1
|
Li Z, Gu J, Zhu Q, Liu J, Lu H, Lu Y, Wang X. Obese donor mice splenocytes aggravated the pathogenesis of acute graft-versus-host disease via regulating differentiation of Tregs and CD4 + T cell induced-type I inflammation. Oncotarget 2017; 8:74880-74896. [PMID: 29088831 PMCID: PMC5650386 DOI: 10.18632/oncotarget.20425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 06/04/2017] [Indexed: 02/07/2023] Open
Abstract
Acute graft-versus-host disease (aGVHD) remains one of the most severe complications in organ and bone marrow transplantation, leading to much morbidity and mortality. Obesity has been associated with increased risk of development of various inflammatory diseases. Here, we investigated the in vitro and in vivo effects of obese donor splenocytes on the development of acute graft-versus-host disease (aGVHD). In this study, mixed lymphocyte reactions (MLR) in vitro showed that obese donor mouse CD4+ T cell promoted the production of interleukin-2 (IL-2), interferon (IFN)-γ and tumor necrosis factor (TNF)-α. Meanwhile, the inducible Tregs population decreased greatly in obese donor mouse CD4+ T cells' induction group, compared with normal group. Then in the murine aGVHD model, we found that obese donor splenocytes dramatically increased the severity of aGVHD through down-regulating immune tolerance while enhancing systemic and local immunity. Moreover, we showed that aGVHD induced by obese donors resulted in massive expansion of donor CD3+ T cells, release of Th1-related cytokines, interleukin-17 (IL-17) and chemokines, significant increase of Th17 cells and inhibition of CD4+CD25+Foxp3+ regulatory T cells (Tregs) and impaired suppressive ability of donor Tregs. Expression of sphingosine-1-phosphate receptor 1 (S1PR1), phosphorylated Akt, mammalian target of rapamycin (mTOR) and Raptor increased, while the phosphorylation level of SMAD3 was decreased in the skin, intestine, lung and liver from obese donor splenocytes-treated aGVHD mice. Furthermore, at mRNA and protein levels, we defined several molecules that may account for the enhanced ability of obese donor splenocytes to migrate into target organs, such as IL-2, IL-17, IFN-γ, TNF-α, CXCR3, CXCL9, CXCL10, CXCL11 and CCL3. Therefore, these results imply that obese donor cells may be related to the risk of aGVHD and helping obese donor individuals lose weight represent a compulsory clinical strategy before implementing transplantation to control aGVHD of recipients.
Collapse
Affiliation(s)
- Zengyao Li
- Liver Transplantation Center, First Affiliated Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Jian Gu
- Liver Transplantation Center, First Affiliated Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Qin Zhu
- Liver Transplantation Center, First Affiliated Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Jing Liu
- Department of Radiotherapy, First Affiliated Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Hao Lu
- Liver Transplantation Center, First Affiliated Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Yunjie Lu
- Liver Transplantation Center, First Affiliated Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Xuehao Wang
- Liver Transplantation Center, First Affiliated Hospital, Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
2
|
Chen H, Xing J, Hu X, Chen L, Lv H, Xu C, Hong D, Wu X. Inhibition of heat shock protein 90 rescues glucocorticoid-induced bone loss through enhancing bone formation. J Steroid Biochem Mol Biol 2017; 171:236-246. [PMID: 28408351 DOI: 10.1016/j.jsbmb.2017.04.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Revised: 04/07/2017] [Accepted: 04/07/2017] [Indexed: 01/05/2023]
Abstract
