1
|
Nieto-Garai JA, Contreras FX, Arboleya A, Lorizate M. Role of Protein-Lipid Interactions in Viral Entry. Adv Biol (Weinh) 2022; 6:e2101264. [PMID: 35119227 DOI: 10.1002/adbi.202101264] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/19/2021] [Indexed: 12/25/2022]
Abstract
The viral entry consists of several sequential events that ensure the attachment of the virus to the host cell and the introduction of its genetic material for the continuation of the replication cycle. Both cellular and viral lipids have gained a wider focus in recent years in the field of viral entry, as they are found to play key roles in different steps of the process. The specific role is summarized that lipids and lipid membrane nanostructures play in viral attachment, fusion, and immune evasion and how they can be targeted with antiviral therapies. Finally, some of the limitations of techniques commonly used for protein-lipid interactions studies are discussed, and new emerging tools are reviewed that can be applied to this field.
Collapse
Affiliation(s)
- Jon Ander Nieto-Garai
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country, Leioa, E-48940, Spain
| | - Francesc-Xabier Contreras
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country, Leioa, E-48940, Spain.,Instituto Biofisika (UPV/EHU, CSIC), University of the Basque Country, Leioa, E-48940, Spain.,Ikerbasque, Basque Foundation for Science, Bilbao, 48013, Spain
| | - Aroa Arboleya
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country, Leioa, E-48940, Spain.,Instituto Biofisika (UPV/EHU, CSIC), University of the Basque Country, Leioa, E-48940, Spain.,Fundación Biofísica Bizkaia/Biofisika Bizkaia Fundazioa (FBB), Barrio Sarriena s/n, Leioa, E-48940, Spain
| | - Maier Lorizate
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country, Leioa, E-48940, Spain.,Instituto Biofisika (UPV/EHU, CSIC), University of the Basque Country, Leioa, E-48940, Spain
| |
Collapse
|
2
|
Lipids in Pathophysiology and Development of the Membrane Lipid Therapy: New Bioactive Lipids. MEMBRANES 2021; 11:membranes11120919. [PMID: 34940418 PMCID: PMC8708953 DOI: 10.3390/membranes11120919] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/16/2021] [Accepted: 11/19/2021] [Indexed: 12/19/2022]
Abstract
Membranes are mainly composed of a lipid bilayer and proteins, constituting a checkpoint for the entry and passage of signals and other molecules. Their composition can be modulated by diet, pathophysiological processes, and nutritional/pharmaceutical interventions. In addition to their use as an energy source, lipids have important structural and functional roles, e.g., fatty acyl moieties in phospholipids have distinct impacts on human health depending on their saturation, carbon length, and isometry. These and other membrane lipids have quite specific effects on the lipid bilayer structure, which regulates the interaction with signaling proteins. Alterations to lipids have been associated with important diseases, and, consequently, normalization of these alterations or regulatory interventions that control membrane lipid composition have therapeutic potential. This approach, termed membrane lipid therapy or membrane lipid replacement, has emerged as a novel technology platform for nutraceutical interventions and drug discovery. Several clinical trials and therapeutic products have validated this technology based on the understanding of membrane structure and function. The present review analyzes the molecular basis of this innovative approach, describing how membrane lipid composition and structure affects protein-lipid interactions, cell signaling, disease, and therapy (e.g., fatigue and cardiovascular, neurodegenerative, tumor, infectious diseases).
