1
|
Luo Y, Yu H, Ou W, Jia L, Huang Y. Characterization of rhodamine 123 low staining cells and their dynamic changes during the injured-repaired progress induced by 5-FU. Pathol Res Pract 2017; 213:742-748. [PMID: 28554763 DOI: 10.1016/j.prp.2017.04.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 03/17/2017] [Accepted: 04/12/2017] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To investigate the characterization of intestinal epithelial stem cells stained by Rhodamine 123 (Rho) and analyze the dynamic changes of intestinal epithelial stem cells during the injured-repaired progress induced by 5-FU. METHODS Mucosal cells were obtained from adult C57BL/6J mice. The Rho stained cells were sorted using FACS. The mouse model of intestinal mucosal injured-repaired was established by injecting 5-FU and sacrificed at different time post-injection, and the middle intestines were used for detecting the percentage of Rho low staining cell fraction by FACS and detecting the expression of the intestinal epithelial stem cells marker-musashi-1 (msi-1) by RT-PCR and immunohistochemistry. RESULTS The Rho stained intestinal mucosal cells were divided into three fractions: Rho low staining fraction (12.35%), Rho middle staining fraction (35.5%) and Rho strong staining fraction (50.5%). The cells in Rho low staining fraction expressed rich msi-1 and most of which were in the G0/G1 phase of cell cycle. After treatment of 5-FU, the intestinal mucous were damaged, although the number of msi-1 positive cells has a little decrease, there was no statistical difference among the mice at different time after injection (P>0.05). However, the percentage of msi-1 positive cells increased significantly after injection (P<0.01), and the percentage of msi-1 positive cells decreased gradually during the repaired procedure of the intestinal mucous. There was significant positive correction between the percentage of msi-1 positive cells and the percentage of Rho low staining cell fraction (r=0.867, p<0.01) after 5-FU injection. CONCLUSIONS The Rho low staining cell fraction from intestinal mucous contained rich intestinal epithelial stem cells, and the intestinal epithelial stem cell which expressed msi-1 played a key role in repairing the damage of intestinal mucous induced by 5-FU.
Collapse
Affiliation(s)
- Yuqi Luo
- Department of General Surgery, Nansha Hospital of Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou 510180, China.
| | - Haitao Yu
- Department of General Surgery, Nansha Hospital of Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou 510180, China
| | - Wentao Ou
- Department of General Surgery, Nansha Hospital of Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou 510180, China
| | - Lin Jia
- Department of Gastroenterology, Nansha Hospital of Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou 510180, China
| | - Yaoxing Huang
- Department of Gastroenterology, Nansha Hospital of Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou 510180, China
| |
Collapse
|
2
|
Halicka D, Zhao H, Li J, Garcia J, Podhorecka M, Darzynkiewicz Z. DNA Damage Response Resulting from Replication Stress Induced by Synchronization of Cells by Inhibitors of DNA Replication: Analysis by Flow Cytometry. Methods Mol Biol 2017; 1524:107-119. [PMID: 27815899 DOI: 10.1007/978-1-4939-6603-5_7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cell synchronization is often achieved by transient inhibition of DNA replication. When cultured in the presence of such inhibitors as hydroxyurea, aphidicolin or excess of thymidine the cells that become arrested at the entrance to S-phase upon release from the block initiate progression through S then G2 and M. However, exposure to these inhibitors at concentrations commonly used to synchronize cells leads to activation of ATR and ATM protein kinases as well as phosphorylation of Ser139 of histone H2AX. This observation of DNA damage signaling implies that synchronization of cells by these inhibitors is inducing replication stress. Thus, a caution should be exercised while interpreting data obtained with use of cells synchronized this way since they do not represent unperturbed cell populations in a natural metabolic state. This chapter critically outlines virtues and vices of most cell synchronization methods. It also presents the protocol describing an assessment of phosphorylation of Ser139 on H2AX and activation of ATM in cells treated with aphidicolin, as a demonstrative of one of several DNA replication inhibitors that are being used for cell synchronization. Phosphorylation of Ser139H2AX and Ser1981ATM in individual cells is detected immunocytochemically with phospho-specific Abs and intensity of immunofluorescence is measured by flow cytometry. Concurrent measurement of cellular DNA content followed by multiparameter analysis allows one to correlate the extent of phosphorylation of these proteins in response to aphidicolin with the cell cycle phase.
