1
|
Parra LG, Erjavec LC, Casali CI, Zerpa Velazquez A, Weber K, Setton-Avruj CP, Fernández Tome MDC. Cytosolic phospholipase A 2 regulates lipid homeostasis under osmotic stress through PPARγ. FEBS J 2024; 291:722-743. [PMID: 37947039 DOI: 10.1111/febs.16998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 10/03/2023] [Accepted: 10/20/2023] [Indexed: 11/12/2023]
Abstract
Physiologically, renal medullary cells are surrounded by a hyperosmolar interstitium. However, different pathological situations can induce abrupt changes in environmental osmolality, causing cell stress. Therefore, renal cells must adapt to survive in this new condition. We previously demonstrated that, among the mechanisms involved in osmoprotection, renal cells upregulate triglyceride biosynthesis (which helps preserve glycerophospholipid synthesis and membrane homeostasis) and cyclooxygenase-2 (which generates prostaglandins from arachidonic acid) to maintain lipid metabolism in renal tissue. Herein, we evaluated whether hyperosmolality modulates phospholipase A2 (PLA2 ) activity, leading to arachidonic acid release from membrane glycerophospholipid, and investigated its possible role in hyperosmolality-induced triglyceride synthesis and accumulation. We found that hyperosmolality induced PLA2 expression and activity in Madin-Darby canine kidney cells. Cytosolic PLA2 (cPLA2) inhibition, but not secreted or calcium-independent PLA2 (sPLA2 or iPLA2 , respectively), prevented triglyceride synthesis and reduced cell survival. Inhibition of prostaglandin synthesis with indomethacin not only failed to prevent hyperosmolality-induced triglyceride synthesis but also exacerbated it. Similar results were observed with the peroxisomal proliferator activated receptor gamma (PPARγ) agonist rosiglitazone. Furthermore, hyperosmolality increased free intracellular arachidonic acid levels, which were even higher when prostaglandin synthesis was inhibited by indomethacin. Blocking PPARγ with GW-9662 prevented the effects of both indomethacin and rosiglitazone on triglyceride synthesis and even reduced hyperosmolality-induced triglyceride synthesis, suggesting that arachidonic acid may stimulate triglyceride synthesis through PPARγ activation. These results highlight the role of cPLA2 in osmoprotection, since it is essential to provide arachidonic acid, which is involved in PPARγ-regulated triglyceride synthesis, thus guaranteeing cell survival.
Collapse
Affiliation(s)
- Leandro Gastón Parra
- Departamento de Ciencias Biológicas, Cátedra de Biología Celular y Molecular, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Argentina
- Instituto de Química y Fisicoquímica Biológicas Prof. Dr. Alejandro C. Paladini (IQUIFIB)-Facultad de Farmacia y Bioquímica, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Luciana Cecilia Erjavec
- Departamento de Ciencias Biológicas, Cátedra de Biología Celular y Molecular, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Argentina
- Instituto de Química y Fisicoquímica Biológicas Prof. Dr. Alejandro C. Paladini (IQUIFIB)-Facultad de Farmacia y Bioquímica, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Cecilia Irene Casali
- Departamento de Ciencias Biológicas, Cátedra de Biología Celular y Molecular, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Argentina
- Instituto de Química y Fisicoquímica Biológicas Prof. Dr. Alejandro C. Paladini (IQUIFIB)-Facultad de Farmacia y Bioquímica, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Andrea Zerpa Velazquez
- Departamento de Ciencias Biológicas, Cátedra de Biología Celular y Molecular, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Argentina
| | - Karen Weber
- Departamento de Ciencias Biológicas, Cátedra de Biología Celular y Molecular, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Argentina
| | - Clara Patricia Setton-Avruj
- Instituto de Química y Fisicoquímica Biológicas Prof. Dr. Alejandro C. Paladini (IQUIFIB)-Facultad de Farmacia y Bioquímica, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
- Departaemento de Química Biológica, Cátedra de Química Biológica Patológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Argentina
| | - María Del Carmen Fernández Tome
- Departamento de Ciencias Biológicas, Cátedra de Biología Celular y Molecular, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Argentina
- Instituto de Química y Fisicoquímica Biológicas Prof. Dr. Alejandro C. Paladini (IQUIFIB)-Facultad de Farmacia y Bioquímica, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| |
Collapse
|
2
|
Höllring K, Vurnek D, Gehrer S, Dudziak D, Hubert M, Smith AS. Morphology as indicator of adaptive changes of model tissues in osmotically and chemically changing environments. BIOMATERIALS ADVANCES 2023; 154:213635. [PMID: 37804683 DOI: 10.1016/j.bioadv.2023.213635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 08/23/2023] [Accepted: 09/19/2023] [Indexed: 10/09/2023]
Abstract
We investigate the formation and maintenance of the homeostatic state in the case of 2D epithelial tissues following an induction of hyperosmotic conditions, using media enriched with 80 to 320 mOsm of mannitol, NaCl, and urea. We characterise the changes in the tissue immediately after the osmotic shock, and follow it until the new homeostatic state is formed. We characterise changes in cooperative motility and proliferation pressure in the tissue upon treatment with the help of a theoretical model based on the delayed Fisher-Kolmogorov formalism, where the delay in density evolution is induced by the the finite time of the cell division. Finally we explore the adaptation of the homeostatic tissue to highly elevated osmotic conditions by evaluating the morphology and topology of cells after 20 days in incubation. We find that hyperosmotic environments together with changes in the extracellular matrix induce different mechanical states in viable tissues, where only some remain functional. The perspective is a relation between tissue topology and function, which could be explored beyond the scope of this manuscript. Experimental investigation of morphological effect of change of osmotic conditions on long-term tissue morphology and topology Effect of osmotic changes on transient tissue growth behaviour Analysis of recovery process of tissues post-osmotic-shock Toxicity limits of osmolytes in mid- to long-term tissue evolution Tissue adaptation to physiological changes in environment Long-term tissue stabilisation under altered osmotic conditions.
