1
|
Mese-Tayfur S, Demirel-Yalcıner T, Migni A, Bartolini D, Galli F, Ozer NK, Sozen E. Modulation of inflammatory signaling by vitamin E metabolites and its therapeutic implications. Free Radic Res 2025; 59:86-101. [PMID: 39764767 DOI: 10.1080/10715762.2024.2449457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 12/06/2024] [Accepted: 12/28/2024] [Indexed: 01/30/2025]
Abstract
Naturally occurring vitamin E is a lipophilic plant-derived molecule corresponding to the 2 R forms of alpha-tocopherol. A series of natural analogs or tocochromanols are present in nature, including β-, γ- and δ-tocopherol (βT, γT, δT), the corresponding tocotrienols (αTE, βTE, γTE, δTE) and tocomonoenols. Differences between these analogs as lipophilic antioxidants and modulators of molecular processes suggest specific therapeutic properties against various disorders associated with acute and chronic inflammation. However, hepatic metabolism of these compounds via cytochrome P450-initiated side chain ω-oxidation involves the production of long-chain metabolites (LCMs) followed by intermediate (ICMs) and short-chain metabolites (SCMs), respectively. Despite the initial studies indicating these metabolites as catabolic-end products, recent findings identify their importance in providing biological functions. In this scope, LCMs, especially 13'-carboxychromanols (13'-COOHs), have been reported to hold stronger anti-inflammatory capacity than their unmetabolized precursors due to their ability to inhibit 5-lipoxygenase and cyclooxygenase-catalyzed eicosanoid formation, as well as their modulation of the pro-inflammatory transcriptional protein nuclear factor κB (NF-κB). Also, these LCMs have been reported to enhance detoxification and lipid metabolism pathways associated with cellular inflammation by modulating the nuclear receptors peroxisome proliferator-activated receptor-γ (PPARγ) and pregnane x receptor (PXR). These properties of LCMs will be described in this narrative review article focusing on recent information regarding their bioavailability, anti-inflammatory effects, and mechanisms of action in acute and chronic inflammatory disorders.
Collapse
Affiliation(s)
- Seher Mese-Tayfur
- Department of Biochemistry, Faculty of Medicine, Marmara University, Istanbul, Turkey
- Institute of Health Sciences, Marmara University, Istanbul, Turkey
| | - Tugce Demirel-Yalcıner
- Department of Biochemistry, Faculty of Medicine, Uskudar University, Istanbul, Turkey
- Metabolic and Inflammatory Diseases Research Center (METIFLAM), Uskudar University, Istanbul, Turkey
| | - Anna Migni
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Desirée Bartolini
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Francesco Galli
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Nesrin Kartal Ozer
- Department of Biochemistry, Faculty of Medicine, Uskudar University, Istanbul, Turkey
- Metabolic and Inflammatory Diseases Research Center (METIFLAM), Uskudar University, Istanbul, Turkey
| | - Erdi Sozen
- Department of Biochemistry, Faculty of Medicine, Marmara University, Istanbul, Turkey
- Genetic and Metabolic Diseases Research and Investigation Center (GEMHAM), Marmara University, Istanbul, Turkey
| |
Collapse
|
2
|
Turck D, Bohn T, Castenmiller J, de Henauw S, Hirsch-Ernst KI, Knutsen HK, Maciuk A, Mangelsdorf I, McArdle HJ, Pentieva K, Siani A, Thies F, Tsabouri S, Vinceti M, Traber MG, Vrolijk M, Bercovici CM, de Sesmaisons Lecarré A, Fabiani L, Karavasiloglou N, Mendes V, Valtueña Martínez S, Naska A. Scientific opinion on the tolerable upper intake level for vitamin E. EFSA J 2024; 22:e8953. [PMID: 39099617 PMCID: PMC11294871 DOI: 10.2903/j.efsa.2024.8953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2024] Open
Abstract
Following a request from the European Commission, the EFSA Panel on Nutrition, Novel Foods and Food Allergens (NDA) was asked to deliver a scientific opinion on the revision of the tolerable upper intake level (UL) for vitamin E. As α-tocopherol is recognised as the only essential form of vitamin E, the Panel restricted its evaluation to α-tocopherol. Systematic reviews of the literature were conducted to assess evidence on priority adverse health effects of excess intake of vitamin E, namely risk of impaired coagulation and bleeding, cardiovascular disease and prostate cancer. The effect on blood clotting and associated increased risk of bleeding is considered as the critical effect to establish an UL for vitamin E. No new evidence has been published that could improve the characterisation of a dose-response. The ULs for vitamin E from all dietary sources, which were previously established by the Scientific Committee on Food, are retained for all population groups, i.e. 300 mg/day for adults, including pregnant and lactating women, 100 mg/day for children aged 1-3 years, 120 mg/day for 4-6 years, 160 mg/day for 7-10 years, 220 mg/day for 11-14 years and 260 mg/day for 15-17 years. A UL of 50 mg/day is established for infants aged 4-6 months and a UL of 60 mg/day for infants aged 7-11 months. ULs apply to all stereoisomeric forms of α-tocopherol. ULs do not apply to individuals receiving anticoagulant or antiplatelet medications (e.g. aspirin), to patients on secondary prevention for CVD or to patients with vitamin K malabsorption syndromes. It is unlikely that the ULs for vitamin E are exceeded in European populations, except for regular users of food supplements containing high doses of vitamin E.
Collapse
|
3
|
Bremova-Ertl T, Schneider S. Current advancements in therapy for Niemann-Pick disease: progress and pitfalls. Expert Opin Pharmacother 2023; 24:1229-1247. [PMID: 37211769 DOI: 10.1080/14656566.2023.2215386] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 05/15/2023] [Indexed: 05/23/2023]
Abstract
INTRODUCTION Niemann-Pick disease type C (NPC) is a rare, autosomal recessive, lysosomal storage disorder. To combat the progressive neurodegeneration in NPC, disease-modifying treatment needs to be introduced early in the course of the disease. The only approved, disease-modifying treatment is a substrate-reduction treatment, miglustat. Given miglustat's limited efficacy, new compounds are under development, including gene therapy; however, many are still far from clinical use. Moreover, the phenotypic heterogeneity and variable course of the disease can impede the development and approval of new agents. AREAS COVERED Here, we offer an expert review of these therapeutic candidates, with a broad scope not only on the main pharmacotherapies, but also on experimental approaches, gene therapies, and symptomatic strategies. The National Institute of Health (NIH) database PubMed has been searched for the combination of the words 'Niemann-Pick type C'+ 'treatment' or 'therapy' or 'trial.' The website clinicaltrials.gov has also been consulted. EXPERT OPINION We conclude a combination of treatment strategies should be sought, with a holistic approach, to improve the quality of life of affected individuals and their families.
