186/s12943-023-01894-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 11/03/2023] [Indexed: 11/19/2023] Open
Abstract
Chimeric antigen receptor (CAR) NK and T cell therapy are promising immunotherapeutic approaches for the treatment of cancer. However, the efficacy of CAR NK/T cell therapy is often hindered by various factors, including the phenomenon of trogocytosis, which involves the bidirectional exchange of membrane fragments between cells. In this review, we explore the role of trogocytosis in CAR NK/T cell therapy and highlight potential strategies for its modulation to improve therapeutic efficacy. We provide an in-depth analysis of trogocytosis as it relates to the fate and function of NK and T cells, focusing on its effects on cell activation, cytotoxicity, and antigen presentation. We discuss how trogocytosis can mediate transient antigen loss on cancer cells, thereby negatively affecting the effector function of CAR NK/T cells. Additionally, we address the phenomenon of fratricide and trogocytosis-associated exhaustion, which can limit the persistence and effectiveness of CAR-expressing cells. Furthermore, we explore how trogocytosis can impact CAR NK/T cell functionality, including the acquisition of target molecules and the modulation of signaling pathways. To overcome the negative effects of trogocytosis on cellular immunotherapy, we propose innovative approaches to modulate trogocytosis and augment CAR NK/T cell therapy. These strategies encompass targeting trogocytosis-related molecules, engineering CAR NK/T cells to resist trogocytosis-induced exhaustion and leveraging trogocytosis to enhance the function of CAR-expressing cells. By overcoming the limitations imposed by trogocytosis, it may be possible to unleash the full potential of CAR NK/T therapy against cancer. The knowledge and strategies presented in this review will guide future research and development, leading to improved therapeutic outcomes in the field of immunotherapy.
Collapse
Affiliation(s)
- Faezeh Ramezani
- Division of Medical Biotechnology, Department of Medical Laboratory Sciences, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ahmad Reza Panahi Meymandi
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Behnia Akbari
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Omid Reza Tamtaji
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Christine E Brown
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope Medical Center, Duarte, CA, USA
- Department of Immuno-Oncology, City of Hope Beckman Research Institute, Duarte, CA, USA
| | - Hamid Reza Mirzaei
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- Molecular Imaging and Therapy Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
| |
Collapse
|
3
|
Epstein-Barr virus-induced ectopic CD137 expression helps nasopharyngeal carcinoma to escape immune surveillance and enables targeting by chimeric antigen receptors. Cancer Immunol Immunother 2022; 71:2583-2596. [DOI: 10.1007/s00262-022-03183-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 02/21/2022] [Indexed: 12/24/2022]
|
4
|
Wu J, Wang Y. Role of TNFSF9 bidirectional signal transduction in antitumor immunotherapy. Eur J Pharmacol 2022; 928:175097. [PMID: 35714694 DOI: 10.1016/j.ejphar.2022.175097] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 11/25/2022]
Abstract
The complex structure of the tumor microenvironment leads to the poor efficacy of tumor immunotherapy. The therapeutic adjuvant designed to enhance the effect of T cells by acting on the costimulatory molecule tumor necrosis factor superfamily member 9 (TNFSF9) has achieved good results. However, because some tumors are characterized by reduced T-cell infiltration, adjuvants acting on T cells alone may have limitations. On the other hand, the blockade of TNFSF9 reverse signalling can have an antitumor effect by reshaping the tumor microenvironment. Therefore, this paper mainly discusses the current status and potential of TNFSF9 bidirectional signalling in antitumor immunotherapy to provide new ideas for tumor immunotherapy.