Collapse
Affiliation(s)
- Kevin Höllring
- PULS Group, Institute for Theoretical Physics, FAU Erlangen-Nürnberg, Cauerstraße 3, 91058 Erlangen, Germany
| | - Damir Vurnek
- PULS Group, Institute for Theoretical Physics, FAU Erlangen-Nürnberg, Cauerstraße 3, 91058 Erlangen, Germany; Laboratory of Dendritic Cell Biology, Department of Dermatology, FAU Erlangen-Nürnberg, University Hospital Erlangen, Erlangen 91052, Germany
| | - Simone Gehrer
- PULS Group, Institute for Theoretical Physics, FAU Erlangen-Nürnberg, Cauerstraße 3, 91058 Erlangen, Germany
| | - Diana Dudziak
- Laboratory of Dendritic Cell Biology, Department of Dermatology, FAU Erlangen-Nürnberg, University Hospital Erlangen, Erlangen 91052, Germany
| | - Maxime Hubert
- PULS Group, Institute for Theoretical Physics, FAU Erlangen-Nürnberg, Cauerstraße 3, 91058 Erlangen, Germany; Group of Computational Life Sciences, Department of Physical Chemistry, Ruer Bošković Institute, Bijenička 54, Zagreb 10000, Croatia
| | - Ana-Sunčana Smith
- PULS Group, Institute for Theoretical Physics, FAU Erlangen-Nürnberg, Cauerstraße 3, 91058 Erlangen, Germany; Group of Computational Life Sciences, Department of Physical Chemistry, Ruer Bošković Institute, Bijenička 54, Zagreb 10000, Croatia.
| |
Collapse
|
3
|
Casali CI, Pescio LG, Sendyk DE, Erjavec LC, Morel Gómez E, Parra LG, Fernández-Tomé MC. Dynamics of differentiated-renal epithelial cell monolayer after calcium oxalate injury: The role of cyclooxygenase-2. Life Sci 2023; 319:121544. [PMID: 36871933 DOI: 10.1016/j.lfs.2023.121544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/17/2023] [Accepted: 02/27/2023] [Indexed: 03/07/2023]
Abstract
AIMS Calcium oxalate (Oxa), constituent of most common kidney stones, damages renal tubular epithelial cells leading to kidney disease. Most in vitro studies designed to evaluate how Oxa exerts its harmful effects were performed in proliferative or confluent non-differentiated renal epithelial cultures; none of them considered physiological hyperosmolarity of renal medullary interstitium. Cyclooxygenase 2 (COX2) has been associated to Oxa deleterious actions; however, up to now, it is not clear how COX2 acts. In this work, we proposed an in vitro experimental system resembling renal differentiated-epithelial cells that compose medullary tubular structures which were grown and maintained in a physiological hyperosmolar environment and evaluated whether COX2 → PGE2 axis (COX2 considered a cytoprotective protein for renal cells) induces Oxa damage or epithelial restitution. MAIN METHODS MDCK cells were differentiated with NaCl hyperosmolar medium for 72 h where cells acquired the typical apical and basolateral membrane domains and a primary cilium. Then, cultures were treated with 1.5 mM Oxa for 24, 48, and 72 h to evaluate epithelial monolayer restitution dynamics and COX2-PGE2 effect. KEY FINDINGS Oxa completely turned the differentiated phenotype into mesenchymal one (epithelial-mesenchymal transition). Such effect was partially and totally reverted after 48 and 72 h, respectively. Oxa damage was even deeper when COX2 was blocked by NS398. PGE2 addition restituted the differentiated-epithelial phenotype in a time and concentration dependence. SIGNIFICANCE This work presents an experimental system that approaches in vitro to in vivo renal epithelial studies and, more important, warns about NSAIDS use in patients suffering from kidney stones.