Collapse
Affiliation(s)
- Tatiana Bremova-Ertl
- Department of Neurology, University Hospital Bern (Inselspital) and University of Bern, Bern, Switzerland
- Center for Rare Diseases, University Hospital Bern (Inselspital) and University of Bern, Bern, Switzerland
| | - Susanne Schneider
- Department of Neurology, Ludwig-Maximilians-University, Munich, Germany
| |
Collapse
|
4
|
Zingg JM, Stamatiou C, Montalto G, Daunert S. Modulation of CD36-mediated lipid accumulation and senescence by vitamin E analogs in monocytes and macrophages. Biofactors 2022; 48:665-682. [PMID: 35084073 DOI: 10.1002/biof.1821] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 12/14/2021] [Indexed: 01/10/2023]
Abstract
The CD36/FAT scavenger receptor/fatty acids transporter regulates cellular lipid accumulation important for inflammation, atherosclerosis, lipotoxicity, and initiation of cellular senescence. Here we compared the regulatory effects of the vitamin E analogs alpha-tocopherol (αT), alpha-tocopheryl phosphate (αTP), and αTP/βCD (a nanocarrier complex between αTP and β-cyclodextrin [βCD]) and investigated their regulatory effects on lipid accumulation, phagocytosis, and senescence in THP-1 monocytes and macrophages. Both, αTP and αTP/βCD inhibited CD36 surface exposition stronger than αT leading to more pronounced CD36-mediated events such as inhibition of DiI-labeled oxLDL uptake, phagocytosis of fluorescent Staphylococcus aureus bioparticles, and cell proliferation. When compared to βCD, the complex of αTP/βCD extracted cholesterol from cellular membranes with higher efficiency and was associated with the delivery of αTP to the cells. Interestingly, both, αTP and more so αTP/βCD inhibited lysosomal senescence-associated beta-galactosidase (SA-β-gal) activity and increased lysosomal pH, suggesting CD36-mediated uptake into the endo-lysosomal phagocytic compartment. Accordingly, the observed pH increase was more pronounced with αTP/βCD in macrophages whereas no significant increase occurred with αT, alpha-tocopheryl acetate (αTA) or βCD. In contrast to αT and αTA, the αTP molecule is di-anionic at neutral pH, but upon moving into the acidic endo-lysosomal compartment becomes protonated and thus is acting as a base. Moreover, it is expected to be retained in lysosomes since it still carries one negative charge, similar to lysosomotropic drugs. Thus, treatment with αTP or αTP/βCD and/or inhibition of conversion of αTP to αT as it occurs in aged cells may counteract CD36-mediated overlapping inflammatory, senescent, and atherosclerotic events.
Collapse
Affiliation(s)
- Jean-Marc Zingg
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, Florida, USA
- Dr. JT Macdonald Foundation Biomedical Nanotechnology Institute, University of Miami, Miami, Florida, USA
| | - Christina Stamatiou
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, Florida, USA
- Dr. JT Macdonald Foundation Biomedical Nanotechnology Institute, University of Miami, Miami, Florida, USA
| | - Giulia Montalto
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, Florida, USA
- Section of General Pathology, Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Sylvia Daunert
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, Florida, USA
- Dr. JT Macdonald Foundation Biomedical Nanotechnology Institute, University of Miami, Miami, Florida, USA
- University of Miami Clinical and Translational Science Institute, University of Miami, Miami, Florida, USA
| |
Collapse
|
5
|
Rychter AM, Hryhorowicz S, Słomski R, Dobrowolska A, Krela-Kaźmierczak I. Antioxidant effects of vitamin E and risk of cardiovascular disease in women with obesity – a narrative review. Clin Nutr 2022; 41:1557-1565. [PMID: 35667272 DOI: 10.1016/j.clnu.2022.04.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 04/12/2022] [Accepted: 04/28/2022] [Indexed: 11/03/2022]
|
6
|
Winkler MBL, Nel L, Frain KM, Dedic E, Olesen E, Pedersen BP. Sterol uptake by the NPC system in eukaryotes: a Saccharomyces cerevisiae perspective. FEBS Lett 2022; 596:160-179. [PMID: 34897668 DOI: 10.1002/1873-3468.14253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/03/2021] [Accepted: 12/03/2021] [Indexed: 12/11/2022]
Abstract
Sterols are an essential component of membranes in all eukaryotic cells and the precursor of multiple indispensable cellular metabolites. After endocytotic uptake, sterols are integrated into the lysosomal membrane by the Niemann-Pick type C (NPC) system before redistribution to other membranes. The process is driven by two proteins that, together, compose the NPC system: the lysosomal sterol shuttle protein NPC2 and the membrane protein NPC1 (named NCR1 in fungi), which integrates sterols into the lysosomal membrane. The Saccharomyces cerevisiae NPC system provides a compelling model to study the molecular mechanism of sterol integration into membranes and sterol homeostasis. This review summarizes recent advances in the field, and by interpreting available structural data, we propose a unifying conceptual model for sterol loading, transfer and transport by NPC proteins.
Collapse
Affiliation(s)
- Mikael B L Winkler
- Department of Molecular Biology and Genetics, Aarhus University, Denmark
| | - Lynette Nel
- Department of Molecular Biology and Genetics, Aarhus University, Denmark
| | - Kelly M Frain
- Department of Molecular Biology and Genetics, Aarhus University, Denmark
| | - Emil Dedic
- Department of Molecular Biology and Genetics, Aarhus University, Denmark
| | - Esben Olesen
- Department of Molecular Biology and Genetics, Aarhus University, Denmark
| | | |
Collapse
|
7
|
Arai H, Kono N. α-Tocopherol transfer protein (α-TTP). Free Radic Biol Med 2021; 176:162-175. [PMID: 34563650 DOI: 10.1016/j.freeradbiomed.2021.09.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/01/2021] [Accepted: 09/03/2021] [Indexed: 10/20/2022]
Abstract
α-Tocopherol transfer protein (α-TTP) is so far the only known protein that specifically recognizes α-tocopherol (α-Toc), the most abundant and most biologically active form of vitamin E, in higher animals. α-TTP is highly expressed in the liver where α-TTP selects α-Toc among vitamin E forms taken up via plasma lipoproteins and promotes its secretion to circulating lipoproteins. Thus, α-TTP is a major determinant of plasma α-Toc concentrations. Familial vitamin E deficiency, also called Ataxia with vitamin E deficiency, is caused by mutations in the α-TTP gene. More than 20 different mutations have been found in the α-TTP gene worldwide, among which some missense mutations provided valuable clues to elucidate the molecular mechanisms underlying intracellular α-Toc transport. In hepatocytes, α-TTP catalyzes the vectorial transport of α-Toc from the endocytotic compartment to the plasma membrane (PM) by targeting phosphatidylinositol phosphates (PIPs) such as PI(4,5)P2. By binding PIPs at the PM, α-TTP opens the lid covering the hydrophobic pocket, thus facilitating the release of bound α-Toc to the PM.