Collapse
Affiliation(s)
- Dorota Halicka
- Department of Pathology, Brander Cancer Research Institute, New York Medical College, 40 Sunshine Cottage Road, Valhalla, NY, 10595, USA
| | - Hong Zhao
- Department of Pathology, Brander Cancer Research Institute, New York Medical College, 40 Sunshine Cottage Road, Valhalla, NY, 10595, USA
| | - Jiangwei Li
- Department of Pathology, Brander Cancer Research Institute, New York Medical College, 40 Sunshine Cottage Road, Valhalla, NY, 10595, USA
| | - Jorge Garcia
- Department of Pathology, Brander Cancer Research Institute, New York Medical College, 40 Sunshine Cottage Road, Valhalla, NY, 10595, USA
| | - Monika Podhorecka
- Department of Hemato-Oncology and Bone Marrow Transplantation, Medical University, Lublin, Poland
| | - Zbigniew Darzynkiewicz
- Department of Pathology, Brander Cancer Research Institute, New York Medical College, 40 Sunshine Cottage Road, Valhalla, NY, 10595, USA.
| |
Collapse
|
3
|
In Vitro Osteogenic Potential of Green Fluorescent Protein Labelled Human Embryonic Stem Cell-Derived Osteoprogenitors. Stem Cells Int 2016; 2016:1659275. [PMID: 28003831 PMCID: PMC5149650 DOI: 10.1155/2016/1659275] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 10/27/2016] [Indexed: 01/26/2023] Open
Abstract
Cellular therapy using stem cells in bone regeneration has gained increasing interest. Various studies suggest the clinical utility of osteoprogenitors-like mesenchymal stem cells in bone regeneration. However, limited availability of mesenchymal stem cells and conflicting evidence on their therapeutic efficacy limit their clinical application. Human embryonic stem cells (hESCs) are potentially an unlimited source of healthy and functional osteoprogenitors (OPs) that could be utilized for bone regenerative applications. However, limited ability to track hESC-derived progenies in vivo greatly hinders translational studies. Hence, in this study, we aimed to establish hESC-derived OPs (hESC-OPs) expressing green fluorescent protein (GFP) and to investigate their osteogenic differentiation potential in vitro. We fluorescently labelled H9-hESCs using a plasmid vector encoding GFP. The GFP-expressing hESCs were differentiated into hESC-OPs. The hESC-OPsGFP+ stably expressed high levels of GFP, CD73, CD90, and CD105. They possessed osteogenic differentiation potential in vitro as demonstrated by increased expression of COL1A1, RUNX2, OSTERIX, and OPG transcripts and mineralized nodules positive for Alizarin Red and immunocytochemical expression of osteocalcin, alkaline phosphatase, and collagen-I. In conclusion, we have demonstrated that fluorescently labelled hESC-OPs can maintain their GFP expression for the long term and their potential for osteogenic differentiation in vitro. In future, these fluorescently labelled hESC-OPs could be used for noninvasive assessment of bone regeneration, safety, and therapeutic efficacy.
Collapse
|
4
|
Labeling Adipose-Derived Stem Cells with Hoechst 33342: Usability and Effects on Differentiation Potential and DNA Damage. Stem Cells Int 2016; 2016:6549347. [PMID: 27375746 PMCID: PMC4916289 DOI: 10.1155/2016/6549347] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 04/05/2016] [Accepted: 04/27/2016] [Indexed: 11/17/2022] Open
Abstract
Adipose-derived stem cells (ASCs) have been extensively studied in the field of stem cell research and possess numerous clinical applications. Cell labeling is an essential component of various experimental protocols and Hoechst 33342 (H33342) represents a cost-effective and easy methodology for live staining. The purpose of this study was to evaluate the labeling of rat ASCs with two different concentrations of H33342 (0.5 μg/mL and 5 μg/mL), with particular regard to usability, interference with cell properties, and potential DNA damage. Hoechst 33342 used at a low concentration of 0.5 μg/mL did not significantly affect cell proliferation, viability, or differentiation potential of the ASCs, nor did it cause any significant DNA damage as measured by the olive tail moment. High concentrations of 5 μg/mL H33342, however, impaired the proliferation and viability of the ASCs, and considerable DNA damage was observed. Undesirable colabeling of unlabeled cocultivated cells was seen in particular with higher concentrations of H33342, independent of varying washing procedures. Hence, H33342 labeling with lower concentrations represents a usable method, which does not affect the tested cell properties. However, the colabeling of adjacent cells is a drawback of the technique.