Collapse
|
3
|
Suárez H, Rocha-Perugini V, Álvarez S, Yáñez-Mó M. Tetraspanins, Another Piece in the HIV-1 Replication Puzzle. Front Immunol 2018; 9:1811. [PMID: 30127789 PMCID: PMC6088189 DOI: 10.3389/fimmu.2018.01811] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 07/23/2018] [Indexed: 12/12/2022] Open
Abstract
Despite the great research effort placed during the last decades in HIV-1 study, still some aspects of its replication cycle remain unknown. All this powerful research has succeeded in developing different drugs for AIDS treatment, but none of them can completely remove the virus from infected patients, who require life-long medication. The classical approach was focused on the study of virus particles as the main target, but increasing evidence highlights the importance of host cell proteins in HIV-1 cycle. In this context, tetraspanins have emerged as critical players in different steps of the viral infection cycle. Through their association with other molecules, including membrane receptors, cytoskeletal proteins, and signaling molecules, tetraspanins organize specialized membrane microdomains called tetraspanin-enriched microdomains (TEMs). Within these microdomains, several tetraspanins have been described to regulate HIV-1 entry, assembly, and transfer between cells. Interestingly, the importance of tetraspanins CD81 and CD63 in the early steps of viral replication has been recently pointed out. Indeed, CD81 can control the turnover of the HIV-1 restriction factor SAMHD1. This deoxynucleoside triphosphate triphosphohydrolase counteracts HIV-1 reverse transcription (RT) in resting cells via its dual function as dNTPase, catalyzing deoxynucleotide triphosphates into deoxynucleosides and inorganic triphosphate, and as exonuclease able to degrade single-stranded RNAs. SAMHD1 has also been related with the detection of viral nucleic acids, regulating the innate immune response and would promote viral latency. New evidences demonstrating the ability of CD81 to control SAMHD1 expression, and as a consequence, HIV-1 RT activity, highlight the importance of TEMs for viral replication. Here, we will briefly review how tetraspanins modulate HIV-1 infection, focusing on the latest findings that link TEMs to viral replication.
Collapse
Affiliation(s)
- Henar Suárez
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, Madrid, Spain
| | - Vera Rocha-Perugini
- Servicio de Inmunología, Hospital de la Princesa, Instituto de Investigación Sanitaria La Princesa (IIS-IP), Madrid, Spain.,Vascular Pathophysiology Research Area, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain
| | - Susana Álvarez
- Servicio de Inmunobiología Molecular, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - María Yáñez-Mó
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, Madrid, Spain.,Centro de Biología Molecular Severo Ochoa, Instituto de Investigación Sanitaria La Princesa (IIS-IP), Madrid, Spain
| |
Collapse
|
4
|
Tóth EA, Oszvald Á, Péter M, Balogh G, Osteikoetxea-Molnár A, Bozó T, Szabó-Meleg E, Nyitrai M, Derényi I, Kellermayer M, Yamaji T, Hanada K, Vígh L, Matkó J. Nanotubes connecting B lymphocytes: High impact of differentiation-dependent lipid composition on their growth and mechanics. Biochim Biophys Acta Mol Cell Biol Lipids 2017. [PMID: 28645851 DOI: 10.1016/j.bbalip.2017.06.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Nanotubes (NTs) are thin, long membranous structures forming novel, yet poorly known communication pathways between various cell types. Key mechanisms controlling their growth still remained poorly understood. Since NT-forming capacity of immature and mature B cells was found largely different, we investigated how lipid composition and molecular order of the membrane affect NT-formation. Screening B cell lines with various differentiation stages revealed that NT-growth linearly correlates with membrane ganglioside levels, while it shows maximum as a function of cholesterol level. NT-growth of B lymphocytes is promoted by raftophilic phosphatidylcholine and sphingomyelin species, various glycosphingolipids, and docosahexaenoic acid-containing inner leaflet lipids, through supporting membrane curvature, as demonstrated by comparative lipidomic analysis of mature versus immature B cell membranes. Targeted modification of membrane cholesterol and sphingolipid levels altered NT-forming capacity confirming these findings, and also highlighted that the actual lipid raft number may control NT-growth via defining the number of membrane-F-actin coupling sites. Atomic force microscopic mechano-manipulation experiments further proved that mechanical properties (elasticity or bending stiffness) of B cell NTs also depend on the actual membrane lipid composition. Data presented here highlight importance of the lipid side in controlling intercellular, nanotubular, regulatory communications in the immune system.
