1
|
Linares E, Severino D, Truzzi DR, Rios N, Radi R, Augusto O. Production of Peroxymonocarbonate by Steady-State Micromolar H 2O 2 and Activated Macrophages in the Presence of CO 2/HCO 3- Evidenced by Boronate Probes. Chem Res Toxicol 2024; 37:1129-1138. [PMID: 38916595 PMCID: PMC11256887 DOI: 10.1021/acs.chemrestox.4c00059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 06/13/2024] [Accepted: 06/20/2024] [Indexed: 06/26/2024]
Abstract
Peroxymonocarbonate (HCO4-/HOOCO2-) is produced by the reversible reaction of CO2/HCO3- with H2O2 (K = 0.33 M-1, pH 7.0). Although produced in low yields at physiological pHs and H2O2 and CO2/HCO3- concentrations, HCO4- oxidizes most nucleophiles with rate constants 10 to 100 times higher than those of H2O2. Boronate probes are known examples because HCO4- reacts with coumarin-7-boronic acid pinacolate ester (CBE) with a rate constant that is approximately 100 times higher than that of H2O2 and the same holds for fluorescein-boronate (Fl-B) as reported here. Therefore, we tested whether boronate probes could provide evidence for HCO4- formation under biologically relevant conditions. Glucose/glucose oxidase/catalase were adjusted to produce low steady-state H2O2 concentrations (2-18 μM) in Pi buffer at pH 7.4 and 37 °C. Then, CBE (100 μM) was added and fluorescence increase was monitored with time. The results showed that each steady-state H2O2 concentration reacted more rapidly (∼30%) in the presence of CO2/HCO3- (25 mM) than in its absence, and the data permitted the calculation of consistent rate constants. Also, RAW 264.7 macrophages were activated with phorbol 12-myristate 13-acetate (PMA) (1 μg/mL) at pH 7.4 and 37 °C to produce a time-dependent H2O2 concentration (8.0 ± 2.5 μM after 60 min). The media contained 0, 21.6, or 42.2 mM HCO3- equilibrated with 0, 5, or 10% CO2, respectively. In the presence of CBE or Fl-B (30 μM), a time-dependent increase in the fluorescence of the bulk solution was observed, which was higher in the presence of CO2/HCO3- in a concentration-dependent manner. The Fl-B samples were also examined by fluorescence microscopy. Our results demonstrated that mammalian cells produce HCO4- and boronate probes can evidence and distinguish it from H2O2 under biologically relevant concentrations of H2O2 and CO2/HCO3-.
Collapse
Affiliation(s)
- Edlaine Linares
- Departamento
de Bioquímica, Instituto de Química, Universidade de São Paulo, Sao Paulo 05508-900, Brazil
| | - Divinomar Severino
- Departamento
de Bioquímica, Instituto de Química, Universidade de São Paulo, Sao Paulo 05508-900, Brazil
| | - Daniela R. Truzzi
- Departamento
de Bioquímica, Instituto de Química, Universidade de São Paulo, Sao Paulo 05508-900, Brazil
| | - Natalia Rios
- Departamento de Bioquímica and Centro de Investigaciones
Biomédicas
(CEINBIO), Facultad de Medicina, Universidad
de la República, Montevideo 11800, Uruguay
| | - Rafael Radi
- Departamento de Bioquímica and Centro de Investigaciones
Biomédicas
(CEINBIO), Facultad de Medicina, Universidad
de la República, Montevideo 11800, Uruguay
| | - Ohara Augusto
- Departamento
de Bioquímica, Instituto de Química, Universidade de São Paulo, Sao Paulo 05508-900, Brazil
| |
Collapse
|
2
|
Barone LJ, Cardoso NP, Mansilla FC, Castillo M, Capozzo AV. Enhanced infectivity of bovine viral diarrhoea virus (BVDV) in arginase-producing bovine monocyte-derived macrophages. Virulence 2023:2283899. [PMID: 37966797 DOI: 10.1080/21505594.2023.2283899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 11/10/2023] [Indexed: 11/16/2023] Open
Abstract
Macrophages are important cells of the innate immunity that play a major role in Bovine Viral Diarrhea Virus (BVDV) pathogenesis. Macrophages are not a homogenous population; they exist in different phenotypes, typically divided into two main categories: classically (pro-inflammatory) and alternatively activated (anti-inflammatory) or M1 and M2, respectively. The role of bovine macrophage phenotypes on BVDV infection is still unclear. This study characterized the interaction between BVDV, and monocyte-derived macrophages (Mo-Mφ) collected from healthy cattle and polarized to an M1 or M2 state by using LPS, INF-γ, IL-4 or azithromycin. Arginase activity quantitation was utilized as a marker of the M2 Mo-Mφ spectrum. There was a significant association between arginase activity and the replication rate of BVDV strains of different genotypes and biotypes. Inhibition of arginase activity also reduced BVDV infectivity. Calves treated with azithromycin induced Mo-Mφ of the M2 state produced high levels of arginase. Interestingly, azithromycin administered in vivo increased the susceptibility of macrophages to BVDV infection ex vivo. Mo-Mφ from pregnant dams and calves produced higher arginase levels than those from non-pregnant adult animals. The increased infection of arginase-producing alternatively activated bovine macrophages with BVDV supports the need to delve into a possible leading role of M2 macrophages in establishing the immune-suppressive state during BVDV convalescence.