Collapse
Affiliation(s)
- Jiao Wu
- Departments of Gastroenterology, Mianyang Central Hospital, Sichuan, 621000, China
| | - Yunpeng Wang
- Departments of Cardiology, Mianyang Central Hospital, Sichuan, 621000, China.
| |
Collapse
|
5
|
Ding J, Jiang N, Zheng Y, Wang J, Fang L, Li H, Yang J, Hu A, Xiao P, Zhang Q, Chai D, Zheng J, Wang G. Adenovirus vaccine therapy with CD137L promotes CD8 + DCs-mediated multifunctional CD8 + T cell immunity and elicits potent anti-tumor activity. Pharmacol Res 2022; 175:106034. [PMID: 34915126 DOI: 10.1016/j.phrs.2021.106034] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/22/2021] [Accepted: 12/10/2021] [Indexed: 11/27/2022]
Abstract
Renal carcinoma progresses aggressively in patients with metastatic disease while curative strategies are limited. Here, we constructed a recombinant non-replicating adenovirus (Ad) vaccine encoding an immune activator, CD137L, and a tumor antigen, CAIX, for treating renal carcinoma. In a subcutaneous tumor model, tumor growth was significantly suppressed in the Ad-CD137L/CAIX vaccine group compared with the single vaccine group. The induction and maturity of CD11C+ and CD8+CD11C+ dendritic cell (DC) subsets were promoted in Ad-CD137L/CAIX co-immunized mice. Furthermore, the Ad-CD137L/CAIX vaccine elicited stronger tumor-specific multifunctional CD8+ T cell immune responses as demonstrated by increased proliferation and cytolytic function of CD8+ T cells. Notably, depletion of CD8+ T cells greatly compromised the effective protection provided by Ad-CD137L/CAIX vaccine, suggesting an irreplaceable role of CD8+ T cells for the immunopotency of the vaccine. In both lung metastatic and orthotopic models, Ad-CD137L/CAIX vaccine treatment significantly decreased tumor metastasis and progression and increased the induction of tumor-specific multifunctional CD8+ T cells, in contrast to treatment with the Ad-CAIX vaccine alone. The Ad-CD137L/CAIX vaccine also augmented the tumor-specific multifunctional CD8+ T cell immune response in both orthotopic and metastatic models. These results indicated that Ad-CD137L/CAIX vaccine elicited a potent anti-tumor activity by inducing CD8+DC-mediated multifunctional CD8+ T cell immune responses. The potential strategy of CD137L-based vaccine might be served as a novel treatment for renal carcinoma or other malignant tumors.
Collapse
Affiliation(s)
- Jiage Ding
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China
| | - Nan Jiang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China; Department of Urology, Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China
| | - Yanyan Zheng
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China
| | - Jiawei Wang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China
| | - Lin Fang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China; Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China
| | - Huizhong Li
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China; Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China
| | - Jie Yang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China; Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China
| | - Ankang Hu
- Center of Animal laboratory, Xuzhou Medical University, Xuzhou, Jiangsu 221002 PR China
| | - Pengli Xiao
- Department of Hematology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, Henan 471009, PR China
| | - Qing Zhang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China; Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China
| | - Dafei Chai
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China; Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China.
| | - Junnian Zheng
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China; Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China.
| | - Gang Wang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China; Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China.
| |
Collapse
|
6
|
Regulatory T Cells Inhibit T Cell Activity by Downregulating CD137 Ligand via CD137 Trogocytosis. Cells 2021; 10:cells10020353. [PMID: 33572150 PMCID: PMC7914903 DOI: 10.3390/cells10020353] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/04/2021] [Accepted: 02/04/2021] [Indexed: 12/14/2022] Open
Abstract
CD137 is a costimulatory molecule expressed on activated T cells. CD137 ligand (CD137L) is expressed by antigen presenting cells (APC), which use the CD137-CD137L system to enhance immune responses. It was, therefore, surprising to discover CD137 expression on regulatory T cells (Treg). The function of CD137 in Treg are controversial. While some studies report that CD137 signalling converts Treg to effector T cells (Teff), other studies find that CD137-expressing Treg display a stronger inhibitory activity than CD137- Treg. Here, we describe that CD137 on Treg binds to CD137L on APC, upon which one of the two molecules is transferred via trogocytosis to the other cell, where CD137-CD137L forms a complex that is internalized and deprives APC of the immune-stimulatory CD137L. Truncated forms of CD137 that lack the cytoplasmic domain of CD137 are also able to downregulate CD137L, demonstrating that CD137 signalling is not required. Comparable data have been obtained with human and murine cells, indicating that this mechanism is evolutionarily conserved. These data describe trogocytosis of CD137 and CD137L as a new mechanism employed by Treg to control immune responses by downregulating the immunostimulatory CD137L on APC.
