1
|
Hussain MS, Gupta G, Mishra R, Patel N, Gupta S, Alzarea SI, Kazmi I, Kumbhar P, Disouza J, Dureja H, Kukreti N, Singh SK, Dua K. Unlocking the secrets: Volatile Organic Compounds (VOCs) and their devastating effects on lung cancer. Pathol Res Pract 2024; 255:155157. [PMID: 38320440 DOI: 10.1016/j.prp.2024.155157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/15/2024] [Accepted: 01/18/2024] [Indexed: 02/08/2024]
Abstract
Lung cancer (LCs) is still a serious health problem globally, with many incidences attributed to environmental triggers such as Volatile Organic Compounds (VOCs). VOCs are a broad class of compounds that can be released via various sources, including industrial operations, automobile emissions, and indoor air pollution. VOC exposure has been linked to an elevated risk of lung cancer via multiple routes. These chemicals can be chemically converted into hazardous intermediate molecules, resulting in DNA damage and genetic alterations. VOCs can also cause oxidative stress, inflammation, and a breakdown in the cellular protective antioxidant framework, all of which contribute to the growth of lung cancer. Moreover, VOCs have been reported to alter critical biological reactions such as cell growth, apoptosis, and angiogenesis, leading to tumor development and metastasis. Epidemiological investigations have found a link between certain VOCs and a higher probability of LCs. Benzene, formaldehyde, and polycyclic aromatic hydrocarbons (PAHs) are some of the most well-researched VOCs, with comprehensive data confirming their cancer-causing potential. Nevertheless, the possible health concerns linked with many more VOCs and their combined use remain unknown, necessitating further research. Identifying the toxicological consequences of VOCs in LCs is critical for establishing focused preventative tactics and therapeutic strategies. Better legislation and monitoring mechanisms can limit VOC contamination in occupational and environmental contexts, possibly reducing the prevalence of LCs. Developing VOC exposure indicators and analyzing their associations with genetic susceptibility characteristics may also aid in early identification and targeted therapies.
Collapse
Affiliation(s)
- Md Sadique Hussain
- School of Pharmaceutical Sciences, Jaipur National University, Jagatpura, Jaipur, Rajasthan 302017, India
| | - Gaurav Gupta
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India; Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, 346, United Arab Emirates; School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jagatpura, Jaipur, India
| | - Riya Mishra
- School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jagatpura, Jaipur, India
| | - Neeraj Patel
- School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jagatpura, Jaipur, India
| | - Saurabh Gupta
- Chameli Devi Institute of Pharmacy, Department of Pharmacology, Khandwa Road, Village Umrikheda, Near Toll booth, Indore, Madhya Pradesh 452020, India
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, 72341, Al-Jouf, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia.
| | - Popat Kumbhar
- Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala Dist: Kolhapur, Maharashtra 416113, India
| | - John Disouza
- Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala Dist: Kolhapur, Maharashtra 416113, India
| | - Harish Dureja
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak 124001, India
| | - Neelima Kukreti
- School of Pharmacy, Graphic Era Hill University, Dehradun 248007, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia.
| |
Collapse
|
2
|
Mirazi N, Amini E, Hosseini A, Izadi Z, Nourian A. Maternal long-term inhalation exposure to perchloroethylene and prenatal teratogenicity: morphometric, hormonal, and histological study. Toxicol Mech Methods 2023; 33:206-214. [PMID: 35941716 DOI: 10.1080/15376516.2022.2111675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Some commonly used chemicals have teratogenic effects. Perchloroethylene (PCE) is a liquid that is widely used in various industries and drying clothes. In this study, the teratogenic effects of PCE in rat embryos were investigated. In this experimental study, 32 adult Wistar female rats in the weight range of 230-250 g were used. Female rats were randomly divided into 4 groups (n = 8). Control group (without PCE inhalation), experimental group G(I) (exposed to PCE 18 days prior to mating), experimental group G(II) (exposed to PCE 18 days after mating) and experimental group G(III) (exposed to PCE 18 days before and 18 days after mating). Pregnant rats were anesthetized on the 18th day of gestation and then serum and embryos were removed for the required studies. Embryos were examined for number, weight, sex, morphometric parameters of organs, and tissue samples were prepared for histological studies. Serum isolated from dams were evaluated for sexual and gonadal hormones. The results of this study showed that PCE has teratogenic effects on rat embryos. Infertility and reduced birth rate were other effects of PCE in rats. PCE has teratogenic effects and impairs the reproductive system of rats.
