1
|
Ravindran S, Underwood SL, Dorrens J, Seeker LA, Watt K, Wilbourn RV, Sparks AM, Sinclair R, Chen Z, Pilkington JG, McNeilly TN, Harrington L, Pemberton JM, Nussey DH, Froy H. No correlative evidence of costs of infection or immunity on leucocyte telomere length in a wild population of Soay sheep. Proc Biol Sci 2024; 291:20232946. [PMID: 38565156 PMCID: PMC10987235 DOI: 10.1098/rspb.2023.2946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 03/04/2024] [Indexed: 04/04/2024] Open
Abstract
Telomere length (TL) is a biomarker hypothesized to capture evolutionarily and ecologically important physiological costs of reproduction, infection and immunity. Few studies have estimated the relationships among infection status, immunity, TL and fitness in natural systems. The hypothesis that short telomeres predict reduced survival because they reflect costly consequences of infection and immune investment remains largely untested. Using longitudinal data from a free-living Soay sheep population, we tested whether leucocyte TL was predicted by infection with nematode parasites and antibody levels against those parasites. Helminth parasite burdens were positively associated with leucocyte TL in both lambs and adults, which is not consistent with TL reflecting infection costs. We found no association between TL and helminth-specific IgG levels in either young or old individuals which suggests TL does not reflect costs of an activated immune response or immunosenescence. Furthermore, we found no support for TL acting as a mediator of trade-offs between infection, immunity and subsequent survival in the wild. Our results suggest that while variation in TL could reflect short-term variation in resource investment or environmental conditions, it does not capture costs of infection and immunity, nor does it behave like a marker of an individual's helminth-specific antibody immune response.
Collapse
Affiliation(s)
- Sanjana Ravindran
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Sarah L. Underwood
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Jennifer Dorrens
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Luise A. Seeker
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Kathryn Watt
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Rachael V. Wilbourn
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Alexandra M. Sparks
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
- School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Rona Sinclair
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Zhulin Chen
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Jill G. Pilkington
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Tom N. McNeilly
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik EH26 0PZ, UK
| | - Lea Harrington
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Canada H3C 3J7
| | - Josephine M. Pemberton
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Daniel H. Nussey
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Hannah Froy
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| |
Collapse
|
2
|
Clarity C, Trowbridge J, Gerona R, Ona K, McMaster M, Bessonneau V, Rudel R, Buren H, Morello-Frosch R. Associations between polyfluoroalkyl substance and organophosphate flame retardant exposures and telomere length in a cohort of women firefighters and office workers in San Francisco. Environ Health 2021; 20:97. [PMID: 34454526 PMCID: PMC8403436 DOI: 10.1186/s12940-021-00778-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 07/29/2021] [Indexed: 05/06/2023]
Abstract
BACKGROUND Environmental chemical exposures can affect telomere length, which in turn has been associated with adverse health outcomes including cancer. Firefighters are occupationally exposed to many hazardous chemicals and have higher rates of certain cancers. As a potential biomarker of effect, we assessed associations between chemical exposures and telomere length in women firefighters and office workers from San Francisco, CA. METHODS We measured serum concentrations of polyfluoroalkyl substances (PFAS), urinary metabolites of flame retardants, including organophosphate flame retardants (OPFRs), and telomere length in peripheral blood leukocytes in women firefighters (N = 84) and office workers (N = 79) who participated in the 2014-15 Women Workers Biomonitoring Collaborative. Multiple linear regression models were used to assess associations between chemical exposures and telomere length. RESULTS Regression results revealed significant positive associations between perfluorooctanoic acid (PFOA) and telomere length and perfluorooctanesulfonic acid (PFOS) and telomere length among the whole cohort. Models stratified by occupation showed stronger and more significant associations among firefighters as compared to office workers. Among firefighters in models adjusted for age, we found positive associations between telomere length and log-transformed PFOA (β (95%CI) = 0.57(0.12, 1.02)), PFOS (0.44 (0.05, 0.83)), and perfluorodecanoic acid (PFDA) (0.43 (0.02, 0.84)). Modeling PFAS as categories of exposure showed significant associations between perfluorononanoic acid (PFNA) and telomere length among firefighters. Significant associations between OPFR metabolites and telomere length were seen for bis (1,3-dichloro-2-propyl) phosphate (BDCPP) and telomere length among office workers (0.21(0.03, 0.40)) and bis (2-chloroethyl) phosphate (BCEP) and telomere length among firefighters (- 0.14(- 0.28, - 0.01)). For OPFRs, the difference in the direction of effect by occupational group may be due to the disparate detection frequencies and concentrations of exposure between the two groups and/or potential unmeasured confounding. CONCLUSION Our findings suggest positive associations between PFAS and telomere length in women workers, with larger effects seen among firefighters as compared to office workers. The OPFR metabolites BDCPP and BCEP are also associated with telomere length in firefighters and office workers. Associations between chemical exposures and telomere length reported here and by others suggest mechanisms by which these chemicals may affect carcinogenesis and other adverse health outcomes.