Collapse
Affiliation(s)
- Hiroyuki Arai
- Laboratory of Microenvironmental and Metabolic Health Science, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| | - Nozomu Kono
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|
8
|
Völkner C, Liedtke M, Untucht R, Hermann A, Frech MJ. Patient-Specific iPSC-Derived Neural Differentiated and Hepatocyte-like Cells, Carrying the Compound Heterozygous Mutation p.V1023Sfs*15/p.G992R, Present the "Variant" Biochemical Phenotype of Niemann-Pick Type C1 Disease. Int J Mol Sci 2021; 22:ijms222212184. [PMID: 34830064 PMCID: PMC8624182 DOI: 10.3390/ijms222212184] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/03/2021] [Accepted: 11/08/2021] [Indexed: 02/07/2023] Open
Abstract
Niemann–Pick disease type C1 (NP-C1) is a rare lysosomal storage disorder caused by autosomal recessive mutations in the NPC1 gene. Patients display a wide spectrum on the clinical as well as on the molecular level, wherein a so-called “variant” biochemical phenotype can be observed. Here, we report an in vitro analysis of fibroblasts obtained from an NP-C1 patient carrying the undescribed compound heterozygous mutation p.V1023Sfs*15/p.G992R. Since NP-C1 is a neurovisceral disease and the patient suffers from severe neurological as well as hepatic symptoms, we extended our study to neural differentiated and hepatocyte-like cells derived from patient-specific induced pluripotent stem cells. We detected slightly increased intracellular cholesterol levels compared to the control cell line in fibroblasts, neural differentiated and hepatocyte-like cells, suggesting a “variant” biochemical phenotype. Furthermore, the total NPC1 protein, as well as post-ER glycoforms of the NPC1 protein, tended to be reduced. In addition, colocalization analysis revealed a mild reduction of the NPC1 protein in the lysosomes. The patient was diagnosed with NP-C1 at the age of 34 years, after an initial misdiagnosis of schizophrenia. After years of mild and unspecific symptoms, such as difficulties in coordination and concentration, symptoms progressed and the patient finally presented with ataxia, dysarthria, dysphagia, vertical supranuclear gaze palsy, and hepatosplenomegaly. Genetic testing finally pointed towards an NP-C1 diagnosis, revealing the so-far undescribed compound heterozygous mutation p.V1023Sfs*15/p.G992R in the NPC1 gene. In light of these findings, this case provides support for the p.G992R mutation being causative for a “variant” biochemical phenotype leading to an adult-onset type of NP-C1 disease.
Collapse
Affiliation(s)
- Christin Völkner
- Translational Neurodegeneration Section “Albrecht Kossel”, Department of Neurology, University Medical Center Rostock, 18147 Rostock, Germany; (C.V.); (M.L.); (A.H.)
| | - Maik Liedtke
- Translational Neurodegeneration Section “Albrecht Kossel”, Department of Neurology, University Medical Center Rostock, 18147 Rostock, Germany; (C.V.); (M.L.); (A.H.)
| | - Robert Untucht
- Department of Neurology, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany;
| | - Andreas Hermann
- Translational Neurodegeneration Section “Albrecht Kossel”, Department of Neurology, University Medical Center Rostock, 18147 Rostock, Germany; (C.V.); (M.L.); (A.H.)
- Center for Transdisciplinary Neurosciences Rostock (CTNR), University Medical Center Rostock, 18147 Rostock, Germany
- German Center for Neurodegenerative Diseases (DZNE) Rostock/Greifswald, 18147 Rostock, Germany
| | - Moritz J. Frech
- Translational Neurodegeneration Section “Albrecht Kossel”, Department of Neurology, University Medical Center Rostock, 18147 Rostock, Germany; (C.V.); (M.L.); (A.H.)
- Center for Transdisciplinary Neurosciences Rostock (CTNR), University Medical Center Rostock, 18147 Rostock, Germany
- Correspondence:
| |
Collapse
|
9
|
RedEfish: Generation of the Polycistronic mScarlet: GSG-T2A: Ttpa Zebrafish Line. Antioxidants (Basel) 2021; 10:antiox10060965. [PMID: 34208660 PMCID: PMC8235169 DOI: 10.3390/antiox10060965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 06/10/2021] [Indexed: 11/17/2022] Open
Abstract
The vitamin E regulatory protein, the alpha-tocopherol transfer protein (Ttpa), is necessary for zebrafish embryo development. To evaluate zebrafish embryo Ttpa function, we generated a fluorescent-tagged zebrafish transgenic line using CRISPR-Cas9 technology. One-cell stage embryos (from Casper (colorless) zebrafish adults) were injected the mScarlet coding sequence in combination with cas9 protein complexed to single guide RNA molecule targeting 5′ of the ttpa genomic region. Embryos were genotyped for proper insertion of the mScarlet coding sequence, raised to adulthood and successively in-crossed to produce the homozygote RedEfish (mScarlet: GSG-T2A: Ttpa). RedEfish were characterized by in vivo fluorescence detection at 1, 7 and 14 days post-fertilization (dpf). Fluorescent color was detectable in RedEfish embryos at 1 dpf; it was distributed throughout the developing brain, posterior tailbud and yolk sac. At 7 dpf, the RedEfish was identifiable by fluorescence in olfactory pits, gill arches, pectoral fins, posterior tail region and residual yolk sac. Subsequently (14 dpf), the mScarlet protein was found in olfactory pits, distributed throughout the digestive tract, along the lateral line and especially in caudal vertebrae. No adverse morphological outcomes or developmental delays were observed. The RedEfish will be a powerful model to study Ttpa function during embryo development.
Collapse
|
10
|
Understanding and Treating Niemann-Pick Type C Disease: Models Matter. Int J Mol Sci 2020; 21:ijms21238979. [PMID: 33256121 PMCID: PMC7730076 DOI: 10.3390/ijms21238979] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 02/06/2023] Open
Abstract
Biomedical research aims to understand the molecular mechanisms causing human diseases and to develop curative therapies. So far, these goals have been achieved for a small fraction of diseases, limiting factors being the availability, validity, and use of experimental models. Niemann–Pick type C (NPC) is a prime example for a disease that lacks a curative therapy despite substantial breakthroughs. This rare, fatal, and autosomal-recessive disorder is caused by defects in NPC1 or NPC2. These ubiquitously expressed proteins help cholesterol exit from the endosomal–lysosomal system. The dysfunction of either causes an aberrant accumulation of lipids with patients presenting a large range of disease onset, neurovisceral symptoms, and life span. Here, we note general aspects of experimental models, we describe the line-up used for NPC-related research and therapy development, and we provide an outlook on future topics.