Collapse
|
7
|
Lee KY, Wong HY, Zeng Q, Le Lin J, Cheng MS, Kuick CH, Chang KTE, Loh AHP, Schwarz H. Ectopic CD137 expression by rhabdomyosarcoma provides selection advantages but allows immunotherapeutic targeting. Oncoimmunology 2021; 10:1877459. [PMID: 33643694 PMCID: PMC7872024 DOI: 10.1080/2162402x.2021.1877459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Rhabdomyosarcoma (RMS) is a heterogeneous soft tissue neoplasm most frequently found in children and adolescents. As the prognosis for recurrent and metastatic RMS remains poor, immunotherapies are hoped to improve quality of life and survival. CD137 is a member of tumor necrosis factor receptor family and a T cell costimulatory molecule which induces potent cellular immune responses that are able to eliminate malignant cells. Therefore, it was puzzling to find expression of CD137 on an RMS tissue microarray by multiplex staining. CD137 is not only expressed by infiltrating T cells but also by malignant RMS cells. Functional in vitro experiments demonstrate that CD137 on RMS cells is being transferred to adjacent antigen-presenting cells by trogocytosis, where it downregulates CD137 ligand, and thereby reduces T cell costimulation which results in reduced killing of RMS cells. The transfer of CD137 and the subsequent downregulation of CD137 ligand is a physiological negative feedback mechanism that is likely usurped by RMS, and may facilitate its escape from immune surveillance. In addition, CD137 signals into RMS cells and induces IL-6 and IL-8 secretion, which are linked to RMS metastasis and poor prognosis. However, the ectopic expression of CD137 on RMS cells is an Achilles’ heel that may be utilized for immunotherapy. Natural killer cells expressing an anti-CD137 chimeric antigen receptor specifically kill CD137-expressing RMS cells. Our study implicates ectopic CD137 expression as a pathogenesis mechanism in RMS, and it demonstrates that CD137 may be a novel target for immunotherapy of RMS.
Collapse
Affiliation(s)
- Kang Yi Lee
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore
| | - Hiu Yi Wong
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore
| | - Qun Zeng
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore
| | - Jia Le Lin
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore
| | - Man Si Cheng
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore
| | | | | | | | - Herbert Schwarz
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore
| |
Collapse
|
8
|
Abstract
Hodgkin lymphoma (HL) is a unique type of hematopoietic cancer that has few tumor cells but a massive infiltration of immune cells. Findings on how the cancerous Hodgkin and Reed-Sternberg (HRS) cells survive and evade immune surveillance have facilitated the development of novel immunotherapies for HL. Trogocytosis is a fast process of intercellular transfer of membrane patches, which can significantly affect immune responses. In this review, we summarize the current knowledge of how trogocytosis contributes to the suppression of immune responses in HL. We focus on the ectopic expression of CD137 on HRS cells, the cause of its expression, and its implication on developing novel therapies for HL. Further, we review data demonstrating that similar mechanisms apply to CD30, PD-L1 and CTLA-4.
Collapse
Affiliation(s)
- Qun Zeng
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore
| | - Herbert Schwarz
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore
| |
Collapse
|
9
|
Luu K, Shao Z, Schwarz H. The relevance of soluble CD137 in the regulation of immune responses and for immunotherapeutic intervention. J Leukoc Biol 2020; 107:731-738. [PMID: 32052477 DOI: 10.1002/jlb.2mr1119-224r] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 11/10/2019] [Accepted: 12/05/2019] [Indexed: 12/13/2022] Open
Abstract
CD137 is a potent costimulatory receptor. Several agonistic anti-CD137 antibodies are currently in clinical trials for tumor immunotherapy. Soluble forms of CD137 (sCD137) are generated by differential splicing and antagonize the activities of membrane-bound CD137 (mCD137) and of therapeutic CD137 agonists. sCD137 is found in sera of patients suffering from autoimmune diseases where it is a natural regulator of immune responses, and which has therapeutic potential for immune-mediated diseases. This review summarizes the current knowledge on sCD137, highlights its potential role in immunotherapy against cancer and in autoimmune diseases, and presents important issues to be addressed by future research.
