1
|
Kim EJ, Kim JY, Choi HY, Lee H, Lee J, Kim MS, Kim YS, Huh KH, Kim BS. Systemic Immunomodulatory Effects of Combinatorial Treatment of Thalidomide and Dexamethasone on T Cells and Other Immune Cells. Yonsei Med J 2021; 62:137-148. [PMID: 33527793 PMCID: PMC7859687 DOI: 10.3349/ymj.2021.62.2.137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 12/04/2020] [Accepted: 12/09/2020] [Indexed: 11/27/2022] Open
Abstract
PURPOSE In organ transplantation, the need for immune modulation rather than immune suppression has been emphasized. In this study, we investigated whether combinatorial treatments of with thalidomide (TM) and dexamethasone (DX) might be new approaches to induce systemic immunomodulation on T cells and other immune cells that regulate the expression of co-inhibitory molecules. MATERIALS AND METHODS Naïve splenic T cells from C57BL/6 mice were sort-purified and cultured in vitro for CD4+ T cell proliferation and regulatory T cell (Treg) conversion in the presence of TM or/and DX. Expression of cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4) and programmed death-1 (PD-1) in proliferated and converted T cells was quantified by flow cytometry. We also quantified in vivo expression of CTLA-4 and PD-1 on splenic CD4+ T cells and other immune cells isolated from TM- or/and DX-treated mice. Mixed lymphocytes reactions (MLR) were performed to evaluate the capacity of immune cells in carrying out immune responses. RESULTS CTLA-4 expressions in effector T cells in vivo and in Tregs in vivo/vitro significantly increased upon TM/DX combinatorial treatment. Corresponding to increased CTLA-4 expression in T cells, the expression of ligand molecules for CTLA-4 significantly increased in splenic dendritic cells in TM/DX-treated groups. In addition, MLR results demonstrated that splenocytes isolated from TM/DX-treated mice significantly suppressed the proliferation of T cells isolated from other strains. CONCLUSION Based on these results, we suggest that TM/DX combinatorial treatments might be efficient immunomodulatory methods for regulating T cell immunity.
Collapse
Affiliation(s)
- Eun Jee Kim
- The Research Institute for Transplantation, Yonsei University College of Medicine, Seoul, Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul, Korea
| | - Joon Ye Kim
- The Research Institute for Transplantation, Yonsei University College of Medicine, Seoul, Korea
| | - Hoon Young Choi
- Division of Nephrology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Hyojung Lee
- The Research Institute for Transplantation, Yonsei University College of Medicine, Seoul, Korea
| | - Juhan Lee
- Department of Transplantation Surgery, Yonsei University College of Medicine, Seoul, Korea
| | - Myoung Soo Kim
- The Research Institute for Transplantation, Yonsei University College of Medicine, Seoul, Korea
- Department of Transplantation Surgery, Yonsei University College of Medicine, Seoul, Korea
| | - Yu Seun Kim
- The Research Institute for Transplantation, Yonsei University College of Medicine, Seoul, Korea
- Department of Transplantation Surgery, Yonsei University College of Medicine, Seoul, Korea
| | - Kyu Ha Huh
- The Research Institute for Transplantation, Yonsei University College of Medicine, Seoul, Korea
- Department of Transplantation Surgery, Yonsei University College of Medicine, Seoul, Korea.