Collapse
|
11
|
Stepien KM, Roncaroli F, Turton N, Hendriksz CJ, Roberts M, Heaton RA, Hargreaves I. Mechanisms of Mitochondrial Dysfunction in Lysosomal Storage Disorders: A Review. J Clin Med 2020; 9:jcm9082596. [PMID: 32796538 PMCID: PMC7463786 DOI: 10.3390/jcm9082596] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/04/2020] [Accepted: 08/06/2020] [Indexed: 12/12/2022] Open
Abstract
Mitochondrial dysfunction is emerging as an important contributory factor to the pathophysiology of lysosomal storage disorders (LSDs). The cause of mitochondrial dysfunction in LSDs appears to be multifactorial, although impaired mitophagy and oxidative stress appear to be common inhibitory mechanisms shared amongst these heterogeneous disorders. Once impaired, dysfunctional mitochondria may impact upon the function of the lysosome by the generation of reactive oxygen species as well as depriving the lysosome of ATP which is required by the V-ATPase proton pump to maintain the acidity of the lumen. Given the reported evidence of mitochondrial dysfunction in LSDs together with the important symbiotic relationship between these two organelles, therapeutic strategies targeting both lysosome and mitochondrial dysfunction may be an important consideration in the treatment of LSDs. In this review we examine the putative mechanisms that may be responsible for mitochondrial dysfunction in reported LSDs which will be supplemented with morphological and clinical information.
Collapse
Affiliation(s)
- Karolina M. Stepien
- Adult Inherited Metabolic Diseases, Salford Royal NHS Foundation Trust, Salford M6 8HD, UK
- Correspondence:
| | - Federico Roncaroli
- Division of Neuroscience and Experimental Psychology, School of Biology, Medicine and Health, University of Manchester and Manchester Centre for Clinical Neuroscience, Salford Royal NHS Foundation Trust, Salford M6 8HD, UK;
| | - Nadia Turton
- School of Pharmacy, Liverpool John Moore University, Byrom Street, Liverpool L3 3AF, UK; (N.T.); (R.A.H.); (I.H.)
| | - Christian J. Hendriksz
- Paediatrics and Child Health, Steve Biko Academic Unit, University of Pretoria, 0002 Pretoria, South Africa;
| | - Mark Roberts
- Neurology Department, Salford Royal NHS Foundation Trust, Salford M6 8HD, UK;
| | - Robert A. Heaton
- School of Pharmacy, Liverpool John Moore University, Byrom Street, Liverpool L3 3AF, UK; (N.T.); (R.A.H.); (I.H.)
| | - Iain Hargreaves
- School of Pharmacy, Liverpool John Moore University, Byrom Street, Liverpool L3 3AF, UK; (N.T.); (R.A.H.); (I.H.)
| |
Collapse
|
12
|
Lee P, Ulatowski LM. Vitamin E: Mechanism of transport and regulation in the CNS. IUBMB Life 2018; 71:424-429. [PMID: 30556640 DOI: 10.1002/iub.1993] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 11/17/2018] [Accepted: 11/26/2018] [Indexed: 12/11/2022]
Abstract
Although vitamin E has been recognized as a critical micronutrient to neuronal health for more than half a century, vitamin E transport and regulation in the brain remain a mystery. Currently, the majority of what is known about vitamin E transport has been delineated in the liver. However, clues from the pathogenesis of neurological-related vitamin E deficient diseases point to compromised neuronal integrity and function, underlining the critical need to understand vitamin E regulation in the CNS. Additionally, most of the same molecular players involved in vitamin E transport in the liver are also found in CNS, including sterol SRB1, TTP, and ABCA/ABCG, suggesting similar intracellular pathways between these organ systems. Finally, based on chemical similarities, intracellular CNS shuttling of vitamin E likely resembles cholesterol's use of ApoE particles. Utilizing this information, this review will address what is currently known about trafficking vitamin E across the blood brain barrier in order to ensure an adequate supply of the essential nutrient to the brain. Although debatable, the health of the brain in relation to vitamin E levels has been demonstrated, most notably in oxidative stress-related conditions such as ataxias, Alzheimer's disease, and Parkinson's disease. Future vitamin E research is vital in understanding how the regulation of the vitamin can aid in the prevention, treatment, and curing of neurological diseases. © 2018 IUBMB Life, 71(4):424-429, 2019.
Collapse
Affiliation(s)
- Paris Lee
- Ursuline College, Department of Biology, 2550 Lander Rd Pepper Pike, Ohio 44124
| | - Lynn M Ulatowski
- Ursuline College, Department of Biology, 2550 Lander Rd Pepper Pike, Ohio 44124
| |
Collapse
|
13
|
Vitamin E Metabolic Effects and Genetic Variants: A Challenge for Precision Nutrition in Obesity and Associated Disturbances. Nutrients 2018; 10:nu10121919. [PMID: 30518135 PMCID: PMC6316334 DOI: 10.3390/nu10121919] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 11/27/2018] [Accepted: 11/30/2018] [Indexed: 02/07/2023] Open
Abstract
Vitamin E (VE) has a recognized leading role as a contributor to the protection of cell constituents from oxidative damage. However, evidence suggests that the health benefits of VE go far beyond that of an antioxidant acting in lipophilic environments. In humans, VE is channeled toward pathways dealing with lipoproteins and cholesterol, underlining its relevance in lipid handling and metabolism. In this context, both VE intake and status may be relevant in physiopathological conditions associated with disturbances in lipid metabolism or concomitant with oxidative stress, such as obesity. However, dietary reference values for VE in obese populations have not yet been defined, and VE supplementation trials show contradictory results. Therefore, a better understanding of the role of genetic variants in genes involved in VE metabolism may be crucial to exert dietary recommendations with a higher degree of precision. In particular, genetic variability should be taken into account in targets concerning VE bioavailability per se or concomitant with impaired lipoprotein transport. Genetic variants associated with impaired VE liver balance, and the handling/resolution of oxidative stress might also be relevant, but the core information that exists at present is insufficient to deliver precise recommendations.