Collapse
|
5
|
Cova L, Bigini P, Diana V, Sitia L, Ferrari R, Pesce RM, Khalaf R, Bossolasco P, Ubezio P, Lupi M, Tortarolo M, Colombo L, Giardino D, Silani V, Morbidelli M, Salmona M, Moscatelli D. Biocompatible fluorescent nanoparticles for in vivo stem cell tracking. NANOTECHNOLOGY 2013; 24:245603. [PMID: 23690139 DOI: 10.1088/0957-4484/24/24/245603] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Efficient application of stem cells to the treatment of neurodegenerative diseases requires safe cell tracking to follow stem cell fate over time in the host environment after transplantation. In this work, for the first time, fluorescent and biocompatible methyl methacrylate (MMA)-based nanoparticles (fluoNPs) were synthesized through a free-radical co-polymerization process with a fluorescent macromonomer obtained by linking Rhodamine B and hydroxyethyl methacrylate. We demonstrate that the fluoNPs produced by polymerization of MMA-Rhodamine complexes (1) were efficient for the labeling and tracking of multipotent human amniotic fluid cells (hAFCs); (2) did not alter the main biological features of hAFCs (such as viability, cell growth and metabolic activity); (3) enabled us to determine the longitudinal bio-distribution of hAFCs in different brain areas after graft in the brain ventricles of healthy mice by a direct fluorescence-based technique. The reliability of our approach was furthermore confirmed by magnetic resonance imaging analyses, carried out by incubating hAFCs with both superparamagnetic iron oxide nanoparticles and fluoNPs. Our data suggest that these finely tunable and biocompatible fluoNPs can be exploited for the longitudinal tracking of stem cells.
Collapse
Affiliation(s)
- Lidia Cova
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Intercellular transfer of P-glycoprotein from the drug resistant human bladder cancer cell line BIU-87 does not require cell-to-cell contact. J Urol 2013; 190:1069-75. [PMID: 23618585 DOI: 10.1016/j.juro.2013.04.053] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2013] [Indexed: 12/18/2022]
Abstract
PURPOSE The efflux activity of transmembrane P-glycoprotein prevents various therapeutic drugs from reaching lethal concentrations in cancer cells, resulting in multidrug resistance. We investigated whether drug resistant bladder cancer cells could transfer functional P-glycoprotein to sensitive parental cells. MATERIALS AND METHODS Drug sensitive BIU-87 bladder cancer cells were co-cultured for 48 hours with BIU-87/ADM, a doxorubicin resistant derivative of the same cell line, in a Transwell® system that prevented cell-to-cell contact. The presence of P-glycoprotein in recipient cell membranes was established using fluorescein isothiocyanate, laser scanning confocal microscopy and Western blot. P-glycoprotein mRNA levels were compared between cell types. Rhodamine 123 efflux assay was done to confirm that P-glycoprotein was biologically active. RESULTS The amount of P-glycoprotein protein in BIU-87 cells co-cultured with BIU-87/ADM was significantly higher than in BIU-87 cells (0.44 vs 0.25) and BIU-87/H33342 cells (0.44 vs 0.26, each p <0.001), indicating P-glycoprotein transfer. P-glycoprotein mRNA expression was significantly higher in BIU-87/ADM cells than in co-cultured BIU-87 cells (1.28 vs 0.30), BIU-87/H33342 (0.28) and BIU-87 cells (0.25, each p <0.001), ruling out a genetic mechanism. After 30 minutes of efflux, rhodamine 123 fluorescence intensity was significantly lower in BIU-87/ADM cells (5.55 vs 51.45, p = 0.004) and co-cultured BIU-87 cells than in BIU-87 cells (14.22 vs 51.45, p <0.001), indicating that P-glycoprotein was functional. CONCLUSIONS Bladder cancer cells can acquire functional P-glycoprotein through a nongenetic mechanism that does not require direct cell contact. This mechanism is consistent with a microparticle mediated process.