Collapse
Affiliation(s)
- Naser Mirazi
- Department of Biology, Faculty of Basic Sciences, Bu-Ali Sina University, Hamedan, Iran
| | - Elham Amini
- Department of Biology, Faculty of Basic Sciences, Bu-Ali Sina University, Hamedan, Iran
| | - Abdolkarim Hosseini
- Department of Animal Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Zahra Izadi
- Department of Horticulture, Faculty of Agriculture, University of Nahavand, Nahavand, Iran
| | - Alireza Nourian
- Department of Pathobiology, Faculty of Veterinary Science, Bu-Ali Sina University, Hamedan, Iran
| |
Collapse
|
3
|
Johnston JE, Gibson JM. Spatiotemporal variability of tetrachloroethylene in residential indoor air due to vapor intrusion: a longitudinal, community-based study. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2014; 24:564-71. [PMID: 23549403 DOI: 10.1038/jes.2013.13] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 01/10/2013] [Accepted: 01/18/2013] [Indexed: 05/09/2023]
Abstract
The migration of volatile contaminants from groundwater and soil into indoor air is a potential health threat at thousands of contaminated sites across the country. This phenomenon, known as vapor intrusion, is characterized by spatial and temporal heterogeneity. This study examined short-term fluctuations in concentrations of tetrachloroethylene (PCE) in the indoor air of residential homes due to vapor intrusion in a community in San Antonio, Texas, that sits atop an extensive, shallow plume of contaminated groundwater. Using a community-based design, we removed potential indoor sources of PCE and then collected twelve 3-day passive indoor air samples in each of the 20 homes. Results demonstrated a one-order-of-magnitude variability in concentration across both space and time among the study homes, although all measured concentrations were below risk-based screening levels. We found that within any given home, indoor concentrations increase with the magnitude of the barometric pressure drop (P=0.048) and humidity (P<0.001), while concentrations decrease as wind speed increases (P<0.001) and also during winter (P=0.001). In a second analysis to examine sources of spatial variability, we found that indoor air PCE concentrations between homes increase with groundwater concentration (P=0.030) and a slab-on-grade (as compared with a crawl space) foundation (P=0.028), whereas concentrations decrease in homes without air conditioners (P=0.015). This study offers insights into the drivers of temporal and spatial variability in vapor intrusion that can inform decisions regarding monitoring and exposure assessment at affected sites.
Collapse
Affiliation(s)
- Jill E Johnston
- Department of Environmental Sciences & Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Jacqueline MacDonald Gibson
- Department of Environmental Sciences & Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
4
|
Brown Dzubow R, Makris S, Siegel Scott C, Barone S. Early lifestage exposure and potential developmental susceptibility to tetrachloroethylene. ACTA ACUST UNITED AC 2010; 89:50-65. [PMID: 20041493 DOI: 10.1002/bdrb.20222] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Tetrachloroethylene, also known as perchloroethylene or "perc", is a highly volatile and lipophilic solvent widely used in dry cleaning, textile processing, and metal-cleaning operations. The limited epidemiological and toxicological data available for exposure to perc during developmental lifestages, as well as the evidence for critical windows of exposure, highlight early life as a period of potential susceptibility. METHODS A literature search was performed to identify all peer-reviewed epidemiological and toxicologial studies examining outcomes from early lifestage exposure to perc, and reviewed by developmental stage for both exposure and outcome. RESULTS Exposure scenarios to perc unique to early lifestages include transplacental and breast milk intake, along with inhalation, ingestion, or dermal exposure. Toxicokinetics factors that may influence early lifestage susceptibility to perc, along with existing physiologically based pharmacokinetic (PBPK) models, are described. Adverse outcomes examined include: reproductive outcomes examined prior to conception including reduced fertility, adverse effects on sperm, or altered reproductive hormones; prenatal outcomes examined after exposure prior to conception or prenatally including fetal death, birth defects, and decreased birth weight; postnatal outcomes examined after exposure prior to conception, prenatally, or during childhood including neurotoxicity, immunotoxicity, cancer, hepatotoxicity, congential anomalies and mortality; and adult schizophrenia examined after exposure prior to conception. CONCLUSIONS The limited evidence on early lifestage exposure to perc does not provide sufficient evidence of this sensitive period as being more or less important than exposure at a later lifestage, such as during adulthood. However, there are a number of adverse health effects observed uniquely in early lifestages, and increased sensitivity to visual system deficits is suggested in children. Other outcomes observed in adults may not have been adequately assessed in children to directly compare sensitivity.