Collapse
Affiliation(s)
- Cecilia I Casali
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Biológicas, Cátedra de Biología Celular y Molecular, Buenos Aires, Argentina; Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química y Fisicoquímica Biológicas Prof. Dr. Alejandro C. Paladini (IQUIFIB)-Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina.
| | - Lucila G Pescio
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Biológicas, Cátedra de Biología Celular y Molecular, Buenos Aires, Argentina; Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química y Fisicoquímica Biológicas Prof. Dr. Alejandro C. Paladini (IQUIFIB)-Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina.
| | - Dylan E Sendyk
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Biológicas, Cátedra de Biología Celular y Molecular, Buenos Aires, Argentina.
| | - Luciana C Erjavec
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Biológicas, Cátedra de Biología Celular y Molecular, Buenos Aires, Argentina; Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química y Fisicoquímica Biológicas Prof. Dr. Alejandro C. Paladini (IQUIFIB)-Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina.
| | - Emanuel Morel Gómez
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Biológicas, Cátedra de Biología Celular y Molecular, Buenos Aires, Argentina.
| | - Leandro G Parra
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Biológicas, Cátedra de Biología Celular y Molecular, Buenos Aires, Argentina; Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química y Fisicoquímica Biológicas Prof. Dr. Alejandro C. Paladini (IQUIFIB)-Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina.
| | - María C Fernández-Tomé
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Biológicas, Cátedra de Biología Celular y Molecular, Buenos Aires, Argentina; Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química y Fisicoquímica Biológicas Prof. Dr. Alejandro C. Paladini (IQUIFIB)-Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina.
| |
Collapse
|
4
|
Effects of a Semisynthetic Catechin on Phosphatidylglycerol Membranes: A Mixed Experimental and Simulation Study. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28010422. [PMID: 36615630 PMCID: PMC9824143 DOI: 10.3390/molecules28010422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/27/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023]
Abstract
Catechins have been shown to display a great variety of biological activities, prominent among them are their chemo preventive and chemotherapeutic properties against several types of cancer. The amphiphilic nature of catechins points to the membrane as a potential target for their actions. 3,4,5-Trimethoxybenzoate of catechin (TMBC) is a modified structural analog of catechin that shows significant antiproliferative activity against melanoma and breast cancer cells. Phosphatidylglycerol is an anionic membrane phospholipid with important physical and biochemical characteristics that make it biologically relevant. In addition, phosphatidylglycerol is a preeminent component of bacterial membranes. Using biomimetic membranes, we examined the effects of TMBC on the structural and dynamic properties of phosphatidylglycerol bilayers by means of biophysical techniques such as differential scanning calorimetry, X-ray diffraction and infrared spectroscopy, together with an analysis through molecular dynamics simulation. We found that TMBC perturbs the thermotropic gel to liquid-crystalline phase transition and promotes immiscibility in both phospholipid phases. The modified catechin decreases the thickness of the bilayer and is able to form hydrogen bonds with the carbonyl groups of the phospholipid. Experimental data support the simulated data that locate TMBC as mostly forming clusters in the middle region of each monolayer approaching the carbonyl moiety of the phospholipid. The presence of TMBC modifies the structural and dynamic properties of the phosphatidylglycerol bilayer. The decrease in membrane thickness and the change of the hydrogen bonding pattern in the interfacial region of the bilayer elicited by the catechin might contribute to the alteration of the events taking place in the membrane and might help to understand the mechanism of action of the diverse effects displayed by catechins.
Collapse
|
5
|
Aranda E, Teruel JA, Ortiz A, Pérez-Cárceles MD, Aranda FJ. Interaction of Docetaxel with Phosphatidylcholine Membranes: A Combined Experimental and Computational Study. J Membr Biol 2022; 255:277-291. [PMID: 35175383 PMCID: PMC9167220 DOI: 10.1007/s00232-022-00219-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 02/07/2022] [Indexed: 11/06/2022]
Abstract
The antineoplastic drug Docetaxel is a second generation taxane which is used against a great variety of cancers. The drug is highly lipophilic and produces a great array of severe toxic effects that limit its therapeutic effectiveness. The study of the interaction between Docetaxel and membranes is very scarce, however, it is required in order to get clues in relation with its function, mechanism of toxicity and possibilities of new formulations. Using phosphatidylcholine biomimetic membranes, we examine the interaction of Docetaxel with the phospholipid bilayer combining an experimental study, employing a series of biophysical techniques like Differential Scanning Calorimetry, X-Ray Diffraction and Infrared Spectroscopy, and a Molecular Dynamics simulation. Our experimental results indicated that Docetaxel incorporated into DPPC bilayer perturbing the gel to liquid crystalline phase transition and giving rise to immiscibility when the amount of the drug is increased. The drug promotes the gel ripple phase, increasing the bilayer thickness in the fluid phase, and is also able to alter the hydrogen-bonding interactions in the interfacial region of the bilayer producing a dehydration effect. The results from computational simulation agree with the experimental ones and located the Docetaxel molecule forming small clusters in the region of the carbon 8 of the acyl chain palisade overlapping with the carbonyl region of the phospholipid. Our results support the idea that the anticancer drug is embedded into the phospholipid bilayer to a limited amount and produces structural perturbations which might affect the function of the membrane.