Collapse
|
7
|
Lin CS, Xin ZC, Dai J, Lue TF. Commonly used mesenchymal stem cell markers and tracking labels: Limitations and challenges. Histol Histopathol 2013; 28:1109-16. [PMID: 23588700 DOI: 10.14670/hh-28.1109] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Early observations that cultured mesenchymal stem cells (MSCs) could be induced to exhibit certain characteristics of osteocytes and chondrocytes led to the proposal that they could be transplanted for tissue repair through cellular differentiation. Therefore, many subsequent preclinical studies with transplanted MSCs have strived to demonstrate that cellular differentiation was the underlying mechanism for the therapeutic effect. These studies generally followed the minimal criteria set by The International Society for Cellular Therapy in assuring MSC identity by using CD70, CD90, and CD105 as positive markers and CD34 as a negative marker. However, the three positive markers are co-expressed in a wide variety of cells, and therefore, even when used in combination, they are certainly incapable of identifying MSCs in vivo. Another frequently used MSC marker, Stro-1, has been shown to be an endothelial antigen and whether it can identify MSCs in vivo remains unknown. On the other hand, the proposed negative marker CD34 has increasingly been shown to be expressed in native MSCs, such as in the adipose tissue. It has also helped establish that MSCs are likely vascular stem cells (VSCs) that reside in the capillaries and in the adventitia of larger blood vessels. These cells do not express CD31, CD104b, or α-SMA, and therefore are designated as CD34+CD31-CD140b-SMA-. Many preclinical MSC transplantation studies have also attempted to demonstrate cellular differentiation by using labeled MSCs. However, all commonly used labels have shortcomings that often complicate data interpretation. The β-gal (LacZ) gene as a label is problematic because many mammalian tissues have endogenous β-gal activities. The GFP gene is similarly problematic because many mammalian tissues are endogenously fluorescent. The cell membrane label DiI can be adsorbed by host cells, and nuclear stains Hoechst dyes and DAPI can be transferred to host cells. Thymidine analog BrdU is associated with loss of cellular protein antigenicity due to harsh histological conditions. Newer thymidine analog EdU is easier to detect by chemical reaction to azide-conjugated Alexa fluors, but certain bone marrow cells are reactive to these fluors in the absence of EdU. These caveats need to be taken into consideration when designing or interpreting MSC transplantation experiments.
Collapse
Affiliation(s)
- Ching-Shwun Lin
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, California 94143-0738, USA.
| | | | | | | |
Collapse
|
8
|
Longitudinal tracking of human fetal cells labeled with super paramagnetic iron oxide nanoparticles in the brain of mice with motor neuron disease. PLoS One 2012; 7:e32326. [PMID: 22384217 PMCID: PMC3288077 DOI: 10.1371/journal.pone.0032326] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Accepted: 01/25/2012] [Indexed: 12/20/2022] Open
Abstract
Stem Cell (SC) therapy is one of the most promising approaches for the treatment of Amyotrophic Lateral Sclerosis (ALS). Here we employed Super Paramagnetic Iron Oxide nanoparticles (SPIOn) and Hoechst 33258 to track human Amniotic Fluid Cells (hAFCs) after transplantation in the lateral ventricles of wobbler (a murine model of ALS) and healthy mice. By in vitro, in vivo and ex vivo approaches we found that: 1) the main physical parameters of SPIOn were maintained over time; 2) hAFCs efficiently internalized SPIOn into the cytoplasm while Hoechst 33258 labeled nuclei; 3) SPIOn internalization did not alter survival, cell cycle, proliferation, metabolism and phenotype of hAFCs; 4) after transplantation hAFCs rapidly spread to the whole ventricular system, but did not migrate into the brain parenchyma; 5) hAFCs survived for a long time in the ventricles of both wobbler and healthy mice; 6) the transplantation of double-labeled hAFCs did not influence mice survival.