Collapse
Affiliation(s)
- Eszter A Tóth
- Department of Immunology, Eötvös Lorand University, Budapest, Hungary
| | - Ádám Oszvald
- Department of Immunology, Eötvös Lorand University, Budapest, Hungary
| | - Mária Péter
- Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
| | - Gábor Balogh
- Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary.
| | | | - Tamás Bozó
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - Edina Szabó-Meleg
- Department of Biophysics, Medical Faculty, University of Pécs, Pécs, Hungary; Department of Szentágothai Research Center, University of Pécs, Pécs, Hungary
| | - Miklós Nyitrai
- Department of Biophysics, Medical Faculty, University of Pécs, Pécs, Hungary; Department of Szentágothai Research Center, University of Pécs, Pécs, Hungary
| | - Imre Derényi
- Department of Biological Physics, Eötvös Lorand University, Budapest, Hungary
| | - Miklós Kellermayer
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary; MTA-SE Molecular Biophysics Research Group, Semmelweis University, Budapest, Hungary
| | - Toshiyuki Yamaji
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Shunjuku-ku, Tokyo, Japan
| | - Kentaro Hanada
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Shunjuku-ku, Tokyo, Japan
| | - László Vígh
- Institute of Biochemistry, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
| | - János Matkó
- Department of Immunology, Eötvös Lorand University, Budapest, Hungary.
| |
Collapse
|
5
|
Mocsár G, Volkó J, Rönnlund D, Widengren J, Nagy P, Szöllősi J, Tóth K, Goldman CK, Damjanovich S, Waldmann TA, Bodnár A, Vámosi G. MHC I Expression Regulates Co-clustering and Mobility of Interleukin-2 and -15 Receptors in T Cells. Biophys J 2017; 111:100-12. [PMID: 27410738 DOI: 10.1016/j.bpj.2016.05.044] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 05/09/2016] [Accepted: 05/16/2016] [Indexed: 11/28/2022] Open
Abstract
MHC glycoproteins form supramolecular clusters with interleukin-2 and -15 receptors in lipid rafts of T cells. The role of highly expressed MHC I in maintaining these clusters is unknown. We knocked down MHC I in FT7.10 human T cells, and studied protein clustering at two hierarchic levels: molecular aggregations and mobility by Förster resonance energy transfer and fluorescence correlation spectroscopy; and segregation into larger domains or superclusters by superresolution stimulated emission depletion microscopy. Fluorescence correlation spectroscopy-based molecular brightness analysis revealed that the studied molecules diffused as tight aggregates of several proteins of a kind. Knockdown reduced the number of MHC I containing molecular aggregates and their average MHC I content, and decreased the heteroassociation of MHC I with IL-2Rα/IL-15Rα. The mobility of not only MHC I but also that of IL-2Rα/IL-15Rα increased, corroborating the general size decrease of tight aggregates. A multifaceted analysis of stimulated emission depletion images revealed that the diameter of MHC I superclusters diminished from 400-600 to 200-300 nm, whereas those of IL-2Rα/IL-15Rα hardly changed. MHC I and IL-2Rα/IL-15Rα colocalized with GM1 ganglioside-rich lipid rafts, but MHC I clusters retracted to smaller subsets of GM1- and IL-2Rα/IL-15Rα-rich areas upon knockdown. Our results prove that changes in expression level may significantly alter the organization and mobility of interacting membrane proteins.