| | - Beom Seok Kim
- The Research Institute for Transplantation, Yonsei University College of Medicine, Seoul, Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul, Korea
- Division of Nephrology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
2
|
Al-Barghouthy EY, Abuhammad A, Taha MO. QSAR-guided pharmacophore modeling and subsequent virtual screening identify novel TYK2 inhibitor. Med Chem Res 2019. [DOI: 10.1007/s00044-019-02377-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
3
|
Kim EJ, Lee JG, Kim JY, Song SH, Joo DJ, Huh KH, Kim MS, Kim BS, Kim YS. Enhanced immune-modulatory effects of thalidomide and dexamethasone co-treatment on T cell subsets. Immunology 2017; 152:628-637. [PMID: 28758197 DOI: 10.1111/imm.12804] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Revised: 07/18/2017] [Accepted: 07/24/2017] [Indexed: 12/12/2022] Open
Abstract
Thalidomide (TM) has been reported to have anti-cancer and anti-inflammatory properties, and dexamethasone (DX) is known to reduce inflammation and inhibit production of inflammatory cytokines. Many studies have reported that combinatorial therapy with TM and DX is clinically used to treat multiple myeloma and lupus nephritis, but the mechanism responsible for its effects has not been elucidated. In this study, we determined that TM and DX co-treatment had an enhanced immune-modulatory effect on T cells through regulating the expression of co-stimulatory molecules. Splenic naive T cells from C57BL/6 mice were sort-purified and cultured for CD4+ T cell proliferation and regulatory T (Treg) cell conversion in the presence of TM and/or DX. Following incubation with the drugs, cells were collected and OX40, 4-1BB, and glucocorticoid-induced tumour necrosis factor receptor-related protein (GITR) expression was quantified by flow cytometry. TM (1 or 10 μm) decreased CD4+ T cell proliferation in a dose-dependent manner, whereas TM/DX (0·1 or 1 nm) co-treatment further decreased proliferation. Treg cell populations were preserved following drug treatment. Furthermore, expression of co-stimulatory molecules decreased upon TM/DX co-treatment in effector T (Teff) cells and was preserved in Treg cells. Splenic CD4+ T cells isolated from TM- and DX-treated mice exhibited the same patterns of Teff and Treg cell populations as observed in vitro. Considering the selective effect of TM on different T cell subsets, we suggest that TM may play an immunomodulatory role and that TM/DX combinatorial treatment could further enhance these immunomodulatory effects by regulating GITR, OX40, and 4-1BB expression in CD4+ T cells.
Collapse
Affiliation(s)
- Eun Jee Kim
- The Research Institute for Transplantation, Yonsei University College of Medicine, Seoul, Korea.,Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul, Korea
| | - Jae Geun Lee
- Department of Transplantation Surgery, Severance Hospital, Yonsei University Health System, Seoul, Korea
| | - Joon Ye Kim
- The Research Institute for Transplantation, Yonsei University College of Medicine, Seoul, Korea
| | - Seung Hwan Song
- The Research Institute for Transplantation, Yonsei University College of Medicine, Seoul, Korea.,Department of Surgery, College of Medicine, Ewha Women's University, Seoul, Korea
| | - Dong Jin Joo
- The Research Institute for Transplantation, Yonsei University College of Medicine, Seoul, Korea.,Department of Transplantation Surgery, Severance Hospital, Yonsei University Health System, Seoul, Korea
| | - Kyu Ha Huh
- The Research Institute for Transplantation, Yonsei University College of Medicine, Seoul, Korea.,Department of Transplantation Surgery, Severance Hospital, Yonsei University Health System, Seoul, Korea
| | - Myoung Soo Kim
- The Research Institute for Transplantation, Yonsei University College of Medicine, Seoul, Korea.,Department of Transplantation Surgery, Severance Hospital, Yonsei University Health System, Seoul, Korea
| | - Beom Seok Kim
- The Research Institute for Transplantation, Yonsei University College of Medicine, Seoul, Korea.,Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul, Korea.,Department of Internal Medicine (Nephrology), Severance Hospital, Yonsei University Health System, Seoul, Korea