Collapse
|
9
|
Lin CS, Lue TF. Stem cell therapy for stress urinary incontinence: a critical review. Stem Cells Dev 2012; 21:834-43. [PMID: 22121849 DOI: 10.1089/scd.2011.0621] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Stress urinary incontinence (SUI) is a prevailing health problem that severely impacts quality of life. Because SUI is mainly due to urethral sphincter deficiency, several preclinical and clinical trials have investigated whether transplantation of patient's own skeletal muscle-derived cells (SkMDCs) can restore the sphincter musculature. The specific cell type of SkMDCs has been described as myoblasts, satellite cells, muscle progenitor cells, or muscle-derived stem cells, and thus may vary from study to study. In more recent years, other stem cell (SC) types have also been tested, including those from the bone marrow, umbilical cord blood, and adipose tissue. These studies were mostly preclinical and utilized rat SUI models that were established predominantly by pudendal or sciatic nerve injury. Less frequently used animal models were sphincter injury and vaginal distension. While transurethral injection of SCs was employed almost exclusively in clinical trials, periurethral injection was used in all preclinical trials. Intravenous injection was also used in one preclinical study. Functional assessment of therapeutic efficacy in preclinical studies has relied almost exclusively on leak point pressure measurement. Histological assessment examined the sphincter muscle content, existence of transplanted SCs, and possible differentiation of these SCs. While all of these studies reported favorable functional and histological outcomes, there are questions about the validity of the animal model and claims of multilineage differentiation. In any event, SC transplantation appears to be a promising treatment for SUI.
Collapse
Affiliation(s)
- Ching-Shwun Lin
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, California 94143-0738, USA.
| | | |
Collapse
|
10
|
Darzynkiewicz Z, Halicka HD, Zhao H, Podhorecka M. Cell synchronization by inhibitors of DNA replication induces replication stress and DNA damage response: analysis by flow cytometry. Methods Mol Biol 2011; 761:85-96. [PMID: 21755443 PMCID: PMC3137244 DOI: 10.1007/978-1-61779-182-6_6] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Cell synchronization is often achieved by inhibition of DNA replication. The cells cultured in the presence of such inhibitors as hydroxyurea, aphidicolin, or thymidine become arrested at the entrance to S phase and upon release from the block they synchronously progress through S, G(2), and M. We recently reported that exposure of cells to these inhibitors at concentrations commonly used to synchronize cell populations led to phosphorylation of histone H2AX on Ser139 (induction of γH2AX) through activation of ataxia telangiectasia mutated and Rad3-related protein kinase (ATR). These findings imply that the induction of DNA replication stress by these inhibitors activates the DNA damage response signaling pathways and caution about interpreting data obtained with use of cells synchronized such way as representing unperturbed cells. The protocol presented in this chapter describes the methodology of assessment of phosphorylation of histone H2AX-Ser139, ATM/ATR substrate on Ser/Thr at SQ/TQ cluster domains as well as ataxia telangiectasia mutated (ATM) protein kinase in cells treated with inhibitors of DNA replication. Phosphorylation of these proteins is detected in individual cell immunocytochemically with phospho-specific antibody (Ab) and measured by flow cytometry. Concurrent measurement of cellular DNA content and phosphorylated proteins followed by multiparameter cytometric analysis allows one to correlate extent of their phosphorylation with cell cycle phase.