Collapse
Affiliation(s)
- Gábor Mocsár
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Julianna Volkó
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Daniel Rönnlund
- Department of Applied Physics/Experimental Biomolecular Physics, Royal Institute of Technology, Albanova University Center, Stockholm, Sweden
| | - Jerker Widengren
- Department of Applied Physics/Experimental Biomolecular Physics, Royal Institute of Technology, Albanova University Center, Stockholm, Sweden
| | - Péter Nagy
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - János Szöllősi
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary; Cell Biology and Signaling Research Group of the Hungarian Academy of Sciences and the University of Debrecen, Debrecen, Hungary
| | - Katalin Tóth
- German Cancer Research Center, Biophysics of Macromolecules, Heidelberg, Germany
| | - Carolyn K Goldman
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Sándor Damjanovich
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Thomas A Waldmann
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Andrea Bodnár
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - György Vámosi
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.
| |
Collapse
|
6
|
Dumas F, Haanappel E. Lipids in infectious diseases - The case of AIDS and tuberculosis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:1636-1647. [PMID: 28535936 DOI: 10.1016/j.bbamem.2017.05.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 05/11/2017] [Accepted: 05/14/2017] [Indexed: 02/07/2023]
Abstract
Lipids play a central role in many infectious diseases. AIDS (Acquired Immune Deficiency Syndrome) and tuberculosis are two of the deadliest infectious diseases to have struck mankind. The pathogens responsible for these diseases, Human Immunodeficiency Virus-1 and Mycobacterium tuberculosis, rely on lipids and on lipid membrane properties to gain access to their host cells, to persist in them and ultimately to egress from their hosts. In this Review, we discuss the life cycles of these pathogens and the roles played by lipids and membranes. We then give an overview of therapies that target lipid metabolism, modulate host membrane properties or implement lipid-based drug delivery systems. This article is part of a Special Issue entitled: Membrane Lipid Therapy: Drugs Targeting Biomembranes edited by Pablo V. Escribá.
Collapse
Affiliation(s)
- Fabrice Dumas
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, France.
| | - Evert Haanappel
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, France
| |
Collapse
|
7
|
Wisskirchen K, Lucifora J, Michler T, Protzer U. New pharmacological strategies to fight enveloped viruses. Trends Pharmacol Sci 2014; 35:470-8. [PMID: 25108320 PMCID: PMC7112871 DOI: 10.1016/j.tips.2014.06.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 06/13/2014] [Accepted: 06/17/2014] [Indexed: 02/07/2023]
Abstract
Many emerging or known, chronic viral diseases are caused by enveloped viruses. The review discusses research driven development of antivirals that became recently available or are in clinical evaluation. The main focus is on antiviral strategies with a broader therapeutic range, and on novel immune based therapeutics. Broad-spectrum antivirals will help to react faster to newly emerging viral diseases. Targeting immune cells against infected cells can restore immune responses in chronic infections.
Enveloped viruses pose an important health threat because most of the persistent and many emerging viruses are enveloped. In particular, newly emerging viruses create a need to develop broad-spectrum antivirals, which usually are obtained by targeting host cell factors. Persistent viruses have developed efficient strategies to escape host immune control, and treatment options are limited. Targeting host cell factors essential for virus persistence, or immune-based therapies provide alternative approaches. In this review, we therefore focus on recent developments to generate antivirals targeting host cell factors or immune-based therapeutic approaches to fight infections with enveloped viruses.
Collapse
Affiliation(s)
- Karin Wisskirchen
- Institute of Virology, Technische Universität München/Helmholtz Zentrum München, Trogerstrasse 30, 81675 Munich, Germany
| | - Julie Lucifora
- Institute of Virology, Technische Universität München/Helmholtz Zentrum München, Trogerstrasse 30, 81675 Munich, Germany; German Center for Infection Research (DZIF), Munich site, Munich, Germany
| | - Thomas Michler
- Institute of Virology, Technische Universität München/Helmholtz Zentrum München, Trogerstrasse 30, 81675 Munich, Germany; German Center for Infection Research (DZIF), Munich site, Munich, Germany
| | - Ulrike Protzer
- Institute of Virology, Technische Universität München/Helmholtz Zentrum München, Trogerstrasse 30, 81675 Munich, Germany; German Center for Infection Research (DZIF), Munich site, Munich, Germany.