Collapse
|
14
|
Cervantes B, Ulatowski LM. Vitamin E and Alzheimer's Disease-Is It Time for Personalized Medicine? Antioxidants (Basel) 2017; 6:antiox6030045. [PMID: 28672782 PMCID: PMC5618073 DOI: 10.3390/antiox6030045] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 06/19/2017] [Accepted: 06/21/2017] [Indexed: 12/20/2022] Open
Abstract
For the last two decades, it has been hotly debated whether vitamin E-the major lipid-soluble antioxidant, which functions to maintain neurological integrity-is efficacious as a therapy for Alzheimer's disease. Several factors key to the debate, include (1) which of the eight naturally-occurring vitamin E forms should be used; (2) how combination treatments affect vitamin E efficacy; and (3) safety concerns that most-recently resurfaced after the results of the Selenium and vitamin E Cancer prevention trial SELECT prostate cancer trial. However, with the advent of new genetic technologies and identifications of vitamin E-modulating single nucleotide polymorphisms (SNPs), we propose that clinical trials addressing the question "Is vitamin E an effective treatment for Alzheimer's disease" should consider a more focused and personalized medicine approach to designing experiments. An individual's naturally-occurring SNP variants may indeed influence vitamin E's therapeutic effect on Alzheimer's disease.
Collapse
|
15
|
Cianciola NL, Chung S, Manor D, Carlin CR. Adenovirus Modulates Toll-Like Receptor 4 Signaling by Reprogramming ORP1L-VAP Protein Contacts for Cholesterol Transport from Endosomes to the Endoplasmic Reticulum. J Virol 2017; 91:e01904-16. [PMID: 28077646 PMCID: PMC5331795 DOI: 10.1128/jvi.01904-16] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 01/05/2017] [Indexed: 12/27/2022] Open
Abstract
Human adenoviruses (Ads) generally cause mild self-limiting infections but can lead to serious disease and even be fatal in high-risk individuals, underscoring the importance of understanding how the virus counteracts host defense mechanisms. This study had two goals. First, we wished to determine the molecular basis of cholesterol homeostatic responses induced by the early region 3 membrane protein RIDα via its direct interaction with the sterol-binding protein ORP1L, a member of the evolutionarily conserved family of oxysterol-binding protein (OSBP)-related proteins (ORPs). Second, we wished to determine how this interaction regulates innate immunity to adenovirus. ORP1L is known to form highly dynamic contacts with endoplasmic reticulum-resident VAP proteins that regulate late endosome function under regulation of Rab7-GTP. Our studies have demonstrated that ORP1L-VAP complexes also support transport of LDL-derived cholesterol from endosomes to the endoplasmic reticulum, where it was converted to cholesteryl esters stored in lipid droplets when ORP1L was bound to RIDα. The virally induced mechanism counteracted defects in the predominant cholesterol transport pathway regulated by the late endosomal membrane protein Niemann-Pick disease type C protein 1 (NPC1) arising during early stages of viral infection. However, unlike NPC1, RIDα did not reconstitute transport to endoplasmic reticulum pools that regulate SREBP transcription factors. RIDα-induced lipid trafficking also attenuated proinflammatory signaling by Toll-like receptor 4, which has a central role in Ad pathogenesis and is known to be tightly regulated by cholesterol-rich "lipid rafts." Collectively, these data show that RIDα utilizes ORP1L in a way that is distinct from its normal function in uninfected cells to fine-tune lipid raft cholesterol that regulates innate immunity to adenovirus in endosomes.IMPORTANCE Early region 3 proteins encoded by human adenoviruses that attenuate immune-mediated pathology have been a particularly rich source of information regarding intracellular protein trafficking. Our studies with the early region 3-encoded RIDα protein also provided fundamental new information regarding mechanisms of nonvesicular lipid transport and the flow of molecular information at membrane contacts between different organelles. We describe a new pathway that delivers cholesterol from endosomes to the endoplasmic reticulum, where it is esterified and stored in lipid droplets. Although lipid droplets are attracting renewed interest from the standpoint of normal physiology and human diseases, including those resulting from viral infections, experimental model systems for evaluating how and why they accumulate are still limited. Our studies also revealed an intriguing relationship between lipid droplets and innate immunity that may represent a new paradigm for viruses utilizing these organelles.
Collapse
Affiliation(s)
- Nicholas L Cianciola
- Departments of Molecular Biology and Microbiology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Stacey Chung
- Department of Nutrition, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Danny Manor
- Department of Nutrition, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- the Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Cathleen R Carlin
- Departments of Molecular Biology and Microbiology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- the Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
16
|
Chung S, Ghelfi M, Atkinson J, Parker R, Qian J, Carlin C, Manor D. Vitamin E and Phosphoinositides Regulate the Intracellular Localization of the Hepatic α-Tocopherol Transfer Protein. J Biol Chem 2016; 291:17028-39. [PMID: 27307040 DOI: 10.1074/jbc.m116.734210] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Indexed: 12/12/2022] Open
Abstract
α-Tocopherol (vitamin E) is an essential nutrient for all vertebrates. From the eight naturally occurring members of the vitamin E family, α-tocopherol is the most biologically active species and is selectively retained in tissues. The hepatic α-tocopherol transfer protein (TTP) preferentially selects dietary α-tocopherol and facilitates its transport through the hepatocyte and its secretion to the circulation. In doing so, TTP regulates body-wide levels of α-tocopherol. The mechanisms by which TTP facilitates α-tocopherol trafficking in hepatocytes are poorly understood. We found that the intracellular localization of TTP in hepatocytes is dynamic and responds to the presence of α-tocopherol. In the absence of the vitamin, TTP is localized to perinuclear vesicles that harbor CD71, transferrin, and Rab8, markers of the recycling endosomes. Upon treatment with α-tocopherol, TTP- and α-tocopherol-containing vesicles translocate to the plasma membrane, prior to secretion of the vitamin to the exterior of the cells. The change in TTP localization is specific to α-tocopherol and is time- and dose-dependent. The aberrant intracellular localization patterns of lipid binding-defective TTP mutants highlight the importance of protein-lipid interaction in the transport of α-tocopherol. These findings provide the basis for a proposed mechanistic model that describes TTP-facilitated trafficking of α-tocopherol through hepatocytes.