Collapse
Affiliation(s)
- Zbigniew Darzynkiewicz
- Department of Pathology, Brander Cancer Research Institute, New York Medical College, 10595, Valhalla, NY, USA.
| | | | | | | |
Collapse
|
11
|
Deutsch M, Afrimzon E, Namer Y, Shafran Y, Sobolev M, Zurgil N, Deutsch A, Howitz S, Greuner M, Thaele M, Zimmermann H, Meiser I, Ehrhart F. The individual-cell-based cryo-chip for the cryopreservation, manipulation and observation of spatially identifiable cells. I: methodology. BMC Cell Biol 2010; 11:54. [PMID: 20609216 PMCID: PMC2912820 DOI: 10.1186/1471-2121-11-54] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2009] [Accepted: 07/07/2010] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Cryopreservation is the only widely applicable method of storing vital cells for nearly unlimited periods of time. Successful cryopreservation is essential for reproductive medicine, stem cell research, cord blood storage and related biomedical areas. The methods currently used to retrieve a specific cell or a group of individual cells with specific biological properties after cryopreservation are quite complicated and inefficient. RESULTS The present study suggests a new approach in cryopreservation, utilizing the Individual Cell-based Cryo-Chip (i3C). The i3C is made of materials having appropriate durability for cryopreservation conditions. The core of this approach is an array of picowells, each picowell designed to maintain an individual cell during the severe conditions of the freezing--thawing cycle and accompanying treatments. More than 97% of cells were found to retain their position in the picowells throughout the entire freezing--thawing cycle and medium exchange. Thus the comparison between pre-freezing and post-thawing data can be achieved at an individual cell resolution. The intactness of cells undergoing slow freezing and thawing, while residing in the i3C, was found to be similar to that obtained with micro-vials. However, in a fast freezing protocol, the i3C was found to be far superior. CONCLUSIONS The results of the present study offer new opportunities for cryopreservation. Using the present methodology, the cryopreservation of individual identifiable cells, and their observation and retrieval, at an individual cell resolution become possible for the first time. This approach facilitates the correlation between cell characteristics before and after the freezing--thawing cycle. Thus, it is expected to significantly enhance current cryopreservation procedures for successful regenerative and reproductive medicine.
Collapse
Affiliation(s)
- Mordechai Deutsch
- The Biophysical Interdisciplinary Schottenstein Center for the Research and Technology of the Cellome, Bar-Ilan University, Ramat Gan 52900, Israel.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
In vitro osteogenic differentiation of adipose stem cells after lentiviral transduction with green fluorescent protein. J Craniofac Surg 2010; 20:2193-9. [PMID: 19934675 DOI: 10.1097/scs.0b013e3181bf04af] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Adipose-derived stem cells (ASCs) have the potential to differentiate into osteogenic cells that can be seeded into scaffolds for tissue engineering for use in craniofacial bone defects. Green fluorescent protein (GFP) has been widely used as a lineage marker for mammalian cells. The use of fluorescent proteins enables cells to be tracked during manipulation such as osteogenic differentiation within three-dimensional scaffolds. The purpose of this study was to examine whether ASCs introduced with GFP-encoding lentivirus vector exhibit adequate GFP fluorescence and whether the expression of GFP interfered with osteogenic differentiation of ASCs in both monolayer and three-dimensional scaffolds in vitro. METHODS Primary ASCs were harvested from the inguinal fat pad of Sprague Dawley rats. Isolated ASCs were cultured and infected with a lentiviral vector encoding GFP and plated into both monolayers and three-dimensional scaffolds in vitro. The cells were then placed in osteogenic medium. Osteogenic differentiation of the GFP-ASCs was assessed using alizarin red S, alkaline phosphate staining, and immunohistochemistry staining of osteocalcin with quantification of alizarin red S and osteocalcin staining. RESULTS The efficacy of infection of ASCs with a lentiviral vector encoding GFP was high. Cell-cultured GFP-ASCs remained fluorescent over the 8 weeks of the study period. The GFP-ASCs were successfully induced into osteogenic cells both in monolayers and three-dimensional scaffolds. Whereas the quanitification of alizarin red S revealed no difference between osteoinduced ASCs with or without GFP, the quantification of osteocalcin revealed increased staining in the GFP group. CONCLUSIONS Transduction of isolated ASCs using a lentiviral vector encoding GFP is an effective method for tracing osteoinduced ASCs in vitro. Quantification data showed no decrease in staining of the osteoinduced ASCs.