| | - Yu Seun Kim
- The Research Institute for Transplantation, Yonsei University College of Medicine, Seoul, Korea.,Department of Transplantation Surgery, Severance Hospital, Yonsei University Health System, Seoul, Korea
| |
Collapse
|
4
|
Turjeman K, Barenholz Y. Liposomal nano-drugs based on amphipathic weak acid steroid prodrugs for treatment of inflammatory diseases. J Drug Target 2016; 24:805-820. [PMID: 27750439 DOI: 10.1080/1061186x.2016.1236262] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Steroids are the most efficacious anti-inflammatory agents. However, their toxicities and side-effects compromise their clinical application. Various strategies and major efforts were dedicated for formulating viable liposomal glucocorticosteroids (GCs), so far none of these were approved. OBJECTIVES To evaluate these approaches for formulating GC-delivery systems, especially liposomes, and with focus on the Barenholz Lab experience. METHODS We developed PEGylated nano-liposomes (NSSL) remotely loaded with water-soluble amphipathic weak acid GC-prodrugs. Their remote loading results in high, efficient and stable loading to the level that enables human clinical use. We characterized them for their physical chemistry and stability. We demonstrated their therapeutic efficacy in relevant animal models and studied their pharmacokinetics (PK), biodistribution (BD) and pharmacodynamics advantages over the free pro-drugs. RESULTS Our steroidal nano-drugs demonstrate much superior PK, BD, tolerability and therapeutic efficacies compared to the free pro-drugs and to most drugs currently used to treat these diseases. These nano-drugs act as robust immune-suppressors, affecting cytokines secretion and diminishing hemorrhage and edema. CONCLUSIONS The combination of improved physical-chemistry, PK, BD, tolerability and therapeutic efficacy of these steroidal nano-drugs over the pro-drugs "as-is" support their further clinical development as potential therapeutic agents for treating inflammatory diseases.
Collapse
Affiliation(s)
- Keren Turjeman
- a Department of Biochemistry and Molecular Biology, Laboratory of Membrane and Liposome Research , Institute for Medical Research Israel-Canada (IMRIC), The Hebrew University-Hadassah Medical School , Jerusalem , Israel
| | - Yechezkel Barenholz
- a Department of Biochemistry and Molecular Biology, Laboratory of Membrane and Liposome Research , Institute for Medical Research Israel-Canada (IMRIC), The Hebrew University-Hadassah Medical School , Jerusalem , Israel
| |
Collapse
|
5
|
Bussmann RW. The globalization of traditional medicine in northern peru: from shamanism to molecules. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2013; 2013:291903. [PMID: 24454490 PMCID: PMC3888705 DOI: 10.1155/2013/291903] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 10/22/2013] [Indexed: 11/18/2022]
Abstract
Northern Peru represents the center of the Andean "health axis," with roots going back to traditional practices of Cupisnique culture (1000 BC). For more than a decade of research, semistructured interviews were conducted with healers, collectors, and sellers of medicinal plants. In addition, bioassays were carried out to evaluate the efficacy and toxicity of plants found. Most of the 510 species encountered were native to Peru (83%). Fifty percent of the plants used in colonial times have disappeared from the pharmacopoeia. Market vendors specialized either on common and exotic plants, plants for common ailments, and plants only used by healers or on plants with magical purposes. Over 974 preparations with up to 29 different ingredients were used to treat 164 health conditions. Almost 65% of the medicinal plants were applied in these mixtures. Antibacterial activity was confirmed in most plants used for infections. Twenty-four percent of the aqueous extracts and 76% of the ethanolic extracts showed toxicity. Traditional preparation methods take this into account when choosing the appropriate solvent for the preparation of a remedy. The increasing demand for medicinal species did not increase the cultivation of medicinal plants. Most species are wild collected, causing doubts about the sustainability of trade.