Collapse
Affiliation(s)
- Elisa Aranda
- Departamento de Bioquímica y Biología Molecular-A, Facultad de Veterinaria, Universidad de Murcia, 30100, Murcia, Spain
- Hospital Universitario Virgen de la Arrixaca, Área de Salud 1, Murcia, Spain
| | - José A Teruel
- Departamento de Bioquímica y Biología Molecular-A, Facultad de Veterinaria, Universidad de Murcia, 30100, Murcia, Spain
| | - Antonio Ortiz
- Departamento de Bioquímica y Biología Molecular-A, Facultad de Veterinaria, Universidad de Murcia, 30100, Murcia, Spain
| | - María Dolores Pérez-Cárceles
- Departamento de Medicina Legal y Forense, Facultad de Medicina, Instituto de Investigación Biomédica (IMIB-Arrixaca), Universidad de Murcia, 30120, Murcia, Spain
| | - Francisco J Aranda
- Departamento de Bioquímica y Biología Molecular-A, Facultad de Veterinaria, Universidad de Murcia, 30100, Murcia, Spain.
| |
Collapse
|
6
|
Casali CI, Parra L, Erjavec LC, Fernández Tome MDC. Analysis of XBP1 Contribution to Hyperosmolarity-Induced Lipid Synthesis. Methods Mol Biol 2022; 2378:169-187. [PMID: 34985700 DOI: 10.1007/978-1-0716-1732-8_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The unfolded protein response (UPR) is a complex network of intracellular pathways that transmits signals from ER lumen and/or ER bilayer to the nuclear compartment in order to activate gene transcription. UPR is activated by the loss of ER capacities, known as ER stress, and occurs to restore ER properties. In this regard, glycerolipid (GL) synthesis activation contributes to ER membrane homeostasis and IRE1α-XBP1, one UPR pathway, has a main role in lipogenic genes transcription. Herein, we describe the strategy and methodology used to evaluate whether IRE1α-XBP1 pathway regulates lipid metabolism in renal epithelial cells subjected to hyperosmolar environment. XBP1s activity was hindered by blocking IRE1α RNAse activity and by impeding its expression; under these conditions, we determined GL synthesis and lipogenic enzymes expression.
Collapse
Affiliation(s)
- Cecilia I Casali
- Cátedra de Biología Celular y Molecular, Departamento de Ciencias Biológicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Química y Fisicoquímica Biológicas Prof. Dr. Alejandro C. Paladini (IQUIFIB), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Leandro Parra
- Cátedra de Biología Celular y Molecular, Departamento de Ciencias Biológicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Química y Fisicoquímica Biológicas Prof. Dr. Alejandro C. Paladini (IQUIFIB), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Luciana C Erjavec
- Cátedra de Biología Celular y Molecular, Departamento de Ciencias Biológicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Química y Fisicoquímica Biológicas Prof. Dr. Alejandro C. Paladini (IQUIFIB), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - María Del Carmen Fernández Tome
- Cátedra de Biología Celular y Molecular, Departamento de Ciencias Biológicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina.
- Instituto de Química y Fisicoquímica Biológicas Prof. Dr. Alejandro C. Paladini (IQUIFIB), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| |
Collapse
|
7
|
Santacreu BJ, Romero DJ, Pescio LG, Tarallo E, Sterin-Speziale NB, Favale NO. Apoptotic cell extrusion depends on single-cell synthesis of sphingosine-1-phosphate by sphingosine kinase 2. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:158888. [PMID: 33454434 DOI: 10.1016/j.bbalip.2021.158888] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 12/19/2020] [Accepted: 01/13/2021] [Indexed: 12/20/2022]
Abstract
Collecting duct cells are physiologically subject to the hypertonic environment of the kidney. This condition is necessary for kidney maturation and function but represents a stress condition that requires active strategies to ensure epithelial integrity. Madin-Darby Canine Kidney (MDCK) cells develop the differentiated phenotype of collecting duct cells when subject to hypertonicity, serving as a model to study epithelial preservation and homeostasis in this particular environment. The integrity of epithelia is essential to achieve the required functional barrier. One of the mechanisms that ensure integrity is cell extrusion, a process initiated by sphingosine-1-phosphate (S1P) to remove dying or surplus cells while maintaining the epithelium barrier. Both types start with the activation of S1P receptor type 2, located in neighboring cells. In this work, we studied the effect of cell differentiation induced by hypertonicity on cell extrusion in MDCK cells, and we provide new insights into the associated molecular mechanism. We found that the different stages of differentiation influence the rate of apoptotic cell extrusion. Besides, we used a novel methodology to demonstrate that S1P increase in extruding cells of differentiated monolayers. These results show for first time that cell extrusion is triggered by the single-cell synthesis of S1P by sphingosine kinase 2 (SphK2), but not SphK1, of the extruding cell itself. Moreover, the inhibition or knockdown of SphK2 prevents cell extrusion and cell-cell junction protein degradation, but not apoptotic nuclear fragmentation. Thus, we propose SphK2 as the biochemical key to ensure the preservation of the epithelial barrier under hypertonic stress.