Collapse
Affiliation(s)
- Cassidy Clarity
- Department of Environmental Science, Policy and Management University of California, 130 Mulford Hall, 94720, Berkeley, CA, USA
| | - Jessica Trowbridge
- Department of Environmental Science, Policy and Management University of California, 130 Mulford Hall, 94720, Berkeley, CA, USA
- School of Public Health, University of California, Berkeley, CA, USA
| | - Roy Gerona
- Department of Obstetrics, Clinical Toxicology and Environmental Biomonitoring Lab, Gynecology and Reproductive Sciences, University of California, San Francisco, CA, USA
| | - Katherine Ona
- Department of Cell and Tissue Biology, University of California, San Francisco, CA, USA
- Department of Obstetrics, Center for Reproductive Sciences, Gynecology and Reproductive Sciences, University of California, San Francisco, CA, USA
| | - Michael McMaster
- Department of Cell and Tissue Biology, University of California, San Francisco, CA, USA
- Department of Obstetrics, Center for Reproductive Sciences, Gynecology and Reproductive Sciences, University of California, San Francisco, CA, USA
| | - Vincent Bessonneau
- Silent Spring Institute, Newton, MA, USA
- Univ. Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, F-35000, Rennes, France
| | | | | | - Rachel Morello-Frosch
- Department of Environmental Science, Policy and Management University of California, 130 Mulford Hall, 94720, Berkeley, CA, USA.
- School of Public Health, University of California, Berkeley, CA, USA.
| |
Collapse
|
3
|
Baerlocher GM, Rusbuldt J, Bussolari J, Huang F. Myelosuppression in Patients Treated with the Telomerase Inhibitor Imetelstat Is Not Mediated through Activation of Toll-Like Receptors. Int J Mol Sci 2020; 21:ijms21186550. [PMID: 32911605 PMCID: PMC7555816 DOI: 10.3390/ijms21186550] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 01/04/2023] Open
Abstract
Imetelstat sodium (GRN163L; hereafter, imetelstat) is a first-in-class telomerase inhibitor that has demonstrated activity in patients with myeloproliferative neoplasms (MPNs). Treatment with imetelstat has been associated with thrombocytopenia and other hematologic adverse effects that were manageable and reversible. Toll-like receptors (TLRs) are proteins that recognize pathogen-associated molecular patterns and stimulate innate immune and pro-apoptotic responses. Because imetelstat is an oligonucleotide, and some oligonucleotides can activate TLRs, we conducted an in vitro study to rule out the possibility of imetelstat-associated thrombocytopenia by off-target effects through activation of TLRs. We used HEK293 cell lines stably co-expressing a human TLR gene and an NFκB-inducible reporter to investigate whether imetelstat can activate TLR signaling. We treated the cells with imetelstat or control oligonucleotides for 20 h, and used absorbance of the culture media to calculate the reporter activity. Treatment with imetelstat within or beyond the clinically relevant concentrations had no stimulatory effect on TLR2, TLR3, TLR4, TLR5, TLR7, or TLR9. This result was not surprising since the structure of imetelstat does not meet the reported minimal structural requirements for TLR9 activation. Furthermore, imetelstat treatment of the MPN cell line HEL did not impact the expression of TLR signaling pathway target genes that are commonly induced by activation of different TLRs, whereas it significantly reduced its target gene hTERT, human telomerase reverse transcriptase, in a dose- and time-dependent manner. Hence, cytopenias, especially thrombocytopenia observed in some patients treated with imetelstat, are not mediated by off-target interactions with TLRs.
Collapse
Affiliation(s)
- Gabriela M. Baerlocher
- Department of Hematology and Central Hematology Laboratory, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
- Laboratory for Hematopoiesis and Molecular Genetics, Department of BioMedical Research (DBMR), University of Bern, 3010 Bern, Switzerland
- Correspondence: ; Tel.: +41-(0)31-632-33-06; Fax: +41-(0)31-632-58-29
| | - Joshua Rusbuldt
- Janssen Research & Development, LLC, Spring House, PA 19477, USA; (J.R.); (J.B.)
| | - Jacqueline Bussolari
- Janssen Research & Development, LLC, Spring House, PA 19477, USA; (J.R.); (J.B.)