Endogenous glucocorticoids (GCs) support normal bone development and bone mass maintenance, whereas long-term exposure to pharmacological dosages of GCs uncouples bone formation and resorption, resulting in GC-induced osteoporosis (GIOP). Heat shock protein 90 (HSP90) chaperoning glucocorticoid receptor (GR) signaling prompts us to speculate that HSP90 plays critical roles in GC-mediated bone formation and GIOP. In the present study, inhibition of HSP90 activity by 17-Demethoxy-17-allyaminogeldanmycin (17-AAG) or knockdown of HSP90 expression by siRNAs attenuated dexamethasone(Dex)-induced GR nuclear accumulation and transcriptional output of GR signaling, whereas overexpression of HSP90α or HSP90β enhanced GR transactivity in C3H10T1/2 cells. Though 17-AAG itself enhanced osteoblastic differentiation, it restored the Dex(10-8M)-induced and Dex(10-6M)-negated osteoblastic differentiation in C3H10T1/2 cells and primary calvarial osteoblasts. Moreover, systemic administration of 17-AAG to mice induced not only osteoclastogenesis but also osteoblastogenesis, whereas bone formation possibly exceeded bone resorption, eventually leading to the increased bone masses. Likewise, systemic administration of 17-AAG to mice restored GC-negated osteoblastogenesis and enhanced GC-induced osteoclastogenesis, similarly, 17-AAG-induced bone formation possibly exceeded both 17-AAG- and GC-induced bone resorption, eventually resulting in rescue of GIOP. Together, the present study has revealed that inhibition of HSP90 restores GIOP through enhancing bone formation, and our findings may help to shed light on the pathogenesis of GIOP and provide targets for the therapeutic intervention of the disease.
Collapse
Affiliation(s)
- Haixiao Chen
- Department of Orthopedics, the Affiliated Taizhou Hospital, Wenzhou Medical University, Linhai City, 317000, China
| | - Ji Xing
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Xinhua Hu
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Lihua Chen
- Department of Orthopedics, the Affiliated Taizhou Hospital, Wenzhou Medical University, Linhai City, 317000, China
| | - Haiyan Lv
- Department of Orthopedics, the Affiliated Taizhou Hospital, Wenzhou Medical University, Linhai City, 317000, China
| | - Chengyun Xu
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Dun Hong
- Department of Orthopedics, the Affiliated Taizhou Hospital, Wenzhou Medical University, Linhai City, 317000, China.
| | - Ximei Wu
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| |
Collapse
|
3
|
Hsp90 inhibition destabilizes Ezh2 protein in alloreactive T cells and reduces graft-versus-host disease in mice. Blood 2017; 129:2737-2748. [PMID: 28246193 DOI: 10.1182/blood-2016-08-735886] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Accepted: 02/17/2017] [Indexed: 01/02/2023] Open
Abstract
Modulating T-cell alloreactivity has been a main strategy to reduce graft-versus-host disease (GVHD), a life-threatening complication after allogeneic hematopoietic stem-cell transplantation (HSCT). Genetic deletion of T-cell Ezh2, which catalyzes trimethylation of histone H3 at lysine 27 (H3K27me3), inhibits GVHD. Therefore, reducing Ezh2-mediated H3K27me3 is thought to be essential for inhibiting GVHD. We tested this hypothesis in mouse GVHD models. Unexpectedly, administration of the Ezh2 inhibitor GSK126, which specifically decreases H3K27me3 without affecting Ezh2 protein, failed to prevent the disease. In contrast, destabilizing T-cell Ezh2 protein by inhibiting Hsp90 using its specific inhibitor AUY922 reduced GVHD in mice undergoing allogeneic HSCT. In vivo administration of AUY922 selectively induced apoptosis of activated T cells and decreased the production of effector cells producing interferon γ and tumor necrosis factor α, similar to genetic deletion of Ezh2. Introduction of Ezh2 into alloreactive T cells restored their expansion and production of effector cytokines upon AUY922 treatment, suggesting that impaired T-cell alloreactivity by inhibiting Hsp90 is achieved mainly through depleting Ezh2. Mechanistic analysis revealed that the enzymatic SET domain of Ezh2 directly interacted with Hsp90 to prevent Ezh2 from rapid degradation in activated T cells. Importantly, pharmacological inhibition of Hsp90 preserved antileukemia activity of donor T cells, leading to improved overall survival of recipient mice after allogeneic HSCT. Our findings identify the Ezh2-Hsp90 interaction as a previously unrecognized mechanism essential for T-cell responses and an effective target for controlling GVHD.