Collapse
Affiliation(s)
- Rainer W. Bussmann
- William L. Brown Center, Missouri Botanical Garden, P.O. Box 299, St. Louis, MO 63166-0299, USA
| |
Collapse
|
6
|
Collinge M, Burns-Naas LA, Chellman GJ, Kawabata TT, Komocsar WJ, Piccotti JR, Shenton J, Wierda D. Developmental immunotoxicity (DIT) testing of pharmaceuticals: Current practices, state of the science, knowledge gaps, and recommendations. J Immunotoxicol 2012; 9:210-30. [DOI: 10.3109/1547691x.2012.661486] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
7
|
Ettlin RA, Kuroda J, Plassmann S, Prentice DE. Successful drug development despite adverse preclinical findings part 1: processes to address issues and most important findings. J Toxicol Pathol 2010; 23:189-211. [PMID: 22272031 PMCID: PMC3234634 DOI: 10.1293/tox.23.189] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Accepted: 09/06/2010] [Indexed: 01/08/2023] Open
Abstract
Unexpected adverse preclinical findings (APFs) are not infrequently encountered during drug development. Such APFs can be functional disturbances such as QT prolongation, morphological toxicity or carcinogenicity. The latter is of particular concern in conjunction with equivocal genotoxicity results. The toxicologic pathologist plays an important role in recognizing these effects, in helping to characterize them, to evaluate their risk for man, and in proposing measures to mitigate the risk particularly in early clinical trials. A careful scientific evaluation is crucial while termination of the development of a potentially useful drug must be avoided. This first part of the review discusses processes to address unexpected APFs and provides an overview over typical APFs in particular classes of drugs. If the mode of action (MoA) by which a drug candidate produces an APF is known, this supports evaluation of its relevance for humans. Tailor-made mechanistic studies, when needed, must be planned carefully to test one or several hypotheses regarding the potential MoA and to provide further data for risk evaluation. Safety considerations are based on exposure at no-observed-adverse-effect levels (NOAEL) of the most sensitive and relevant animal species and guide dose escalation in clinical trials. The availability of early markers of toxicity for monitoring of humans adds further safety to clinical studies. Risk evaluation is concluded by a weight of evidence analysis (WoE) with an array of parameters including drug use, medical need and alternatives on the market. In the second part of this review relevant examples of APFs will be discussed in more detail.
Collapse
Affiliation(s)
- Robert A. Ettlin
- Ettlin Consulting Ltd., 14 Mittelweg, 4142 Muenchenstein,
Switzerland
| | - Junji Kuroda
- KISSEI Pharmaceutical Co., Ltd., 2320–1 Maki, Hotaka, Azumino,
Nagano 399-8305, Japan
| | - Stephanie Plassmann
- PreClinical Safety (PCS) Consultants Ltd., 7 Gartenstrasse, 4132
Muttenz, Switzerland
| | - David E. Prentice
- PreClinical Safety (PCS) Consultants Ltd., 7 Gartenstrasse, 4132
Muttenz, Switzerland
| |
Collapse
|
8
|
Kharb R, Sharma PC, Yar MS. Pharmacological significance of triazole scaffold. J Enzyme Inhib Med Chem 2010; 26:1-21. [PMID: 20583859 DOI: 10.3109/14756360903524304] [Citation(s) in RCA: 353] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The triazole nucleus is one of the most important and well known heterocycles which is a common and integral feature of a variety of natural products and medicinal agents. Triazole nucleus is present as a core structural component in an array of drug categories such as antimicrobial, anti-inflammatory, analgesic, antiepileptic, antiviral, antineoplastic, antihypertensive, antimalarial, local anaesthetic, antianxiety, antidepressant, antihistaminic, antioxidant, antitubercular, anti-Parkinson's, antidiabetic, antiobesity and immunomodulatory agents, etc. The broad and potent activity of triazole and their derivatives has established them as pharmacologically significant scaffolds. The basic heterocyclic rings present in the various medicinal agents are 1,2,3-triazole and 1,2,4-triazole. A large volume of research has been carried out on triazole and their derivatives, which has proved the pharmacological importance of this heterocyclic nucleus. The present paper is an attempt to review the pharmacological activities reported for triazole derivatives in the current literature with an update of recent research findings on this nuclei.
Collapse
Affiliation(s)
- Rajeev Kharb
- Sanjivani College of Pharmaceutical Sciences, Khetri, India
| | | | | |
Collapse
|