Collapse
Affiliation(s)
| | - Mikel Ghelfi
- the Department of Chemistry, Brock University, St. Catharines, Ontario L2S 3A1, Canada, and
| | - Jeffrey Atkinson
- the Department of Chemistry, Brock University, St. Catharines, Ontario L2S 3A1, Canada, and
| | - Robert Parker
- the Division of Nutritional Sciences, Cornell University, Ithaca, New York 14853
| | - Jinghui Qian
- the Division of Nutritional Sciences, Cornell University, Ithaca, New York 14853
| | - Cathleen Carlin
- Microbiology and Molecular Biology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
| | - Danny Manor
- From the Departments of Nutrition, Pharmacology, and
| |
Collapse
|
17
|
Ghelfi M, Ulatowski L, Manor D, Atkinson J. Synthesis and characterization of a fluorescent probe for α-tocopherol suitable for fluorescence microscopy. Bioorg Med Chem 2016; 24:2754-61. [PMID: 27161877 DOI: 10.1016/j.bmc.2016.04.044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 04/15/2016] [Accepted: 04/21/2016] [Indexed: 12/18/2022]
Abstract
Previously prepared fluorescent derivatives of α-tocopherol have shown tremendous utility in both in vitro exploration of the mechanism of ligand transfer by the α-tocopherol transfer protein (α-TTP) and the intracellular transport of α-tocopherol in cells and tissues. We report here the synthesis of a 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) containing α-tocopherol analog having extended conjugation with an alkenyl thiophene group that extends the absorption and emission maxima to longer wavelengths (λex=571nm and λem=583nm). The final fluorophore thienyl-ene-BODIPY-α-tocopherol, 2, binds to recombinant human α-TTP with a Kd=8.7±1.1nM and is a suitable probe for monitoring the secretion of α-tocopherol from cultured Mcf7#189 cells.
Collapse
Affiliation(s)
- Mikel Ghelfi
- Department of Chemistry, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Lynn Ulatowski
- Department of Nutrition, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Danny Manor
- Department of Nutrition, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Jeffrey Atkinson
- Department of Chemistry, Brock University, St. Catharines, ON L2S 3A1, Canada.
| |
Collapse
|
18
|
Drug Delivery Innovations for Enhancing the Anticancer Potential of Vitamin E Isoforms and Their Derivatives. BIOMED RESEARCH INTERNATIONAL 2015; 2015:584862. [PMID: 26137487 PMCID: PMC4475563 DOI: 10.1155/2015/584862] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 04/12/2015] [Accepted: 04/15/2015] [Indexed: 12/13/2022]
Abstract
Vitamin E isoforms have been extensively studied for their anticancer properties. Novel drug delivery systems (DDS) that include liposomes, nanoparticles, and micelles are actively being developed to improve Vitamin E delivery. Furthermore, several drug delivery systems that incorporate Vitamin E isoforms have been synthesized in order to increase the bioavailability of chemotherapeutic agents or to provide a synergistic effect. D-alpha-tocopheryl polyethylene glycol succinate (Vitamin E TPGS or TPGS) is a synthetic derivative of natural alpha-tocopherol which is gaining increasing interest in the development of drug delivery systems and has also shown promising anticancer effect as a single agent. This review provides a summary of the properties and anticancer effects of the most potent Vitamin E isoforms and an overview of the various formulations developed to improve their efficacy, with an emphasis on the use of TPGS in drug delivery approaches.
Collapse
|
19
|
Ulatowski LM, Manor D. Vitamin E and neurodegeneration. Neurobiol Dis 2015; 84:78-83. [PMID: 25913028 DOI: 10.1016/j.nbd.2015.04.002] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 04/07/2015] [Accepted: 04/15/2015] [Indexed: 12/22/2022] Open
Abstract
Alpha-tocopherol (vitamin E) is a plant-derived antioxidant that is essential for human health. Studies with humans and with animal models of vitamin E deficiency established the critical roles of the vitamin in protecting the central nervous system, and especially the cerebellum, from oxidative damage and motor coordination deficits. We review here the established roles of vitamin E in protecting cerebellar functions, as well as emerging data demonstrating the critical roles of alpha-tocopherol in preserving learning, memory and emotive responses. We also discuss the importance of vitamin E adequacy in seemingly unrelated neurological disorders.
Collapse
Affiliation(s)
- Lynn M Ulatowski
- Department of Nutrition, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Danny Manor
- Department of Nutrition, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA.
| |
Collapse
|
20
|
Vitamin E dietary supplementation improves neurological symptoms and decreases c-Abl/p73 activation in Niemann-Pick C mice. Nutrients 2014; 6:3000-17. [PMID: 25079853 PMCID: PMC4145291 DOI: 10.3390/nu6083000] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 07/16/2014] [Accepted: 07/18/2014] [Indexed: 01/04/2023] Open
Abstract
Niemann-Pick C (NPC) disease is a fatal neurodegenerative disorder characterized by the accumulation of free cholesterol in lysosomes. We have previously reported that oxidative stress is the main upstream stimulus activating the proapoptotic c-Abl/p73 pathway in NPC neurons. We have also observed accumulation of vitamin E in NPC lysosomes, which could lead to a potential decrease of its bioavailability. Our aim was to determine if dietary vitamin E supplementation could improve NPC disease in mice. NPC mice received an alpha-tocopherol (α-TOH) supplemented diet and neurological symptoms, survival, Purkinje cell loss, α-TOH and nitrotyrosine levels, astrogliosis, and the c-Abl/p73 pathway functions were evaluated. In addition, the effect of α-TOH on the c-Abl/p73 pathway was evaluated in an in vitro NPC neuron model. The α-TOH rich diet delayed loss of weight, improved coordination and locomotor function and increased the survival of NPC mice. We found increased Purkinje neurons and α-TOH levels and reduced astrogliosis, nitrotyrosine and phosphorylated p73 in cerebellum. A decrease of c-Abl/p73 activation was also observed in the in vitro NPC neurons treated with α-TOH. In conclusion, our results show that vitamin E can delay neurodegeneration in NPC mice and suggest that its supplementation in the diet could be useful for the treatment of NPC patients.