| | - Fei Huang
- Geron Corporation, Parsippany, NJ 07054, USA;
| |
Collapse
|
4
|
Lieshout SHJ, Bretman A, Newman C, Buesching CD, Macdonald DW, Dugdale HL. Individual variation in early‐life telomere length and survival in a wild mammal. Mol Ecol 2019; 28:4152-4165. [DOI: 10.1111/mec.15212] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 07/12/2019] [Accepted: 07/23/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Sil H. J. Lieshout
- School of Biology Faculty of Biological Sciences University of Leeds Leeds UK
- NERC Biomolecular Analysis Facility Department of Animal and Plant Sciences University of Sheffield Sheffield UK
| | - Amanda Bretman
- School of Biology Faculty of Biological Sciences University of Leeds Leeds UK
| | - Chris Newman
- Wildlife Conservation Research Unit Department of Zoology University of Oxford Abingdon UK
| | - Christina D. Buesching
- Wildlife Conservation Research Unit Department of Zoology University of Oxford Abingdon UK
| | - David W. Macdonald
- Wildlife Conservation Research Unit Department of Zoology University of Oxford Abingdon UK
| | - Hannah L. Dugdale
- School of Biology Faculty of Biological Sciences University of Leeds Leeds UK
| |
Collapse
|
5
|
Nussey DH, Baird D, Barrett E, Boner W, Fairlie J, Gemmell N, Hartmann N, Horn T, Haussmann M, Olsson M, Turbill C, Verhulst S, Zahn S, Monaghan P. Measuring telomere length and telomere dynamics in evolutionary biology and ecology. Methods Ecol Evol 2014; 5:299-310. [PMID: 25834722 PMCID: PMC4375921 DOI: 10.1111/2041-210x.12161] [Citation(s) in RCA: 135] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Accepted: 01/13/2014] [Indexed: 12/25/2022]
Abstract
Telomeres play a fundamental role in the protection of chromosomal DNA and in the regulation of cellular senescence. Recent work in human epidemiology and evolutionary ecology suggests adult telomere length (TL) may reflect past physiological stress and predict subsequent morbidity and mortality, independent of chronological age. Several different methods have been developed to measure TL, each offering its own technical challenges. The aim of this review is to provide an overview of the advantages and drawbacks of each method for researchers, with a particular focus on issues that are likely to face ecologists and evolutionary biologists collecting samples in the field or in organisms that may never have been studied in this context before. We discuss the key issues to consider and wherever possible try to provide current consensus view regarding best practice with regard to sample collection and storage, DNA extraction and storage, and the five main methods currently available to measure TL. Decisions regarding which tissues to sample, how to store them, how to extract DNA, and which TL measurement method to use cannot be prescribed, and are dependent on the biological question addressed and the constraints imposed by the study system. What is essential for future studies of telomere dynamics in evolution and ecology is that researchers publish full details of their methods and the quality control thresholds they employ.
Collapse
Affiliation(s)
- Daniel H Nussey
- Institute of Evolutionary Biology and Centre for Immunity, Infection & Evolution, University of Edinburgh Edinburgh, EH9 3JT, UK
| | - Duncan Baird
- Institute of Cancer and Genetics, School of Medicine, Cardiff University Cardiff, CF14 4XN, UK
| | - Emma Barrett
- School of Biological Sciences, University of East Anglia Norwich, NR4 7TJ, UK
| | - Winnie Boner
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow Glasgow, G12 8QQ, UK
| | - Jennifer Fairlie
- Institute of Evolutionary Biology and Centre for Immunity, Infection & Evolution, University of Edinburgh Edinburgh, EH9 3JT, UK
| | - Neil Gemmell
- Department of Anatomy, Allan Wilson Centre for Molecular Ecology and Evolution, University of Otago Dunedin, 9054, New Zealand
| | - Nils Hartmann
- Leibniz Institute for Age Research - Fritz Lipmann Institute (FLI), Molecular Genetics Group Jena, 07745, Germany
| | - Thorsten Horn
- Institute for Developmental Biology, Cologne Biocenter, University of Cologne Cologne, 50674, Germany
| | - Mark Haussmann
- Department of Biology, Bucknell University Lewisburg, PA, 17837, USA
| | - Mats Olsson
- School of Biological Sciences, University of Sydney Sydney, NSW, 2006, Australia
| | - Chris Turbill
- Hawkesbury Institute for the Environment, University of Western Sydney Richmond, NSW, 2753, Australia
| | | | - Sandrine Zahn
- Département d'Ecologie, Physiologie et Ethologie (DEPE), Institut Pluridisciplinaire Huber Curien, CNRS UMR7178 Strasbourg Cedex 2, 67087, France ; University of Strasbourg Strasbourg Cedex, F-67081, France
| | - Pat Monaghan
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow Glasgow, G12 8QQ, UK
| |
Collapse
|
6
|
Katepalli MP, Adams AA, Lear TL, Horohov DW. The effect of age and telomere length on immune function in the horse. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2008; 32:1409-1415. [PMID: 18619486 DOI: 10.1016/j.dci.2008.06.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2008] [Revised: 05/27/2008] [Accepted: 06/13/2008] [Indexed: 05/26/2023]
Abstract
Telomeres, specialized structures present at the ends of linear eukaryotic chromosomes, function to maintain chromosome stability and integrity. Telomeres shorten with each cell division eventually leading to replicative senescence, a process thought to be associated with age-related decline in immune function. We hypothesized that shortened PBMC telomere length is a factor contributing to immunosenescence of the aged horse. Telomere length was assessed in 19 horses ranging in age from 1 to 25 years. Mitogen-induced 3H-thymidine incorporation, total serum IgG, and pro-inflammatory cytokine expression was also determined for each horse. Relative telomere length (RTL) was highly correlated with overall age. RTL was positively correlated with 3H-thymidine incorporation and total IgG. Expression of pro-inflammatory cytokines was negatively correlated with RTL. These measures were also correlated with age, as expected. However, RTL was not correlated with immunosenescence and inflammaging in the oldest horse.
Collapse
Affiliation(s)
- Madhu P Katepalli
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY 40546-0099, USA
| | | | | | | |
Collapse
|