Collapse
|
13
|
Coyne TM, Marcus AJ, Woodbury D, Black IB. Marrow stromal cells transplanted to the adult brain are rejected by an inflammatory response and transfer donor labels to host neurons and glia. Stem Cells 2006; 24:2483-92. [PMID: 16873764 DOI: 10.1634/stemcells.2006-0174] [Citation(s) in RCA: 188] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Abstract The remarkable plasticity of marrow stromal cells (MSCs) after transplantation to models of neurological disease and injury has been described. In this report, we investigated the plasticity and long-term survival of MSCs transplanted into the normal brain. MSCs were isolated from green fluorescent protein (GFP) transgenic rats and double-labeled with 5-bromo-2-deoxyuridine (BrdU) and bis benzamide (BBZ) prior to transplantation into the adult hippocampus or striatum. Surgery elicited an immediate inflammatory response. MSC grafts were massively infiltrated by ED1-positive microglia/macrophages and surrounded by a marked astrogliosis. By 14 days, graft volume had retracted and GFP immunoreactivity was absent, indicating complete donor rejection. Consequently, MSCs did not exhibit plasticity formerly identified in other studies. However, BrdU- and BBZ-labeled cells were detected up to 12 weeks. Control transplants of nonviable MSCs demonstrated the transfer of donor labels to host cells. Unexpectedly, BrdU labeling was colocalized to host phagocytes, astrocytes, and neurons in both regions. Our results indicate that MSCs transplanted to the intact adult brain are rejected by an inflammatory response. Moreover, use of the traditional cell labels BrdU and BBZ may provide a misleading index of donor survival and differentiation after transplantation.
Collapse
Affiliation(s)
- Thomas M Coyne
- The Ira B. Black Center for Stem Cell Rersearch and Department of Neuroscience and Cell Biology, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, Piscataway, NJ 08854-5635, USA.
| | | | | | | |
Collapse
|
14
|
Kurose A, Tanaka T, Huang X, Traganos F, Darzynkiewicz Z. Synchronization in the cell cycle by inhibitors of DNA replication induces histone H2AX phosphorylation: an indication of DNA damage. Cell Prolif 2006; 39:231-40. [PMID: 16672000 PMCID: PMC6496703 DOI: 10.1111/j.1365-2184.2006.00380.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Several methods to synchronize cultured cells in the cell cycle are based on temporary inhibition of DNA replication. Previously it has been reported that cells synchronized this way exhibited significant growth imbalance and unscheduled expression of cyclins A and B1. We have now observed that HL-60 cells exposed to inhibitors of DNA replication (thymidine, aphidicolin and hydroxyurea), at concentrations commonly used to synchronize cell populations, had histone H2AX phosphorylated on Ser-139. This modification of H2AX, a marker of DNA damage (induction of DNA double-strand breaks; DSBs), was most pronounced in S-phase cells, and led to their apoptosis. Thus, to a large extent, synchronization was caused by selective kill of DNA replicating cells through induction of replication stress. In fact, similar synchronization has been achieved by exposure of cells to the DNA topoisomerase I inhibitor camptothecin, a cytotoxic drug known to target S-phase cells. A large proportion of the surviving cells 'synchronized' by DNA replication inhibitors at the G1/S boundary had phosphorylated histone H2AX. Inhibitors of DNA replication, thus, not only selectively kill DNA replicating cells, induce growth imbalance and alter the machinery regulating progression through the cycle, but they also cause DNA damage involving formation of DSBs in the surviving ('synchronized') cells. The above effects should be taken into account when interpreting data obtained with the use of cells synchronized by inhibitors of DNA replication.
Collapse
Affiliation(s)
- A. Kurose
- Brander Cancer Research Institute and
- Department of Pathology, New York Medical College, Valhalla, NY 10595, USA
- Department of Pathology, Iwate Medical University, 19‐1 Uchimaru, Morioka, Iwate 020‐8505, Japan, and
| | - T. Tanaka
- Brander Cancer Research Institute and
- First Department of Surgery, Yamaguchi University School of Medicine 1‐1‐1 Minami‐kogushi, Ube, Yamaguchi 755‐8505, Japan
| | - X. Huang
- Brander Cancer Research Institute and
| | | | | |
Collapse
|