| |
Collapse
|
8
|
The AC8 IgG3 monoclonal anti-cholesterol antibody modulates uptake and presentation of antigens for T cell activation. Immunol Lett 2012; 143:106-15. [DOI: 10.1016/j.imlet.2012.01.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Revised: 01/13/2012] [Accepted: 01/16/2012] [Indexed: 01/07/2023]
|
9
|
Haughey NJ, Tovar-y-Romo LB, Bandaru VVR. Roles for biological membranes in regulating human immunodeficiency virus replication and progress in the development of HIV therapeutics that target lipid metabolism. J Neuroimmune Pharmacol 2011; 6:284-95. [PMID: 21445582 DOI: 10.1007/s11481-011-9274-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Accepted: 03/08/2011] [Indexed: 01/14/2023]
Abstract
Infection by the human immunodeficiency virus (HIV) involves a number of important interactions with lipid components in host membranes that regulate binding, fusion, internalization, and viral assembly. Available data suggests that HIV actively modifies the sphingolipid content of cellular membranes to create focal environments that are favorable for infection. In this review, we summarize the roles that membrane lipids play in HIV infection and discuss the current status of therapeutics that attempt to modify biological membranes to inhibit HIV.
Collapse
Affiliation(s)
- Norman J Haughey
- Department of Neurology, Richard T. Johnson Division of Neuroimmunology and Neurological Infections, The Johns Hopkins University School of Medicine, Meyer 6-109, 600N. Wolfe Street, Baltimore, MD 21287, USA.
| | | | | |
Collapse
|
10
|
Mujawar Z, Tamehiro N, Grant A, Sviridov D, Bukrinsky M, Fitzgerald ML. Mutation of the ATP cassette binding transporter A1 (ABCA1) C-terminus disrupts HIV-1 Nef binding but does not block the Nef enhancement of ABCA1 protein degradation. Biochemistry 2010; 49:8338-49. [PMID: 20731376 DOI: 10.1021/bi100466q] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
HIV-1 infection and antiretroviral therapy are associated with a dyslipidemia marked by low levels of high-density lipoprotein and increased cardiovascular disease, but it is unclear whether virion replication plays a causative role in these changes. The HIV-1 Nef protein can impair ATP cassette binding transporter A1 (ABCA1) cholesterol efflux from macrophages, a potentially pro-atherosclerotic effect. This viral inhibition of efflux was correlated with a direct interaction between ABCA1 and Nef. Here, we defined the ABCA1 domain required for the Nef-ABCA1 protein-protein interaction and determined whether this interaction mediates the ability of Nef to downregulate ABCA1. Nef expressed in HEK 293 cells strongly inhibited ABCA1 efflux and protein levels but did not alter levels of cMIR, another transmembrane protein. Analysis of a panel of ABCA1 C-terminal mutants showed Nef binding required the ABCA1 C-terminal amino acids between positions 2225 and 2231. However, the binding of Nef to ABCA1 was not required for inhibition because the C-terminal ABCA1 mutants that did not bind Nef were still downregulated by Nef. Given this discordance, the mechanism of downregulation was investigated and was found to involve the acceleration of ABCA1 protein degradation but did not to depend upon the ABCA1 PEST sequence, which mediates the calpain proteolysis of ABCA1. Furthermore, it did not associate with a Nef-dependent induction of signaling through the unfolded protein response but was significantly dependent upon proteasomal function and could act on an ABCA1 mutant that fails to exit the endoplasmic reticulum. In summary, we show that Nef downregulates ABCA1 function by a post-translational mechanism that stimulates ABCA1 degradation but does not require the ability of Nef to bind ABCA1.
Collapse
Affiliation(s)
- Zahedi Mujawar
- Lipid Metabolism Unit, Center for Computational and Integrative Biology, Richard B. Simches Research Center, Massachusetts General Hospital, 185 Cambridge Street, 7th Floor #7150, Boston, Massachusetts 02114, USA
| | | | | | | | | | | |
Collapse
|