1
|
Zhang Y, Luo S, Gao Y, Tong W, Sun S. High-Density Lipoprotein Subfractions Remodeling: A Critical Process for the Treatment of Atherosclerotic Cardiovascular Diseases. Angiology 2024; 75:441-453. [PMID: 36788038 DOI: 10.1177/00033197231157473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Numerous studies have shown that a low level of high-density lipoprotein cholesterol (HDL-C) is an independent biomarker of cardiovascular disease. High-density lipoprotein (HDL) is considered to be a protective factor for atherosclerosis (AS). Therefore, raising HDL-C has been widely recognized as a promising strategy to treat atherosclerotic cardiovascular diseases (ASCVD). However, several studies have found that increasing HDL-C levels does not necessarily reduce the risk of ASCVD. HDL particles are highly heterogeneous in structure, composition, and biological function. Moreover, HDL particles from atherosclerotic patients exhibit impaired anti-atherogenic functions and these dysfunctional HDL particles might even promote ASCVD. This makes it uncertain that HDL-raising therapy will prevent and treat ASCVD. It is necessary to comprehensively analyze the structure and function of HDL subfractions. We review current advances related to HDL subfractions remodeling and highlight how current lipid-modifying drugs such as niacin, statins, fibrates, and cholesteryl ester transfer protein inhibitors regulate cholesterol concentration of HDL and specific HDL subfractions.
Collapse
Affiliation(s)
- Yaling Zhang
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, Hengyang, China
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, China
| | - Shiyu Luo
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, Hengyang, China
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, China
| | - Yi Gao
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, Hengyang, China
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, China
| | - Wenjuan Tong
- Department of Gynecology and Obstetrics, First Affiliated Hospital, University of South China, Hengyang, China
| | - Shaowei Sun
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, Hengyang, China
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
2
|
Ahamad S, Bhat SA. Recent Update on the Development of PCSK9 Inhibitors for Hypercholesterolemia Treatment. J Med Chem 2022; 65:15513-15539. [PMID: 36446632 DOI: 10.1021/acs.jmedchem.2c01290] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
The proprotein convertase subtilisin/kexin-type 9 (PCSK9) binds to low-density lipoprotein receptors (LDLR), thereby trafficking them to lysosomes upon endocytosis and enhancing intracellular degradation to prevent their recycling. As a result, the levels of circulating LDL cholesterol (LDL-C) increase, which is a prominent risk factor for developing atherosclerotic cardiovascular diseases (ASCVD). Thus, PCSK9 has become a promising therapeutic target that offers a fertile testing ground for new drug modalities to regulate plasma LDL-C levels to prevent ASCVD. In this review, we have discussed the role of PCSK9 in lipid metabolism and briefly summarized the current clinical status of modalities targeting PCSK9. In particular, a detailed overview of peptide-based PCSK9 inhibitors is presented, which emphasizes their structural features and design, therapeutic effects on patients, and preclinical cardiovascular disease (CVD) models, along with PCSK9 modulation mechanisms. As a promising alternative to monoclonal antibodies (mAbs) for managing LDL-C, anti-PCSK9 peptides are emerging as a prospective next generation therapy.
Collapse
Affiliation(s)
- Shakir Ahamad
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India
| | - Shahnawaz A Bhat
- Department of Zoology, Aligarh Muslim University, Aligarh 202002, India
| |
Collapse
|
3
|
A novel, orally bioavailable, small-molecule inhibitor of PCSK9 with significant cholesterol-lowering properties in vivo. J Lipid Res 2022; 63:100293. [DOI: 10.1016/j.jlr.2022.100293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 09/27/2022] [Accepted: 10/02/2022] [Indexed: 11/07/2022] Open
|
4
|
Panagiotopoulou O, Chiesa ST, Tousoulis D, Charakida M. Dyslipidaemias and Cardiovascular Disease: Focus on the Role of PCSK9 Inhibitors. Curr Med Chem 2020; 27:4494-4521. [PMID: 31453780 DOI: 10.2174/0929867326666190827151012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 12/23/2018] [Accepted: 01/15/2019] [Indexed: 12/19/2022]
Abstract
Genetic, experimental and clinical studies have consistently confirmed that inhibition of Proprotein Convertase Subtilisin/Kexin type 9 (PCSK9) can result in significant lowering of LDL-C and two fully human PCSK9 monoclonal antibodies have received regulatory approval for use in highrisk patients. Co-administration of PCSK9 with statins has resulted in extremely low LDL-C levels with excellent short-term safety profiles. While results from Phase III clinical trials provided significant evidence about the role of PCSK9 inhibitors in reducing cardiovascular event rates, their impact on mortality remains less clear. PCSK9 inhibitor therapy can be considered for high-risk patients who are likely to experience significant cardiovascular risk reduction.