Collapse
Affiliation(s)
- Khang Luu
- Department of Physiology, and Immunology Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Graduate School for Integrative Sciences & Engineering, National University of Singapore, Singapore, Singapore
| | - Zhe Shao
- Department of Physiology, and Immunology Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Herbert Schwarz
- Department of Physiology, and Immunology Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Graduate School for Integrative Sciences & Engineering, National University of Singapore, Singapore, Singapore
| |
Collapse
|
10
|
Luu K, Nickles E, Schwarz H. Destroy, what destroys you. Oncoimmunology 2019; 9:1685301. [PMID: 32002301 PMCID: PMC6959443 DOI: 10.1080/2162402x.2019.1685301] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/21/2019] [Accepted: 10/23/2019] [Indexed: 11/20/2022] Open
Abstract
New evidence indicates the importance of CD137 for controlling Epstein-Barr virus (EBV) infections. (1) Mutations in CD137 predispose to EBV-associated diseases. (2) EBV induces ectopic CD137 expression, thereby activating a negative feed-back regulation and reducing T cell costimulation. These findings suggest CD137 agonists as new treatments for EBV-associated diseases.
Collapse
Affiliation(s)
- Khang Luu
- Department of Physiology, and Immunology Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Graduate School for Integrative Sciences & Engineering, National University of Singapore, Singapore, Singapore
| | - Emily Nickles
- Department of Physiology, and Immunology Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Herbert Schwarz
- Department of Physiology, and Immunology Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Graduate School for Integrative Sciences & Engineering, National University of Singapore, Singapore, Singapore
| |
Collapse
|
11
|
Zeng Q, Zhou Y, Schwarz H. CD137L-DCs, Potent Immune-Stimulators-History, Characteristics, and Perspectives. Front Immunol 2019; 10:2216. [PMID: 31632390 PMCID: PMC6783506 DOI: 10.3389/fimmu.2019.02216] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 09/02/2019] [Indexed: 12/31/2022] Open
Abstract
Dendritic cell (DC)-based immunotherapies are being explored for over 20 years and found to be very safe. Most often, granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin-4 (IL-4)-induced monocyte-derived DCs (moDCs) are being used, which have demonstrated some life-prolonging benefit to patients of multiple tumors. However, the limited clinical response and efficacy call for the development of more potent DCs. CD137L-DC may meet this demand. CD137L-DCs are a novel type of monocyte-derived inflammatory DCs that are induced by CD137 ligand (CD137L) agonists. CD137L is expressed on the surface of antigen-presenting cells, including monocytes, and signaling of CD137L into monocytes induces their differentiation to CD137L-DCs. CD137L-DCs preferentially induce type 1 T helper (Th1) cell polarization and strong type 1 CD8+ T cell (Tc1) responses against tumor-associated viral antigens. The in vitro T cell-stimulatory capacity of CD137L-DCs is superior to that of conventional moDCs. The transcriptomic profile of CD137L-DC is highly similar to that of in vivo DCs at sites of inflammation. The strict activation dependence of CD137 expression and its restricted expression on activated T cells, NK cells, and vascular endothelial cells at inflammatory sites make CD137 an ideally suited signal for the induction of monocyte-derived inflammatory DCs in vivo. These findings and their potency encouraged a phase I clinical trial of CD137L-DCs against Epstein-Barr virus-associated nasopharyngeal carcinoma. In this review, we introduce and summarize the history, the characteristics, and the transcriptional profile of CD137L-DC, and discuss the potential development and applications of CD137L-DC.