Collapse
Affiliation(s)
- Bruno Jaime Santacreu
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Biología Celular y Molecular, Buenos Aires, Argentina; CONICET - Universidad de Buenos Aires, Instituto de Química y Fisicoquímica Biológicas "Profesor Dr. Alejandro C. Paladini" (IQUIFIB), Buenos Aires, Argentina
| | - Daniela Judith Romero
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Biología Celular y Molecular, Buenos Aires, Argentina; CONICET - Universidad de Buenos Aires, Instituto de Química y Fisicoquímica Biológicas "Profesor Dr. Alejandro C. Paladini" (IQUIFIB), Buenos Aires, Argentina
| | - Lucila Gisele Pescio
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Biología Celular y Molecular, Buenos Aires, Argentina; CONICET - Universidad de Buenos Aires, Instituto de Química y Fisicoquímica Biológicas "Profesor Dr. Alejandro C. Paladini" (IQUIFIB), Buenos Aires, Argentina
| | - Estefanía Tarallo
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Biología Celular y Molecular, Buenos Aires, Argentina
| | - Norma Beatriz Sterin-Speziale
- CONICET - Universidad de Buenos Aires, Instituto de Química y Fisicoquímica Biológicas "Profesor Dr. Alejandro C. Paladini" (IQUIFIB), Laboratorio Nacional de Investigación y Servicios de Péptidos y Proteínas - Espectrometría de Masa (LANAIS PROEM), Buenos Aires, Argentina
| | - Nicolás Octavio Favale
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Biología Celular y Molecular, Buenos Aires, Argentina; CONICET - Universidad de Buenos Aires, Instituto de Química y Fisicoquímica Biológicas "Profesor Dr. Alejandro C. Paladini" (IQUIFIB), Buenos Aires, Argentina.
| |
Collapse
|
8
|
Gerardi G, Casali CI, Cavia-Saiz M, Rivero-Pérez MD, Perazzo C, González-SanJosé ML, Muñiz P, Fernández Tome MC. Bioavailable wine pomace attenuates oxalate-induced type II epithelial mesenchymal transition and preserve the differentiated phenotype of renal MDCK cells. Heliyon 2020; 6:e05396. [PMID: 33294652 PMCID: PMC7689175 DOI: 10.1016/j.heliyon.2020.e05396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 09/27/2020] [Accepted: 10/28/2020] [Indexed: 11/23/2022] Open
Abstract
The functional renal epithelium is composed of differentiated and polarized tubular cells with a strong actin cortex and specialized cell-cell junctions. If, under pathological conditions, these cells have to resist higher kidney osmolarity, they need to activate diverse mechanisms to survive external nephrotoxic agents such as inflammation and oxidative stress. Wine pomace polyphenols exert protective effects on renal cells. In this study, two wine-pomace products and their protective effects upon promotion and preservation of normal cell differentiation and attenuation of oxalate-induced type II epithelial mesenchymal transition (EMT) are evaluated. Treatment with gastrointestinal and colonic bioavailable fractions from red (rWPP) and white (wWPP) wine pomaces, both in the presence and the absence of oxalate, showed similar cell numbers and nuclear size than the non-treated differentiated MDCK cells. Immunofluorescence analysis showed the reduction of morphological changes and the preservation of cellular junctions for the rWPP and wWPP pre-treatment of cells exposed to oxalate injury. Hence, both rWPP and wWPP attenuated oxalate type II EMT in MDCK cells that conserved their epithelial morphology and cellular junctions through the antioxidant activities of grape pomace polyphenols.