Collapse
Affiliation(s)
- Olga Panagiotopoulou
- School of Biomedical Engineering and Imaging Sciences, King's College London, 4th Floor, Lambeth Wing St. Thomas' Hospital, London SE1 7EH, United Kingdom
| | - Scott T Chiesa
- UCL Institute of Cardiovascular Sciences, London, United Kingdom
| | | | - Marietta Charakida
- School of Biomedical Engineering and Imaging Sciences, King's College London, 4th Floor, Lambeth Wing St. Thomas' Hospital, London SE1 7EH, United Kingdom
| |
Collapse
|
5
|
Deng Q, Li XX, Fang Y, Chen X, Xue J. Therapeutic Potential of Quercetin as an Antiatherosclerotic Agent in Atherosclerotic Cardiovascular Disease: A Review. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2020; 2020:5926381. [PMID: 32565865 PMCID: PMC7292974 DOI: 10.1155/2020/5926381] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 03/31/2020] [Accepted: 05/02/2020] [Indexed: 12/11/2022]
Abstract
Atherosclerotic cardiovascular disease (ASCVD) is one of the diseases with the highest morbidity and mortality globally. It causes a huge burden on families and caregivers and high costs for medicine and surgical interventions. Given expensive surgeries and failures of most conventional treatments, medical community tries to find a more cost-effective cure. Thus, attentions have been primarily focused on food or herbs. Quercetin (Qu) extracted from food, a flavonoid component, develops potentials of alternative or complementary medicine in atherosclerosis. Due to the wide range of health benefits, researchers have considered to apply Qu as a natural compound in therapy. This review is aimed to identify the antiatherosclerosis functions of Qu in treating ASCVD such as anti-inflammatory, antioxidant properties, effects on endothelium-dependent vasodilation, and blood lipid-lowering.
Collapse
Affiliation(s)
- Qian Deng
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiao Xue Li
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yanting Fang
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xin Chen
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jingui Xue
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
6
|
Wu DN, Guan L, Jiang YX, Ma SH, Sun YN, Lei HT, Yang WF, Wang QF. Microbiome and metabonomics study of quercetin for the treatment of atherosclerosis. Cardiovasc Diagn Ther 2019; 9:545-560. [PMID: 32038944 PMCID: PMC6987510 DOI: 10.21037/cdt.2019.12.04] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 11/18/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND The molecular mechanism of quercetin in the prevention and treatment of AS has been widely reported. However, the microbial and metabolic characteristics of quercetin in AS treatment are still poorly understood. In this study, we aimed to explore the gut microbial and metabolic signatures of quercetin in AS treatment and conduct an integrative analysis on its biomechanism. METHODS An atherosclerosis mouse model was induced by a high cholesterol diet (HCD). The duration of the quercetin treatment was 12 weeks. We measured TC, TG, HDL and LDL for plasma biochemical analysis and TNF-α and IL-6 for plasma inflammatory analysis. Haematoxylin-eosin (HE) staining was conducted to evaluate the aortic structure and atherosclerosis. Bacterial DNA, which was extracted from mouse faeces, was identified by the V3-V4 regions of the 16S rRNA for microbiological analysis. The HeatMap package of BTtools was applied to visualize the data of the microbial difference matrix according to the OTU results. Fecal metabolites were assessed through LC-MS. Multivariate data analysis was conducted on the normalized data with SIMCA-P+. Significantly different metabolites were extracted based on the Pearson correlation coefficients at the level of P<0.05. Key significantly changed metabolites were screened from the intersection between metabolic signatures of the normal-model and model-quercetin groups. To investigate the biological function of quercetin on AS, we identified the differential metabolic signatures of the model vs. quercetin groups and performed KEGG analyses via MBROLE, MetaboAnalyst database. RESULTS Quercetin treatment for 12 weeks significantly reduced the levels of TC (P<0.001), TG (P<0.05), HDL (P<0.001), LDL (P<0.001), TNF-α (P<0.001) and IL-6 (P<0.001) compared with the model group. HE staining indicated that quercetin could protect damaged vessels caused by HFD. Bacteroidetes, Firmicutes and Proteobacteria were dominant microbial groups in the samples. There was no significant difference between the three groups (P>0.05) at the phylum level, and the genera Phascolarctobacterium and Anaerovibrio can be regarded as the key microbiota signatures of quercetin treatment. PLS-DA results further showed that these 18 faecal metabolites (clustered in 3 groups) had significant differences between the control, model and quercetin groups throughout the 12-day treatment. According to the quantitative analysis results, 32 key metabolic signatures were screened for quercetin treatment. The main pathway in quercetin treatment is primary bile acid biosynthesis, as 3α,7α,12α,26-tetrahydroxy-5β-cholestane (C27H48O4) was defined as the most important key metabolic signature. CONCLUSIONS We explored the gut microbial and metabolic involvement of quercetin in AS treatment and suggest the association between AS and gut metabolic regulation.