Collapse
|
4
|
Berges C, Kerkau T, Werner S, Wolf N, Winter N, Hünig T, Einsele H, Topp MS, Beyersdorf N. Hsp90 inhibition ameliorates CD4 + T cell-mediated acute Graft versus Host disease in mice. IMMUNITY INFLAMMATION AND DISEASE 2016; 4:463-473. [PMID: 27980780 PMCID: PMC5134726 DOI: 10.1002/iid3.127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Revised: 08/18/2016] [Accepted: 08/21/2016] [Indexed: 11/22/2022]
Abstract
Introduction For many patients with leukemia only allogeneic bone marrow transplantion provides a chance of cure. Co‐transplanted mature donor T cells mediate the desired Graft versus Tumor (GvT) effect required to destroy residual leukemic cells. The donor T cells very often, however, also attack healthy tissue of the patient inducing acute Graft versus Host Disease (aGvHD)—a potentially life‐threatening complication. Methods Therefore, we used the well established C57BL/6 into BALB/c mouse aGvHD model to evaluate whether pharmacological inhibition of heat shock protein 90 (Hsp90) would protect the mice from aGvHD. Results Treatment of the BALB/c recipient mice from day 0 to +2 after allogeneic CD4+ T cell transplantation with the Hsp90 inhibitor 17‐(dimethylaminoethylamino)‐17‐demethoxygeldanamycin (DMAG) partially protected the mice from aGvHD. DMAG treatment was, however, insufficient to prolong overall survival of leukemia‐bearing mice after transplantation of allogeneic CD4+ and CD8+ T cells. Ex vivo analyses and in vitro experiments revealed that DMAG primarily inhibits conventional CD4+ T cells with a relative resistance of CD4+ regulatory and CD8+ T cells toward Hsp90 inhibition. Conclusions Our data, thus, suggest that Hsp90 inhibition might constitute a novel approach to reduce aGvHD in patients without abrogating the desired GvT effect.
Collapse
Affiliation(s)
- Carsten Berges
- Department of Internal Medicine II Division of Hematology University Hospital Würzburg Würzburg Germany
| | - Thomas Kerkau
- Institute for Virology and Immunobiology University of Würzburg Würzburg Germany
| | - Sandra Werner
- Institute for Virology and Immunobiology University of Würzburg Würzburg Germany
| | - Nelli Wolf
- Institute for Virology and Immunobiology University of Würzburg Würzburg Germany
| | - Nadine Winter
- Department of Internal Medicine II Division of Hematology University Hospital Würzburg Würzburg Germany
| | - Thomas Hünig
- Institute for Virology and Immunobiology University of Würzburg Würzburg Germany
| | - Hermann Einsele
- Department of Internal Medicine II Division of Hematology University Hospital Würzburg Würzburg Germany
| | - Max S Topp
- Department of Internal Medicine II Division of Hematology University Hospital Würzburg Würzburg Germany
| | - Niklas Beyersdorf
- Institute for Virology and Immunobiology University of Würzburg Würzburg Germany
| |
Collapse
|
5
|
Morin F, Kavian N, Nicco C, Cerles O, Chéreau C, Batteux F. Improvement of Sclerodermatous Graft-Versus-Host Disease in Mice by Niclosamide. J Invest Dermatol 2016; 136:2158-2167. [PMID: 27424318 DOI: 10.1016/j.jid.2016.06.624] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 06/22/2016] [Accepted: 06/27/2016] [Indexed: 01/19/2023]
Abstract
Sclerodermatous graft-versus-host disease, a frequent complication of allogeneic hematopoietic stem cell graft, shares many features with systemic sclerosis, such as production of autoantibodies and fibrosis of skin and inner organs. Recent reports on the implication of signal transducer and activator of transcription 3 and of Wnt/β-catenin in fibrosis have prompted us to investigate the effects of the inhibition of both signaling pathways in a mouse model of sclerodermatous graft-versus-host disease, using niclosamide, an anthelmintic drug, with a well-defined safety profile. Sclerodermatous graft-versus-host disease was induced