Collapse
Affiliation(s)
- Qun Zeng
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Yubin Zhou
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Herbert Schwarz
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| |
Collapse
|
12
|
Zeng Q, Gupta A, Xin L, Poon M, Schwarz H. Plasma Factors for the Differentiation of Hodgkin's Lymphoma and Diffused Large B Cell Lymphoma and for Monitoring Remission. J Hematol 2019; 8:47-54. [PMID: 32300443 PMCID: PMC7153682 DOI: 10.14740/jh499] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 06/13/2019] [Indexed: 12/12/2022] Open
Abstract
Background Hodgkin lymphoma (HL) is one of the most frequent cancers occurring at a young age. Although diagnosis of HL is not difficult, a minimally invasive method to diagnose HL, and a radiation-free method to confirm the remission status are highly desired. Methods In this study, we employed cutting-edge Luminex technology to evaluate 67 soluble plasma proteins for their suitability for diagnosis and for confirming remission of classical HL (cHL). Results Soluble cluster of differentiation (CD)30 and CC motif chemokine ligand (CCL)22 were identified to be capable of differentiating cHL patients from healthy donors and from patients with diffuse large B cell lymphoma (DLBCL), a disease that shares many characteristics with cHL. Soluble tumor necrosis factor receptor (TNFR)2 was found to be lower in the remission than in the initial diagnosis cohort of cHL patients, and also to be lower in plasmas at remission than in plasmas at initial diagnosis from the same patients. In DLBCL plasmas, concentrations of interleukin (IL)-2, soluble IL-2 receptor and IL-31 changed in patients upon entering remission. Conclusions Measurement of these factors may: 1) provide a minimally-invasive method to diagnose and differentiate HL and DLBCL, and 2) make it possible to monitor the remission status of these patients without use of radiation-based imaging.
Collapse
Affiliation(s)
- Qun Zeng
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,NUS Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore.,Co-first authors
| | - Arunima Gupta
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Co-first authors
| | - Liu Xin
- Department of Haematology-Oncology, National University Health System, Singapore, Singapore
| | - Michelle Poon
- Department of Haematology-Oncology, National University Health System, Singapore, Singapore.,Co-senior authors
| | - Herbert Schwarz
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,NUS Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore.,Co-senior authors
| |
Collapse
|
13
|
Aravinth SP, Rajendran S, Li Y, Wu M, Yi Wong AH, Schwarz H. Epstein-Barr virus-encoded LMP1 induces ectopic CD137 expression on Hodgkin and Reed-Sternberg cells via the PI3K-AKT-mTOR pathway. Leuk Lymphoma 2019; 60:2697-2704. [PMID: 31058559 DOI: 10.1080/10428194.2019.1607330] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
CD137 is a potent co-stimulatory molecule on activated T cells, and its ligand (CD137L) is expressed on antigen presenting cells (APC). Ectopic expression of CD137 has been identified on Hodgkin Reed-Sternberg (HRS) cells, the malignant cells in Hodgkin Lymphoma (HL), and CD137 on HRS cells was found to support growth of HRS cells and escape from immune surveillance. HRS cells are mostly derived from B cells, which poses the question of how B cells acquire ectopic CD137 expression during the transformation process. HL is associated with Epstein-Barr virus (EBV) infection. We show that the EBV latent membrane protein 1 (LMP1) induces expression of CD137 in HRS cell lines. In a HL tissue microarray, 96% of the CD137-positive HL cases stained positive for LMP1. LMP1 utilizes the PI3K-AKT-mTOR pathway for inducing CD137 expression. These findings support the role of EBV in HL pathogenesis.