Collapse
Affiliation(s)
- Gisela Gerardi
- Department of Food Biotechnology and Science, Faculty of Sciences, University of Burgos, Plaza Misael Bañuelos, 09001, Burgos, Spain
| | - Cecilia I. Casali
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Biológicas, Cátedra de Biología Celular y Molecular, Buenos Aires, Argentina
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química y Fisicoquímica Biológicas Prof. Dr. Alejandro C. Paladini (IQUIFIB)-Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
| | - Mónica Cavia-Saiz
- Department of Food Biotechnology and Science, Faculty of Sciences, University of Burgos, Plaza Misael Bañuelos, 09001, Burgos, Spain
| | - María D. Rivero-Pérez
- Department of Food Biotechnology and Science, Faculty of Sciences, University of Burgos, Plaza Misael Bañuelos, 09001, Burgos, Spain
| | - Cecilia Perazzo
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Biológicas, Cátedra de Biología Celular y Molecular, Buenos Aires, Argentina
| | - María L. González-SanJosé
- Department of Food Biotechnology and Science, Faculty of Sciences, University of Burgos, Plaza Misael Bañuelos, 09001, Burgos, Spain
| | - Pilar Muñiz
- Department of Food Biotechnology and Science, Faculty of Sciences, University of Burgos, Plaza Misael Bañuelos, 09001, Burgos, Spain
| | - María C. Fernández Tome
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Biológicas, Cátedra de Biología Celular y Molecular, Buenos Aires, Argentina
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química y Fisicoquímica Biológicas Prof. Dr. Alejandro C. Paladini (IQUIFIB)-Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
| |
Collapse
|
9
|
Casali C, Malvicini R, Erjavec L, Parra L, Artuch A, Fernández Tome MC. X-box binding protein 1 (XBP1): A key protein for renal osmotic adaptation. Its role in lipogenic program regulation. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158616. [PMID: 31927142 DOI: 10.1016/j.bbalip.2020.158616] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 12/26/2019] [Accepted: 01/07/2020] [Indexed: 01/21/2023]
Abstract
In renal cells, hyperosmolarity can induce cellular stress or differentiation. Both processes require active endoplasmic reticulum (ER)-associated protein synthesis. Lipid biosynthesis also occurs at ER surface. We showed that hyperosmolarity upregulates glycerophospholipid (GP) and triacylglycerol (GL-TG) de novo synthesis. Considering that massive synthesis of proteins and/or lipids may drive to ER stress, herein we evaluated whether hyperosmolar environment induces ER stress and the participation of inositol-requiring enzyme 1α (IRE1α)-XBP1 in hyperosmotic-induced lipid synthesis. Treatment of Madin-Darby canine kidney (MDCK) cells with hyperosmolar medium triggered ER stress-associated unfolded protein response (UPR). Hyperosmolarity significantly increased xbp1 mRNA and protein as function of time; 24 h of treatment raised the spliced form of XBP1 protein (XBP1s) and induced its translocation to nuclear compartment where it can act as a transcription factor. XBP1 silencing or IRE1α ribonuclease (RNAse) inhibition impeded the expression of lipin1, lipin2 and diacylglycerol acyl transferase-1 (DGAT1) enzymes which yielded decreased GL-TG synthesis. The lack of XBP1s also decreased sterol regulatory element binding protein (SREBP) 1 and 2. Together our data demonstrate that hyperosmolarity induces IRE1α → XBP1s activation; XBP1s drives the expression of SREBP1 and SREBP2 which in turn regulates the expression of the lipogenic enzymes lipin1 (LPIN1) and 2 (LPIN2) and DGAT1. We also demonstrated for the first time that tonicity-responsive enhancer binding protein (TonEBP), the master regulator of osmoprotective response, regulates XBP1 expression. Thus, XBP1 acts as an osmoprotective protein since it is activated by high osmolarity and upregulates lipid metabolism, membranes generation and the restoration of ER homeostasis.
Collapse
Affiliation(s)
- Cecilia Casali
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Biológicas, Cátedra de Biología Celular y Molecular, Buenos Aires, Argentina; Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química y Fisicoquímica Biológicas Prof. Dr. Alejandro C. Paladini (IQUIFIB)-Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina.
| | - Ricardo Malvicini
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Biológicas, Cátedra de Biología Celular y Molecular, Buenos Aires, Argentina
| | - Luciana Erjavec
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Biológicas, Cátedra de Biología Celular y Molecular, Buenos Aires, Argentina; Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química y Fisicoquímica Biológicas Prof. Dr. Alejandro C. Paladini (IQUIFIB)-Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
| | - Leandro Parra
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Biológicas, Cátedra de Biología Celular y Molecular, Buenos Aires, Argentina; Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química y Fisicoquímica Biológicas Prof. Dr. Alejandro C. Paladini (IQUIFIB)-Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
| | - Ayelen Artuch
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Biológicas, Cátedra de Biología Celular y Molecular, Buenos Aires, Argentina
| | - María C Fernández Tome
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Biológicas, Cátedra de Biología Celular y Molecular, Buenos Aires, Argentina; Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química y Fisicoquímica Biológicas Prof. Dr. Alejandro C. Paladini (IQUIFIB)-Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina.