Collapse
Affiliation(s)
- Dong-Ning Wu
- Key Laboratory of Ministry of Education for TCM Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang 110847, China
- Clinical Evaluation Center, Institute of Clinical Basic Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Le Guan
- Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang 110032, China
| | - Yi-Xin Jiang
- Biological Engineering Department, Liaoning Economy Vocational and Technical College, Shenyang 110122, China
| | - Su-Hua Ma
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Ya-Nan Sun
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Hong-Tao Lei
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Wei-Feng Yang
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Qing-Feng Wang
- College of Basic Medicine, Liaoning University of Traditional Chinese Medicine, Shenyang 110847, China
| |
Collapse
|
7
|
Cicha I, Chauvierre C, Texier I, Cabella C, Metselaar JM, Szebeni J, Dézsi L, Alexiou C, Rouzet F, Storm G, Stroes E, Bruce D, MacRitchie N, Maffia P, Letourneur D. From design to the clinic: practical guidelines for translating cardiovascular nanomedicine. Cardiovasc Res 2019; 114:1714-1727. [PMID: 30165574 DOI: 10.1093/cvr/cvy219] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 08/23/2018] [Indexed: 12/20/2022] Open
Abstract
Cardiovascular diseases (CVD) account for nearly half of all deaths in Europe and almost 30% of global deaths. Despite the improved clinical management, cardiovascular mortality is predicted to rise in the next decades due to the increasing impact of aging, obesity, and diabetes. The goal of emerging cardiovascular nanomedicine is to reduce the burden of CVD using nanoscale medical products and devices. However, the development of novel multicomponent nano-sized products poses multiple technical, ethical, and regulatory challenges, which often obstruct their road to successful approval and use in clinical practice. This review discusses the rational design of nanoparticles, including safety considerations and regulatory issues, and highlights the steps needed to achieve efficient clinical translation of promising nanomedicinal products for cardiovascular applications.
Collapse
Affiliation(s)
- Iwona Cicha
- Cardiovascular Nanomedicine Unit, Section of Experimental Oncology und Nanomedicine (SEON), ENT-Department, University Hospital Erlangen, Glückstr. 10a, Erlangen, Germany
| | - Cédric Chauvierre
- INSERM U1148, LVTS, Paris Diderot University, Paris 13 University, X. Bichat Hospital, 46 rue H. Huchard, Paris, France
| | | | - Claudia Cabella
- Centro Ricerche Bracco, Bracco Imaging Spa, Colleretto Giacosa, Italy
| | - Josbert M Metselaar
- Department of Experimental Molecular Imaging, University Clinic and Helmholtz Institute for Biomedical Engineering, RWTH-Aachen University, Aachen, Germany
| | - János Szebeni
- Nanomedicine Research and Education Center, Department of Pathophysiology, Semmelweis University, Budapest, Hungary
| | - László Dézsi
- Nanomedicine Research and Education Center, Department of Pathophysiology, Semmelweis University, Budapest, Hungary
| | - Christoph Alexiou
- Cardiovascular Nanomedicine Unit, Section of Experimental Oncology und Nanomedicine (SEON), ENT-Department, University Hospital Erlangen, Glückstr. 10a, Erlangen, Germany
| | - François Rouzet
- INSERM U1148, LVTS, Paris Diderot University, Paris 13 University, X. Bichat Hospital, 46 rue H. Huchard, Paris, France.,Department of Nuclear Medicine, X. Bichat Hospital, Paris, France
| | - Gert Storm
- Department of Pharmaceutics, University of Utrecht, Utrecht, The Netherlands.,Department of Biomaterials Science and Technology, University of Twente, Enschede, The Netherlands
| | - Erik Stroes
- Department of Vascular Medicine, Amsterdam Medical Center, Amsterdam, The Netherlands
| | | | - Neil MacRitchie
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Pasquale Maffia
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.,Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.,Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Didier Letourneur
- INSERM U1148, LVTS, Paris Diderot University, Paris 13 University, X. Bichat Hospital, 46 rue H. Huchard, Paris, France
| |
Collapse
|
8
|