Collapse
Affiliation(s)
- Lucas José Barone
- Institute of Virology and Technical Innovations, INTA- CONICET. National Research Council (CONICET), Buenos Aires, Argentina
| | - Nancy Patricia Cardoso
- Institute of Virology and Technical Innovations, INTA- CONICET. National Research Council (CONICET), Buenos Aires, Argentina
| | - Florencia Celeste Mansilla
- Institute of Virology and Technical Innovations, INTA- CONICET. National Research Council (CONICET), Buenos Aires, Argentina
| | - Mariángeles Castillo
- Institute of Virology and Technical Innovations, INTA- CONICET. National Research Council (CONICET), Buenos Aires, Argentina
| | - Alejandra Victoria Capozzo
- Institute of Virology and Technical Innovations, INTA- CONICET. National Research Council (CONICET), Buenos Aires, Argentina
| |
Collapse
|
3
|
Deng Y, Cai Y, Liu L, Lin X, Lu P, Guo Y, Han M, Xu G. Blocking Tyr265 nitration of protein phosphatase 2A attenuates nitrosative stress-induced endothelial dysfunction in renal microvessels. FASEB J 2018; 33:3718-3730. [PMID: 30521379 DOI: 10.1096/fj.201800885rr] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Protein tyrosine (Tyr) nitration, the covalent addition of a nitro group (•NO2) to Tyr residues, is emerging as a candidate mechanism of endothelial dysfunction. Previous studies have shown that Tyr nitration is primarily induced by nitrosative stress, a process characterized by the production of reactive nitrogen species, especially peroxynitrite anion (ONOO-), which is considered a secondary product of NO in the presence of superoxide radicals (O2•-). However, the impact of nitrosative stress-induced Tyr nitration on endothelial dysfunction has not been thoroughly elucidated to date. We developed an endothelial dysfunction model, a process called "endothelial-to-mesenchymal transition (EndMT)," and evaluated the production of NO, O2•-, and protein nitration during EndMT. The results showed that TGF-β1 stimulation induced EndMT and elevated endothelial NO and O2•- production as well as nitration of the catalytic subunit of protein phosphatase (PP)2A. Mass spectrometry analysis showed that Tyr265 was the nitration site in the catalytic subunit of protein phosphatase (PP)2A, and this Tyr nitration increased PP2A activity and disrupted endothelial integrity. To devise an endothelial-targeted anti-PP2Ac nitration strategy, a mimic peptide, tyrosine 265 wild type (Y265WT), conjugated with the cell-penetrating peptide HIV-1 TAT protein (TAT) was synthesized. PP2Ac nitration and PP2A activity were significantly inhibited by pretreatment with TAT-265WT, and the integrity of endothelial cells was maintained. Furthermore, injection of TAT-265WT attenuated renal nitration formation and caused anticapillary rarefaction in a unilateral urethral obstructive nephropathy model. Taken together, these results offer preclinical proof of concept for TAT-265WT as a tractable agent to protect against nitrosative stress-induced endothelial dysfunction in renal microvessels.-Deng,Y., Cai, Y., Liu, L., Lin, X., Lu, P., Guo, Y., Han, M., Xu, G. Blocking Tyr265 nitration of protein phosphatase 2A attenuates nitrosative stress-induced endothelial dysfunction in renal microvessels.
Collapse
Affiliation(s)
- Yuanjun Deng
- Division of Nephrology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Cai
- Division of Nephrology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lele Liu
- Division of Nephrology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xueping Lin
- Division of Nephrology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pingfan Lu
- Division of Nephrology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yiyan Guo
- Division of Nephrology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Han
- Division of Nephrology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gang Xu
- Division of Nephrology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
4
|
Šnyrychová I, Hideg É. The first application of terephthalate fluorescence for highly selective detection of hydroxyl radicals in thylakoid membranes. FUNCTIONAL PLANT BIOLOGY : FPB 2008; 34:1105-1111. [PMID: 32689440 DOI: 10.1071/fp07150] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2007] [Accepted: 09/20/2007] [Indexed: 06/11/2023]
Abstract
Possibilities and limitations of the detection of hydroxyl radicals via the conversion of terephthalate (TPA) into the strongly fluorescent hydroxyterephthalate were investigated in order to adapt this method for chlorophyll-containing samples. Using model chemical sources of various reactive oxygen species, we confirmed that TPA detects hydroxyl radicals very sensitively, but is not reactive to either hydrogen peroxide or superoxide radicals. As a new result, we showed that the conversion of TPA to hydroxyterephthalate cannot be induced by singlet oxygen, which may be produced in photosynthetic systems under stress. Until now, the TPA method has not been used in photosynthesis research, so necessary adaptations to minimise the effects of chlorophyll and buffering sugars on hydroxyl radical detection were also explored and optimal conditions for using the method in thylakoid preparations are suggested. Anticipating further plant physiology applications, usefulness of the TPA method was tested in a wider range of pH than reported earlier. To demonstrate that this simple and highly specific method can be used as an alternative approach for the detection of hydroxyl radicals in plant samples, we measured these radicals in isolated thylakoid membranes exposed to 312 nm ultraviolet radiation.
Collapse
Affiliation(s)
- Iva Šnyrychová
- Institute of Plant Biology, Biological Research Center, Szeged, Hungary
| | - Éva Hideg
- Institute of Plant Biology, Biological Research Center, Szeged, Hungary
| |
Collapse
|