Collapse
Affiliation(s)
- Rebecca Brown Dzubow
- National Center for Environmental Assessment, Office of Research and Development, US Environmental Protection Agency, Mailcode 8623-P, Washington, DC 20460, USA.
| | | | | | | |
Collapse
|
5
|
Woodruff TJ, Carlson A, Schwartz JM, Giudice LC. Proceedings of the Summit on Environmental Challenges to Reproductive Health and Fertility: executive summary. Fertil Steril 2008; 89:e1-e20. [PMID: 18308046 DOI: 10.1016/j.fertnstert.2008.01.065] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2007] [Revised: 10/03/2007] [Accepted: 10/03/2007] [Indexed: 02/09/2023]
Abstract
The 2007 Summit on Environmental Challenges to Reproductive Health and Fertility convened scientists, health care professionals, community groups, political representatives, and the media to hear presentations on the impact of environmental contaminants on reproductive health and fertility, and to discuss opportunities to improve health through research, education, communication, and policy. Environmental reproductive health focuses on exposures to environmental contaminants, particularly during critical periods of development, and their potential effects on future reproductive health, including conception, fertility, pregnancy, adolescent development, and adult health. Approximately 87,000 chemical substances are registered for commercial use in the United States, with ubiquitous human exposures to environmental contaminants in air, water, food, and consumer products. Exposures during critical windows of susceptibility may result in adverse effects with lifelong and even intergenerational health impacts. Effects can include impaired development and function of the reproductive tract and permanently altered gene expression, leading to metabolic and hormonal disorders, reduced fertility and fecundity, and illnesses such as testicular, prostate, uterine, and cervical cancers later in life. This executive summary reviews effects of pre- and postnatal exposures on male and female reproductive health, and provides a series of recommendations for advancing the field in the areas of research, policy, health care, and community action.
Collapse
Affiliation(s)
- Tracey J Woodruff
- Program on Reproductive Health and the Environment, National Center of Excellence in Women's Health, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, California 94143, USA.
| | | | | | | |
Collapse
|
6
|
Woodruff TJ, Carlson A, Schwartz JM, Giudice LC. Proceedings of the Summit on Environmental Challenges to Reproductive Health and Fertility: executive summary. Fertil Steril 2008; 89:281-300. [PMID: 18275883 PMCID: PMC2440710 DOI: 10.1016/j.fertnstert.2007.10.002] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2007] [Revised: 10/03/2007] [Accepted: 10/03/2007] [Indexed: 11/16/2022]
Abstract
The 2007 Summit on Environmental Challenges to Reproductive Health and Fertility convened scientists, health care professionals, community groups, political representatives, and the media to hear presentations on the impact of environmental contaminants on reproductive health and fertility, and to discuss opportunities to improve health through research, education, communication, and policy. Environmental reproductive health focuses on exposures to environmental contaminants, particularly during critical periods of development, and their potential effects on future reproductive health, including conception, fertility, pregnancy, adolescent development, and adult health. Approximately 87,000 chemical substances are registered for commercial use in the United States, with ubiquitous human exposures to environmental contaminants in air, water, food, and consumer products. Exposures during critical windows of susceptibility may result in adverse effects with lifelong and even intergenerational health impacts. Effects can include impaired development and function of the reproductive tract and permanently altered gene expression, leading to metabolic and hormonal disorders, reduced fertility and fecundity, and illnesses such as testicular, prostate, uterine, and cervical cancers later in life. This executive summary reviews effects of pre- and postnatal exposures on male and female reproductive health, and provides a series of recommendations for advancing the field in the areas of research, policy, health care, and community action.
Collapse
Affiliation(s)
- Tracey J Woodruff
- National Center of Excellence in Women's Health, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, California 94143, USA.
| | | | | | | |
Collapse
|
7
|
Alessio L, Lucchini R. Prolactin changes as a consequence of chemical exposure. ENVIRONMENTAL HEALTH PERSPECTIVES 2006; 114:A573-4; author reply A574. [PMID: 17035115 PMCID: PMC1626391 DOI: 10.1289/ehp.114-a573] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Affiliation(s)
- Lorenzo Alessio
- Institute of Occupational Health, University of Brescia, Brescia, Italy, E-mail:
| | - Roberto Lucchini
- Institute of Occupational Health, University of Brescia, Brescia, Italy, E-mail:
| |
Collapse
|