Doggrell SA. Cardiovascular outcomes trial with anacetrapib in subjects with high cardiovascular risk - are major benefits REVEALed? Expert Opin Pharmacother 2018; 19:611-615. [PMID: 29498299 DOI: 10.1080/14656566.2018.1448061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
INTRODUCTION The actions of the cholesteryl ester transfer protein (CETP) inhibitors (torcetrapib, dalcetrapib and evacetrapib) include increasing high-density lipoprotein (HDL) cholesterol, but they do not reduce cardiovascular outcomes in subjects with high cardiovascular risk. Anacetrapib also inhibits CETP, increases HDL cholesterol and lowers low-density lipoprotein (LDL) cholesterol. Areas covered: This evaluation is of the REVEAL (Randomized Evaluation of the Effects of Anacetrapib through Lipid Modification) trial, which was a cardiovascular outcomes trial with anacetrapib in subjects with high cardiovascular risk. Consideration is given as to whether increasing HDL cholesterol, lowering LDL cholesterol or other mechanisms/factors underlying the positive outcome with this CETP inhibitor. Expert opinion: After three years, the REVEAL trial with anacetrapib, demonstrated cardiovascular benefits, but not a reduction in coronary artery deaths. The reductions were not significant in years one and two. Thus, in my opinion, the benefits of anacetrapib were not major, and may not apply in 'real' world populations where adherence to medicines is lower than in REVEAL. Also, lowering LDL cholesterol and off-target mechanisms of anacetrapib may have contributed to any beneficial and/or toxic effects. Anacetrapib has a good safety profile.
Collapse
Affiliation(s)
- Sheila A Doggrell
- a Faculty of Health , Queensland University of Technology , Brisbane , QLD , Australia
| |
Collapse
|
9
|
Masuda Y, Yamaguchi S, Suzuki C, Aburatani T, Nagano Y, Miyauchi R, Suzuki E, Yamamura N, Nagatomo K, Ishihara H, Okuno K, Nara F, Matschiner G, Hashimoto R, Takahashi T, Nishizawa T. Generation and Characterization of a Novel Small Biologic Alternative to Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9) Antibodies, DS-9001a, Albumin Binding Domain–Fused Anticalin Protein. J Pharmacol Exp Ther 2018; 365:368-378. [DOI: 10.1124/jpet.117.246652] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 02/15/2018] [Indexed: 01/06/2023] Open
|
10
|
Present therapeutic role of cholesteryl ester transfer protein inhibitors. Pharmacol Res 2017; 128:29-41. [PMID: 29287689 DOI: 10.1016/j.phrs.2017.12.028] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 12/24/2017] [Accepted: 12/24/2017] [Indexed: 12/16/2022]
Abstract
Therapeutic interventions aimed at increasing high-density lipoprotein (HDL) levels in order to reduce the residual cardiovascular (CV) risk of optimally drug treated patients have not provided convincing results, so far. Transfer of cholesterol from extrahepatic tissues to the liver appears to be the major atheroprotective function of HDL, and an elevation of HDL levels could represent an effective strategy. Inhibition of the cholesteryl ester transfer protein (CETP), raising HDL-cholesterol (HDL-C) and apolipoprotein A-I (apoA-I) levels, reduces low-density lipoprotein-cholesterol (LDL-C) and apoB levels, thus offering a promising approach. Despite the beneficial influence on cholesterol metabolism, off-target effects and lack of reduction in CV events and mortality (with torcetrapib, dalcetrapib and evacetrapib) highlighted the complex mechanism of CETP inhibition. After the failure of the above mentioned inhibitors in phase III clinical development, possibly due to the short duration of the trials masking benefit, the secondary prevention REVEAL trial has recently shown that the inhibitor anacetrapib significantly raised HDL-C (+104%), reduced LDL-C (-18%), with a protective effect on major coronary events (RR, 0.91; 95%CI, 0.85-0.97; p = 0.004). Whether LDL-C lowering fully accounts for the CV benefit or if HDL-C-rise is a crucial factor still needs to be determined, although the reduction of non-HDL (-18%) and Lp(a) (-25%), should be also taken into account. In spite of the positive results of the REVEAL Study, Merck decided not to proceed in asking regulatory approval for anacetrapib. Dalcetrapib (Dal-GenE study) and CKD-519 remain the two molecules within this area still in clinical development.