| |
Collapse
|
10
|
Weber K, Casali C, Gaveglio V, Pasquaré S, Morel Gómez E, Parra L, Erjavec L, Perazzo C, Fernández Tome MC. TAG synthesis and storage under osmotic stress. A requirement for preserving membrane homeostasis in renal cells. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1863:1108-1120. [DOI: 10.1016/j.bbalip.2018.06.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 05/11/2018] [Accepted: 06/12/2018] [Indexed: 12/14/2022]
|
11
|
Yuan P, Zheng X, Li M, Ke Y, Fu Y, Zhang Q, Wang X, Feng W. Two Sulfur Glycoside Compounds Isolated from Lepidium apetalum Willd Protect NRK52e Cells against Hypertonic-Induced Adhesion and Inflammation by Suppressing the MAPK Signaling Pathway and RAAS. Molecules 2017; 22:molecules22111956. [PMID: 29137154 PMCID: PMC6150345 DOI: 10.3390/molecules22111956] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 11/08/2017] [Accepted: 11/09/2017] [Indexed: 01/06/2023] Open
Abstract
Lepidium apetalum Willd has been used to reduce edema and promote urination. Cis-desulfoglucotropaeolin (cis-DG) and trans-desulfoglucotropaeolin (trans-DG) were isolated from Lepidium apetalum Willd, and caused a significant increase in cell viability in a hypertonic model in NRK52e cells. In the hypertonic model, cis-DG and trans-DG significantly promoted the cell viability of NRK52e cells and inhibited the elevation of Na+ in the supernatant, inhibited the renin-angiotensin-aldosterone (RAAS) system, significantly reduced the levels of angiotensin II (Ang II) and aldosterone (ALD), and lowered aquaporin-2 (AQP2) and Na+–K+ ATP content in renal medulla. After treatment with cis-DG and trans-DG, expression of calcineurin (CAN) and Ca/calmodulin-dependent protein kinase II (CaMK II) was decreased in renal tissue and Ca2+ influx was inhibited, thereby reducing the secretion of transforming growth factor-β (TGFβ), reversing the increase in adhesion and inflammatory factor E-selectin and monocyte chemotactic protein 1 (MCP-1) induced by high NaCl, while reducing oxidative stress status and decreasing the expression of cyclooxygenase-2 (COX2). Furthermore, inhibition of protein kinase C (PKC) expression also contributed to these improvements. The cis-DG and trans-DG reduced the expression of p-p44/42 MAPK, p-JNK and p-p38, inhibited the phosphorylation of the MAPK signaling pathway in NRN52e cells induced by high salt, decreased the overexpression of p-p38 and p-HSP27, and inhibited the overactivation of the p38-MAPK signaling pathway, suggesting that the p38-MAPK pathway may play a vital role in the hypertonic-induced adhesion and inflammatory response. From the results of this study, it can be concluded that the mechanism of cis-DG and trans-DG may mainly be through inhibiting the p38-MAPK signaling pathway, inhibiting the excessive activation of the RAAS system, and thereby reducing adhesion and inflammatory factors.
Collapse
Affiliation(s)
- Peipei Yuan
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China.
- Collaborative Innovation Center for Respiratory Disease Diagnosis and Treatment & Chinese Medicine Development of Henan Province, Zhengzhou 450046, China.
| | - Xiaoke Zheng
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China.
- Collaborative Innovation Center for Respiratory Disease Diagnosis and Treatment & Chinese Medicine Development of Henan Province, Zhengzhou 450046, China.
| | - Meng Li
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China.
- Collaborative Innovation Center for Respiratory Disease Diagnosis and Treatment & Chinese Medicine Development of Henan Province, Zhengzhou 450046, China.
| | - Yingying Ke
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China.
- Collaborative Innovation Center for Respiratory Disease Diagnosis and Treatment & Chinese Medicine Development of Henan Province, Zhengzhou 450046, China.
| | - Yang Fu
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China.
| | - Qi Zhang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China.
| | - Xiaolan Wang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China.
- Collaborative Innovation Center for Respiratory Disease Diagnosis and Treatment & Chinese Medicine Development of Henan Province, Zhengzhou 450046, China.
| | - Weisheng Feng
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China.