Collapse
Affiliation(s)
- Sneha Priya Aravinth
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,NUS Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Sakthi Rajendran
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,NUS Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Yating Li
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,NUS Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Meihui Wu
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,NUS Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Anna Hiu Yi Wong
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,NUS Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Herbert Schwarz
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,NUS Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| |
Collapse
|
14
|
Wu M, Wong HY, Lin JL, Moliner A, Schwarz H. Induction of CD137 expression by viral genes reduces T cell costimulation. J Cell Physiol 2019; 234:21076-21088. [DOI: 10.1002/jcp.28710] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 03/26/2019] [Accepted: 04/10/2019] [Indexed: 12/28/2022]
Affiliation(s)
- Meihui Wu
- Department of Physiology Yong Loo Lin School of Medicine, National University of Singapore Singapore
- Immunology Programme Life Sciences Institute, National University of Singapore Singapore
| | - Hiu Yi Wong
- Department of Physiology Yong Loo Lin School of Medicine, National University of Singapore Singapore
- Immunology Programme Life Sciences Institute, National University of Singapore Singapore
| | - Jia Le Lin
- Department of Physiology Yong Loo Lin School of Medicine, National University of Singapore Singapore
- Immunology Programme Life Sciences Institute, National University of Singapore Singapore
| | - Annalena Moliner
- Immunology Programme Life Sciences Institute, National University of Singapore Singapore
| | - Herbert Schwarz
- Department of Physiology Yong Loo Lin School of Medicine, National University of Singapore Singapore
- Immunology Programme Life Sciences Institute, National University of Singapore Singapore
| |
Collapse
|
15
|
Reed J, Wetzel SA. Trogocytosis-Mediated Intracellular Signaling in CD4 + T Cells Drives T H2-Associated Effector Cytokine Production and Differentiation. THE JOURNAL OF IMMUNOLOGY 2019; 202:2873-2887. [PMID: 30962293 DOI: 10.4049/jimmunol.1801577] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 03/13/2019] [Indexed: 12/24/2022]
Abstract
CD4+ T cells have been observed to acquire APC-derived membrane and membrane-associated molecules through trogocytosis in diverse immune settings. Despite this, the consequences of trogocytosis on the recipient T cell remain largely unknown. We previously reported that trogocytosed molecules on CD4+ T cells engage their respective surface receptors, leading to sustained TCR signaling and survival after APC removal. Using peptide-pulsed bone marrow-derived dendritic cells and transfected murine fibroblasts expressing antigenic MHC:peptide complexes as APC, we show that trogocytosis-positive CD4+ T cells display effector cytokines and transcription factor expression consistent with a TH2 phenotype. In vitro-polarized TH2 cells were found to be more efficient at performing trogocytosis than TH1 or nonpolarized CD4+ cells, whereas subsequent trogocytosis-mediated signaling induced TH2 differentiation in polarized TH1 and nonpolarized cells. Trogocytosis-positive CD4+ T cells generated in vivo also display a TH2 phenotype in both TCR-transgenic and wild-type models. These findings suggest that trogocytosis-mediated signaling impacts CD4+ T cell differentiation and effector cytokine production and may play a role in augmenting or shaping a TH2-dominant immune response.
Collapse
Affiliation(s)
- Jim Reed
- Program in Cellular, Molecular and Microbial Biology, Division of Biological Sciences, University of Montana, Missoula, MT 59812; and
| | - Scott A Wetzel
- Program in Cellular, Molecular and Microbial Biology, Division of Biological Sciences, University of Montana, Missoula, MT 59812; and .,Center for Environmental Health Sciences, University of Montana, Missoula, MT 59812
| |
Collapse
|
16
|
Nakashima M, Watanabe M, Uchimaru K, Horie R. Trogocytosis of ligand-receptor complex and its intracellular transport in CD30 signalling. Biol Cell 2018; 110:109-124. [DOI: 10.1111/boc.201800002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 01/31/2018] [Indexed: 11/30/2022]
Affiliation(s)
- Makoto Nakashima
- Department of Molecular Hematology; Faculty of Molecular Medical Biology; Graduate School of Medical Sciences; Kitasato University; Minami-ku Sagamihara Kanagawa 252-0374 Japan
- Laboratory of Tumor Cell Biology; Department of Computational Biology and Medical Sciences; Graduate School of Frontier Sciences; University of Tokyo; Minato-ku Tokyo 108-8639 Japan