in BALB/c mice by B10.D2 bone marrow and spleen cell transplantation. Mice were treated every other day, 5 days a week, for 5 weeks by niclosamide. Clinical and biological features were studied 42 days after transplantation. Niclosamide reversed clinical symptoms including alopecia, vasculitis, and diarrhea and prevented fibrosis of the skin and visceral organs. Beneficial immunological effects were also observed: niclosamide decreased the production of effector memory CD4 and CD8 T cells, T-cell infiltration of the skin and visceral organs, and decreased productions of IL-4 and IL-13, and autoimmune B-cell activation. The improvement provided by niclosamide in the mouse model of sclerodermatous graft-versus-host disease provides a rationale for the evaluation of niclosamide in the management of patients affected by systemic fibrotic disease.
Collapse
Affiliation(s)
- Florence Morin
- Institut Cochin, INSERM U1016, CNRS UMR8104, Université Paris Descartes Sorbonne Paris Cité, Paris, France; Laboratoire d'Immunologie biologique, Hôpital Cochin, Paris, France
| | - Niloufar Kavian
- Institut Cochin, INSERM U1016, CNRS UMR8104, Université Paris Descartes Sorbonne Paris Cité, Paris, France; Laboratoire d'Immunologie biologique, Hôpital Cochin, Paris, France
| | - Carole Nicco
- Institut Cochin, INSERM U1016, CNRS UMR8104, Université Paris Descartes Sorbonne Paris Cité, Paris, France
| | - Olivier Cerles
- Institut Cochin, INSERM U1016, CNRS UMR8104, Université Paris Descartes Sorbonne Paris Cité, Paris, France
| | - Christiane Chéreau
- Institut Cochin, INSERM U1016, CNRS UMR8104, Université Paris Descartes Sorbonne Paris Cité, Paris, France
| | - Frédéric Batteux
- Institut Cochin, INSERM U1016, CNRS UMR8104, Université Paris Descartes Sorbonne Paris Cité, Paris, France; Laboratoire d'Immunologie biologique, Hôpital Cochin, Paris, France.
| |
Collapse
|
6
|
Berges C, Chatterjee M, Topp MS, Einsele H. Targeting polo-like kinase 1 suppresses essential functions of alloreactive T cells. Immunol Res 2016; 64:687-98. [PMID: 26724940 DOI: 10.1007/s12026-015-8778-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Acute graft-versus-host disease (aGvHD) is still a major cause of transplant-related mortality after allogeneic stem cell transplantation (ASCT). It requires immunosuppressive treatments that broadly abrogate T cell responses including beneficial ones directed against tumor cells or infective pathogens. Polo-like kinase 1 (PLK1) is overexpressed in many cancer types including leukemia, and clinical studies demonstrated that targeting PLK1 using selective PLK1 inhibitors resulted in inhibition of proliferation and induction of apoptosis predominantly in tumor cells, supporting the feasibility of PLK1 as target for anticancer therapy. Here, we show that activation of alloreactive T cells (Tallo) up-regulate expression of PLK1, suggesting that PLK1 is a potential new candidate for dual therapy of aGvHD and leukemia after ASCT. Inhibition of PLK1, using PLK1-specific inhibitor GSK461364A selectively depletes Tallo by preventing activation and by inducing apoptosis in already activated Tallo, while memory T cells are preserved. Activated Tallo cells which survive exposure to PLK1 undergo inhibition of proliferation by induction of G2/M cell cycle arrest, which is accompanied by accumulation of cell cycle regulator proteins p21(WAF/CIP1), p27(Kip1), p53 and cyclin B1, whereas abundance of CDK4 decreased. We also show that suppressive effects of PLK1 inhibition on Tallo were synergistically enhanced by concomitant inhibition of molecular chaperone Hsp90. Taken together, our data suggest that PLK1 inhibition represents a reasonable dual strategy to suppress residual tumor growth and efficiently deplete Tallo, and thus provide a rationale to selectively prevent and treat aGvHD.