Collapse
|
21
|
Jiang Q. Natural forms of vitamin E: metabolism, antioxidant, and anti-inflammatory activities and their role in disease prevention and therapy. Free Radic Biol Med 2014; 72:76-90. [PMID: 24704972 PMCID: PMC4120831 DOI: 10.1016/j.freeradbiomed.2014.03.035] [Citation(s) in RCA: 552] [Impact Index Per Article: 50.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 03/25/2014] [Accepted: 03/26/2014] [Indexed: 02/07/2023]
Abstract
The vitamin E family consists of four tocopherols and four tocotrienols. α-Tocopherol (αT) is the predominant form of vitamin E in tissues and its deficiency leads to ataxia in humans. However, results from many clinical studies do not support a protective role of αT in disease prevention in people with adequate nutrient status. On the other hand, recent mechanistic studies indicate that other forms of vitamin E, such as γ-tocopherol (γT), δ-tocopherol, and γ-tocotrienol, have unique antioxidant and anti-inflammatory properties that are superior to those of αT in prevention and therapy against chronic diseases. These vitamin E forms scavenge reactive nitrogen species, inhibit cyclooxygenase- and 5-lipoxygenase-catalyzed eicosanoids, and suppress proinflammatory signaling such as NF-κB and STAT3/6. Unlike αT, other vitamin E forms are significantly metabolized to carboxychromanols via cytochrome P450-initiated side-chain ω-oxidation. Long-chain carboxychromanols, especially 13'-carboxychromanols, are shown to have stronger anti-inflammatory effects than unmetabolized vitamins and may therefore contribute to the beneficial effects of vitamin E forms in vivo. Consistent with mechanistic findings, animal and human studies show that γT and tocotrienols may be useful against inflammation-associated diseases. This review focuses on non-αT forms of vitamin E with respect to their metabolism, anti-inflammatory effects and mechanisms, and in vivo efficacy in preclinical models as well as human clinical intervention studies.
Collapse
Affiliation(s)
- Qing Jiang
- Department of Nutrition Science, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
22
|
Helquist P, Maxfield FR, Wiech NL, Wiest O. Treatment of Niemann--pick type C disease by histone deacetylase inhibitors. Neurotherapeutics 2013; 10:688-97. [PMID: 24048860 PMCID: PMC3805865 DOI: 10.1007/s13311-013-0217-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Niemann-Pick type C disease (NPC) is a devastating, recessive, inherited disorder that causes accumulation of cholesterol and other lipids in late endosomes and lysosomes. Mutations in 2 genes, NPC1 and NPC2, are responsible for the disease, which affects about 1 in 120,000 live births. About 95% of patients have mutations in NPC1, a large polytopic membrane protein that is normally found in late endosomes. More than 200 missense mutations in NPC1 have been found in NPC patients. The disease is progressive, typically leading to death before the age of 20 years, although some affected individuals live well into adulthood. The disease affects peripheral organs, including the liver, spleen, and lungs, but the most severe symptoms are associated with neurological disease. There are some palliative treatments that slow progression of NPC disease. Recently, it was found that histone deacetylase (HDAC) inhibitors that are effective against HDACs 1, 2, and 3 can reduce the cholesterol accumulation in fibroblasts derived from NPC patients with mutations in NPC1. One example is vorinostat. As vorinostat is a Food and Drug Administration-approved drug for treatment of cutaneous T-cell lymphoma, this opens up the possibility that HDAC inhibitors could be repurposed for treatment of this rare disease. The mechanism of action of the HDAC inhibitors requires further study, but these drugs increase the level of the NPC1 protein. This may be due to post-translational stabilization of the NPC1 protein, allowing it to be transported out of the endoplasmic reticulum.
Collapse
Affiliation(s)
- Paul Helquist
- />Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556 5670 USA
| | | | | | - Olaf Wiest
- />Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556 5670 USA
- />Laboratory of Computational Chemistry and Drug Design, Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, China
| |
Collapse
|
23
|
Cianciola NL, Greene DJ, Morton RE, Carlin CR. Adenovirus RIDα uncovers a novel pathway requiring ORP1L for lipid droplet formation independent of NPC1. Mol Biol Cell 2013; 24:3309-25. [PMID: 24025716 PMCID: PMC3814149 DOI: 10.1091/mbc.e12-10-0760] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Expression of the adenovirus protein RIDα rescues the cholesterol storage phenotype in NPC1-deficient cells by inducing formation of lipid droplets. The function of RIDα is independent of NPC1 but dependent on NPC2 and the oxysterol-binding protein ORP1L. This study provides the first evidence that ORP1L plays a role in sterol transport and LD formation. Niemann–Pick disease type C (NPC) is caused by mutations in NPC1 or NPC2, which coordinate egress of low-density-lipoprotein (LDL)-cholesterol from late endosomes. We previously reported that the adenovirus-encoded protein RIDα rescues the cholesterol storage phenotype in NPC1-mutant fibroblasts. We show here that RIDα reconstitutes deficient endosome-to-endoplasmic reticulum (ER) transport, allowing excess LDL-cholesterol to be esterified by acyl-CoA:cholesterol acyltransferase and stored in lipid droplets (LDs) in NPC1-deficient cells. Furthermore, the RIDα pathway is regulated by the oxysterol-binding protein ORP1L. Studies have classified ORP1L as a sterol sensor involved in LE positioning downstream of GTP-Rab7. Our data, however, suggest that ORP1L may play a role in transport of LDL-cholesterol to a specific ER pool designated for LD formation. In contrast to NPC1, which is dispensable, the RIDα/ORP1L-dependent route requires functional NPC2. Although NPC1/NPC2 constitutes the major pathway, therapies that amplify minor egress routes for LDL-cholesterol could significantly improve clinical management of patients with loss-of-function NPC1 mutations. The molecular identity of putative alternative pathways, however, is poorly characterized. We propose RIDα as a model system for understanding physiological egress routes that use ORP1L to activate ER feedback responses involved in LD formation.
Collapse
Affiliation(s)
- Nicholas L Cianciola
- Department of Molecular Biology and Microbiology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106 Department of Cell Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195 Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, OH 44106
| | | | | | | |
Collapse
|
24
|
Abstract
Vitamin E was identified almost a century ago as a botanical compound necessary for rodent reproduction. Decades of research since then established that of all members of the vitamin E family, α-tocopherol is selectively enriched in human tissues, and it is essential for human health. The major function of α-tocopherol is thought to be that of a lipid-soluble antioxidant that prevents oxidative damage to biological components. As such, α-tocopherol is necessary for numerous physiological processes such as permeability of lipid bilayers, cell adhesion, and gene expression. Inadequate levels of α-tocopherol interfere with cellular function and precipitate diseases, notably ones that affect the central nervous system. The extreme hydrophobicity of α-tocopherol poses a serious thermodynamic barrier for proper distribution of the vitamin to target tissues and cells. Although transport of the vitamin shares some steps with that of other lipids, selected tissues evolved dedicated transport mechanisms involving the α-tocopherol transfer protein (αTTP). The critical roles of this protein and its ligand are underscored by the debilitating pathologies that characterize human carriers of mutations in the TTPA gene.