| | - Mariko Watanabe
- Department of Molecular Hematology; Faculty of Molecular Medical Biology; Graduate School of Medical Sciences; Kitasato University; Minami-ku Sagamihara Kanagawa 252-0374 Japan
- Division of Hematology; Department of Laboratory Sciences; School of Allied Health Sciences; Kitasato University; Minami-ku Sagamihara Kanagawa 252-0373 Japan
| | - Kaoru Uchimaru
- Laboratory of Tumor Cell Biology; Department of Computational Biology and Medical Sciences; Graduate School of Frontier Sciences; University of Tokyo; Minato-ku Tokyo 108-8639 Japan
| | - Ryouichi Horie
- Department of Molecular Hematology; Faculty of Molecular Medical Biology; Graduate School of Medical Sciences; Kitasato University; Minami-ku Sagamihara Kanagawa 252-0374 Japan
- Division of Hematology; Department of Laboratory Sciences; School of Allied Health Sciences; Kitasato University; Minami-ku Sagamihara Kanagawa 252-0373 Japan
| |
Collapse
|
17
|
Rajendran S, Ho WT, Schwarz H. CD137 signaling in Hodgkin and Reed-Sternberg cell lines induces IL-13 secretion, immune deviation and enhanced growth. Oncoimmunology 2016; 5:e1160188. [PMID: 27471634 DOI: 10.1080/2162402x.2016.1160188] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 02/13/2016] [Accepted: 02/25/2016] [Indexed: 01/05/2023] Open
Abstract
CD137 and its ligand, CD137L, are expressed on activated T cells and antigen-presenting cells (APC), respectively, and are powerful inducers of cellular, type 1 immune responses. CD137 is ectopically expressed by Hodgkin and Reed-Sternberg (HRS) cells, the malignant cells in Hodgkin lymphoma (HL). Here we report that CD137 transmits signals into HRS cells, which induce the secretion of IL-13. IL-13 in conditioned supernatants of HRS cell lines inhibits the secretion of IFNγ by peripheral blood mononuclear cells (PBMC). Since IFNγ is essential for the development of a type 1 immune response, CD137-induced IL-13 secretion facilitates escape from immune surveillance. Further, CD137-induced IL-13 enhances the growth of HRS cell lines. CD137, IL-13 double-positive cells could be detected in the majority (58%) of HL patient samples, providing clinical evidence for a role of IL-13 induction by CD137 during HL pathogenesis. This study validates CD137 as a candidate target for immunotherapy of HL.
Collapse
Affiliation(s)
| | | | - Herbert Schwarz
- Department of Physiology; NUS Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore
| |
Collapse
|
18
|
Dharmadhikari B, Wu M, Abdullah NS, Rajendran S, Ishak ND, Nickles E, Harfuddin Z, Schwarz H. CD137 and CD137L signals are main drivers of type 1, cell-mediated immune responses. Oncoimmunology 2015; 5:e1113367. [PMID: 27141396 DOI: 10.1080/2162402x.2015.1113367] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 10/22/2015] [Accepted: 10/22/2015] [Indexed: 10/22/2022] Open
Abstract
CD137 is expressed on activated T cells and NK cells, among others, and is a potent co-stimulator of antitumor immune responses. CD137 ligand (CD137L) is expressed by antigen presenting cells (APC), and CD137L reverse signaling into APC enhances their activity. CD137-CD137L interactions as main driver of type 1, cell-mediated immune responses explains the puzzling observation that CD137 agonists which enhance antitumor immune responses also ameliorate autoimmune diseases. Upon co-stimulation by CD137, Th1 CD4+ T cells together with Tc1 CD8+ T cells and NK cells inhibit other T cell subsets, thereby promoting antitumor responses and mitigating non-type 1 auto-immune diseases.
Collapse
Affiliation(s)
- Bhushan Dharmadhikari
- Department of Physiology, and Immunology Programme, National University of Singapore , Singapore
| | - Meihui Wu
- Department of Physiology, and Immunology Programme, National University of Singapore , Singapore
| | - Nur Sharalyn Abdullah
- Department of Physiology, and Immunology Programme, National University of Singapore , Singapore
| | - Sakthi Rajendran
- Department of Physiology, and Immunology Programme, National University of Singapore , Singapore
| | - Nur Diana Ishak
- Department of Physiology, and Immunology Programme, National University of Singapore , Singapore
| | - Emily Nickles
- Department of Physiology, and Immunology Programme, National University of Singapore , Singapore
| | - Zulkarnain Harfuddin
- Department of Physiology, and Immunology Programme, National University of Singapore, Singapore; NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore
| | - Herbert Schwarz
- Department of Physiology, and Immunology Programme, National University of Singapore, Singapore; NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore
| |
Collapse
|