Collapse
Affiliation(s)
- Carsten Berges
- Division of Hematology and Oncology, Department of Internal Medicine II, University Hospital of Würzburg, Würzburg, Germany.
| | - Manik Chatterjee
- Division of Hematology and Oncology, Department of Internal Medicine II, University Hospital of Würzburg, Würzburg, Germany
- Comprehensive Cancer Center Mainfranken, University Hospital of Würzburg, Würzburg, Germany
| | - Max S Topp
- Division of Hematology and Oncology, Department of Internal Medicine II, University Hospital of Würzburg, Würzburg, Germany
| | - Hermann Einsele
- Division of Hematology and Oncology, Department of Internal Medicine II, University Hospital of Würzburg, Würzburg, Germany
| |
Collapse
|
7
|
Apostolova P, Zeiser R. The role of danger signals and ectonucleotidases in acute graft-versus-host disease. Hum Immunol 2016; 77:1037-1047. [PMID: 26902992 DOI: 10.1016/j.humimm.2016.02.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 02/09/2016] [Accepted: 02/18/2016] [Indexed: 12/28/2022]
Abstract
Allogeneic hematopoietic cell transplantation (allo-HCT) represents the only curative treatment approach for many patients with benign or malignant diseases of the hematopoietic system. However, post-transplant morbidity and mortality are significantly increased by the development of acute graft-versus-host disease (GvHD). While alloreactive T cells act as the main cellular mediator of the GvH reaction, recent evidence suggests a critical role of the innate immune system in the early stages of GvHD initiation. Danger-associated molecular patterns released from the intracellular space as well as from the extracellular matrix activate antigen-presenting cells and set pro-inflammatory pathways in motion. This review gives an overview about danger signals representing therapeutic targets with a clinical perspective with a particular focus on extracellular nucleotides and ectonucleotidases.
Collapse
Affiliation(s)
- Petya Apostolova
- Department of Hematology, Oncology and Stem Cell Transplantation, Freiburg University Medical Center, Albert-Ludwigs-University, Freiburg, Germany.
| | - Robert Zeiser
- Department of Hematology, Oncology and Stem Cell Transplantation, Freiburg University Medical Center, Albert-Ludwigs-University, Freiburg, Germany.
| |
Collapse
|
8
|
Abstract
Heat-shock protein 90 (HSP90) is a highly conserved molecular chaperone that plays prominent functional roles in nearly all aspects of cell biology. As a chaperone, it interacts with literally hundreds of "clients," many of which are important drivers, regulators, and promoters of cancer. Thus, HSP90 is a high-value target in the development of anticancer therapeutics. Despite its popularity, our overall knowledge of HSP90 in immune function has lagged behind its well-recognized tumor-supportive roles. The use of inhibitors of HSP90 as chemical biological probes has been invaluable in revealing important roles for the chaperone in multiple aspects of immune function. Given this critical link, we must now consider the question of how immune outcomes may be affected by the HSP90 inhibitors currently in clinical development for the treatment of cancer. This chapter will review some of the immunological aspects of HSP90 function in terms of its intracellular and extracellular roles in antigen presentation, immune effector cell tasks, and regulation of inflammatory processes. This review will further examine the value of HSP90 inhibitors within the context of cancer immunotherapy and will discuss how these drugs might be optimally utilized in combination with immune stimulatory approaches against cancer.
Collapse
|