- Collaborative Innovation Center for Respiratory Disease Diagnosis and Treatment & Chinese Medicine Development of Henan Province, Zhengzhou 450046, China.
| |
Collapse
|
12
|
Casado F, Teruel JA, Casado S, Ortiz A, Rodríguez-López JN, Aranda FJ. Location and Effects of an Antitumoral Catechin on the Structural Properties of Phosphatidylethanolamine Membranes. Molecules 2016; 21:molecules21070829. [PMID: 27347914 PMCID: PMC6274109 DOI: 10.3390/molecules21070829] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 06/21/2016] [Accepted: 06/22/2016] [Indexed: 01/15/2023] Open
Abstract
Green tea catechins exhibit high diversity of biological effects including antioncogenic properties, and there is enormous interest in their potential use in the treatment of a number of pathologies. It is recognized that the mechanism underlying the activity of catechins relay in part in processes related to the membrane, and many studies revealed that the ability of catechins to interact with lipids plays a probably necessary role in their mechanism of action. We present in this work the characterization of the interaction between an antitumoral synthetically modified catechin (3-O-(3,4,5-trimethoxybenzoyl)-(-)-catechin, TMCG) and dimiristoylphosphatidyl-ethanolamine (DMPE) membranes using an array of biophysical techniques which include differential scanning calorimetry, X-ray diffraction, infrared spectroscopy, atomic force microscopy, and molecular dynamics simulations. We found that TMCG incorporate into DMPE bilayers perturbing the thermotropic transition from the gel to the fluid state forming enriched domains which separated into different gel phases. TMCG does not influence the overall bilayer assembly of phosphatidylethanolamine systems but it manages to influence the interfacial region of the membrane and slightly decrease the interlamellar repeat distance of the bilayer. TMCG seems to be located in the interior of the phosphatidylethanolamine bilayer with the methoxy groups being in the deepest position and some portion of the molecule interacting with the water interface. We believe that the reported interactions are significant not only from the point of view of the known antitumoral effect of TMCG, but also might contribute to understanding the basic molecular mechanism of the biological effects of the catechins found at the membrane level.
Collapse
Affiliation(s)
- Francisco Casado
- Departamento de Bioquímica y Biología Molecular-A, Universidad de Murcia, Campus de Espinardo, Murcia E-30100, Spain.
| | - José A Teruel
- Departamento de Bioquímica y Biología Molecular-A, Universidad de Murcia, Campus de Espinardo, Murcia E-30100, Spain.
| | - Santiago Casado
- IMDEA-Nanoscience, Campus de Cantoblanco, Madrid E-28049, Spain.
| | - Antonio Ortiz
- Departamento de Bioquímica y Biología Molecular-A, Universidad de Murcia, Campus de Espinardo, Murcia E-30100, Spain.
| | - José N Rodríguez-López
- Departamento de Bioquímica y Biología Molecular-A, Universidad de Murcia, Campus de Espinardo, Murcia E-30100, Spain.
| | - Francisco J Aranda
- Departamento de Bioquímica y Biología Molecular-A, Universidad de Murcia, Campus de Espinardo, Murcia E-30100, Spain.
| |
Collapse
|
13
|
Favale NO, Santacreu BJ, Pescio LG, Marquez MG, Sterin-Speziale NB. Sphingomyelin metabolism is involved in the differentiation of MDCK cells induced by environmental hypertonicity. J Lipid Res 2015; 56:786-800. [PMID: 25670801 DOI: 10.1194/jlr.m050781] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Sphingolipids (SLs) are relevant lipid components of eukaryotic cells. Besides regulating various cellular processes, SLs provide the structural framework for plasma membrane organization. Particularly, SM is associated with detergent-resistant microdomains. We have previously shown that the adherens junction (AJ) complex, the relevant cell-cell adhesion structure involved in cell differentiation and tissue organization, is located in an SM-rich membrane lipid domain. We have also demonstrated that under hypertonic conditions, Madin-Darby canine kidney (MDCK) cells acquire a differentiated phenotype with changes in SL metabolism. For these reasons, we decided to evaluate whether SM metabolism is involved in the acquisition of the differentiated phenotype of MDCK cells. We found that SM synthesis mediated by SM synthase 1 is involved in hypertonicity-induced formation of mature AJs, necessary for correct epithelial cell differentiation. Inhibition of SM synthesis impaired the acquisition of mature AJs, evoking a disintegration-like process reflected by the dissipation of E-cadherin and β- and α-catenins from the AJ complex. As a consequence, MDCK cells did not develop the hypertonicity-induced differentiated epithelial cell phenotype.
Collapse
Affiliation(s)
- Nicolás Octavio Favale
- Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Argentina IQUIFIB-LANAIS-PROEM-CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| | - Bruno Jaime Santacreu
- Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Argentina IQUIFIB-LANAIS-PROEM-CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| | - Lucila Gisele Pescio
- Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Argentina IQUIFIB-LANAIS-PROEM-CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| | - Maria Gabriela Marquez
- IQUIFIB-LANAIS-PROEM-CONICET, Ciudad Autónoma de Buenos Aires, Argentina Instituto de Investigaciones en Ciencias de la Salud Humana (IICSHUM), Universidad Nacional de La Rioja , La Rioja, Argentina
| | | |
Collapse
|