Collapse
Affiliation(s)
- Lynn Ulatowski
- Department of Nutrition, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | | |
Collapse
|
25
|
Borel P, Preveraud D, Desmarchelier C. Bioavailability of vitamin E in humans: an update. Nutr Rev 2013; 71:319-31. [PMID: 23731443 DOI: 10.1111/nure.12026] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Vitamin E is essential for human health and may play a role in the prevention of some degenerative diseases. Its bioavailability, however, is wide ranging and is affected by numerous factors. Recent findings showing that the intestinal absorption of vitamin E involves proteins have raised new relevant questions about factors that can affect bioavailability. It is, therefore, opportune to present a current overview of this topic. This review begins by exploring what is known, as well as what is unknown, about the metabolization of vitamin E in the human upper gastrointestinal tract and then presents a methodical evaluation of factors assumed to affect vitamin E bioavailability. Three main conclusions can be drawn. First, the proteins ABCA1, NPC1L1, and SR-BI are implicated in the absorption of vitamin E. Second, the efficiency of vitamin E absorption is widely variable, though not accurately known (i.e., between 10% and 79%), and is affected by several dietary factors (e.g., food matrix, fat, and fat-soluble micronutrients). Finally, numerous unanswered questions remain about the metabolization of vitamin E in the intestinal lumen and about the factors affecting the efficiency of vitamin E absorption.
Collapse
Affiliation(s)
- Patrick Borel
- Institut National de la Santé et de la Recherche Médicale INSERM, Unité Mixte de Recherche UMR 1062, Nutrition, Obesity and Risk of Thrombosis, Marseilles, France.
| | | | | |
Collapse
|
26
|
A case report of ‘variant’ biochemical phenotype of Niemann-Pick C disease and a discussion of therapeutic options. Neurol Neurochir Pol 2013; 47:86-9. [DOI: 10.5114/ninp.2012.31548] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
27
|
Oxidative stress: a pathogenic mechanism for Niemann-Pick type C disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2012; 2012:205713. [PMID: 22720116 PMCID: PMC3374944 DOI: 10.1155/2012/205713] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 04/04/2012] [Accepted: 04/05/2012] [Indexed: 01/01/2023]
Abstract
Niemann-Pick type C (NPC) disease is a neurovisceral atypical lipid storage disorder involving the accumulation of cholesterol and other lipids in the late endocytic pathway. The pathogenic mechanism that links the accumulation of intracellular cholesterol with cell death in NPC disease in both the CNS and the liver is currently unknown. Oxidative stress has been observed in the livers and brains of NPC mice and in different NPC cellular models. Moreover, there is evidence of an elevation of oxidative stress markers in the serumof NPC patients. Recent evidence strongly suggests that mitochondrial dysfunction plays an important role in NPC pathogenesis and that mitochondria could be a significant source of oxidative stress in this disease. In this context, the accumulation of vitamin E in the late endosomal/lysosomal compartments in NPC could lead to a potential decrease of its bioavailability and could be another possible cause of oxidative damage. Another possible source of reactive species in NPC is the diminished activity of different antioxidant enzymes. Moreover, because NPC is mainly caused by the accumulation of free cholesterol, oxidized cholesterol derivatives produced by oxidative stress may contribute to the pathogenesis of the disease.
Collapse
|
28
|
Lysosomal vitamin E accumulation in Niemann–Pick type C disease. Biochim Biophys Acta Mol Basis Dis 2012; 1822:150-60. [DOI: 10.1016/j.bbadis.2011.11.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Revised: 11/04/2011] [Accepted: 11/09/2011] [Indexed: 11/22/2022]
|
29
|
Vázquez MC, del Pozo T, Robledo FA, Carrasco G, Pavez L, Olivares F, González M, Zanlungo S. Alteration of gene expression profile in Niemann-Pick type C mice correlates with tissue damage and oxidative stress. PLoS One 2011; 6:e28777. [PMID: 22216111 PMCID: PMC3245218 DOI: 10.1371/journal.pone.0028777] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Accepted: 11/15/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Niemann-Pick type C disease (NPC) is a neurovisceral lipid storage disorder mainly characterized by unesterified cholesterol accumulation in lysosomal/late endosomal compartments, although there is also an important storage for several other kind of lipids. The main tissues affected by the disease are the liver and the cerebellum. Oxidative stress has been described in various NPC cells and tissues, such as liver and cerebellum. Although considerable alterations occur in the liver, the pathological mechanisms involved in hepatocyte damage and death have not been clearly defined. Here, we assessed hepatic tissue integrity, biochemical and oxidative stress parameters of wild-type control (Npc1(+/+); WT) and homozygous-mutant (Npc1(-/-); NPC) mice. In addition, the mRNA abundance of genes encoding proteins associated with oxidative stress, copper metabolism, fibrosis, inflammation and cholesterol metabolism were analyzed in livers and cerebella of WT and NPC mice. METHODOLOGY/PRINCIPAL FINDINGS We analyzed various oxidative stress parameters in the liver and hepatic and cerebellum gene expression in 7-week-old NPC1-deficient mice compared with control animals. We found signs of inflammation and fibrosis in NPC livers upon histological examination. These signs were correlated with increased levels of carbonylated proteins, diminished total glutathione content and significantly increased total copper levels in liver tissue. Finally, we analyzed liver and cerebellum gene expression patterns by qPCR and microarray assays. We found a correlation between fibrotic tissue and differential expression of hepatic as well as cerebellar genes associated with oxidative stress, fibrosis and inflammation in NPC mice. CONCLUSIONS/SIGNIFICANCE In NPC mice, liver disease is characterized by an increase in fibrosis and in markers associated with oxidative stress. NPC is also correlated with altered gene expression, mainly of genes involved in oxidative stress and fibrosis. These findings correlate with similar parameters in cerebellum, as has been previously reported in the NPC mice model.
Collapse
Affiliation(s)
- Mary C. Vázquez
- Departamento de Gastroenterología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Talía del Pozo
- Laboratorio de Bioinformática y Expresión Génica, INTA, Universidad de Chile, Santiago, Chile
- FONDAP-Center of Genome Regulation (CGR), Santiago, Chile
| | - Fermín A. Robledo
- Departamento de Gastroenterología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | - Leonardo Pavez
- Laboratorio de Bioinformática y Expresión Génica, INTA, Universidad de Chile, Santiago, Chile
| | - Felipe Olivares
- Laboratorio de Bioinformática y Expresión Génica, INTA, Universidad de Chile, Santiago, Chile
| | - Mauricio González
- Laboratorio de Bioinformática y Expresión Génica, INTA, Universidad de Chile, Santiago, Chile
- Laboratorio de Bioinformática y Matemáticas del Genoma, Centro de Modelamiento Matemático (CMM), Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Santiago, Chile
- FONDAP-Center of Genome Regulation (CGR), Santiago, Chile
| | - Silvana Zanlungo
- Departamento de Gastroenterología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
- FONDAP-Center of Genome Regulation (CGR), Santiago, Chile
- * E-mail:
| |
Collapse
|