Collapse
|
11
|
Cicero AF, Bove M, Borghi C. Pharmacokinetics, pharmacodynamics and clinical efficacy of non-statin treatments for hypercholesterolemia. Expert Opin Drug Metab Toxicol 2017; 14:9-15. [DOI: 10.1080/17425255.2018.1416094] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Arrigo F.G. Cicero
- Medical and Surgical Sciences Department, University of Bologna, Bologna Italy
| | - Marilisa Bove
- Medical and Surgical Sciences Department, University of Bologna, Bologna Italy
| | - Claudio Borghi
- Medical and Surgical Sciences Department, University of Bologna, Bologna Italy
| |
Collapse
|
12
|
Zhou J, Zhang Q, Wang Y, Gao P, Chen D. The effect and safety of anacetrapib in the treatment of dyslipidemia: a systematic review and meta-analysis. Postgrad Med 2017; 130:129-136. [PMID: 29135318 DOI: 10.1080/00325481.2018.1401421] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Cardiovascular disease (CVD) is the major cause of morbidity and mortality worldwide. Anacetrapib may be a new treatment option that has a cardiovascular benefit for the management of dyslipidemia. OBJECTIVE The aim of our current study was to perform a systematic review and meta-analysis of all randomized controlled trials (RCTs) assessing the effect and safety of anacetrapib in the treatment of dyslipidemia. METHODS We systematically searched PubMed, Embase, and Cochrane Library database from their inception to 5 October 2017, with the terms: 'anacetrapib' and 'placebo'. From 287 initial citations, 10 studies including 34781 patients with dyslipidemia were included in the final systematic review and meta-analysis. RESULTS Pooled results showed that anacetrapib significantly increased high density lipoprotein cholesterol (HDL-C) [weighted mean differences (WMD) 53.07, 95% confidence interval (95% CI) 46.79 to 59.36] and apolipoprotein AI (ApoAI) (WMD 53.44, 95% CI 45.72 to 61.16). Our study also showed that anacetrapib significantly reduced low density lipoprotein cholesterol (LDL-C) (WMD -32.99; 95% CI -37.13 to -28.86), Non-HDL-C (WMD -39.19; 95% CI -52.22 to -26.16), triglycerides (TG) (WMD -9.97; 95% CI -10.54 to -9.41), apolipoprotein B (ApoB) (WMD -22.55; 95% CI -28.56 to -16.54) and lipoprotein a [LP(a)] (WMD -13.35; 95% CI -18.31 to -8.39). Our results demonstrated that there was no significant difference in all the following adverse events between the anacetrapib group and placebo group: [hepato-toxicity (OR 0.90, 95% CI: 0.75 to 1.07); musculoskeletal injury (OR 1.01, 95% CI: 0.88 to 1.15); drug-related adverse event (OR 1.00, 95% CI: 0.96 to 1.05); drug-related withdrawn (OR 1.01, 95% CI: 0.95 to 1.08)]. CONCLUSIONS Although further studies are needed, our findings clearly offer support to the use of anacetrapib in the clinical management of patients with dyslipidemia.
Collapse
Affiliation(s)
- Junteng Zhou
- a Department of Cardiology , Sichuan University West China Hospital , Chengdu , China
| | - Qi Zhang
- b Department of Endocrinology and Metabolism , Sichuan University West China Hospital , Chengdu , China
| | - Yushu Wang
- a Department of Cardiology , Sichuan University West China Hospital , Chengdu , China
| | - Peijuan Gao
- c Department of Nephrology , Sichuan University West China Hospital , Chengdu , China
| | - Decai Chen
- b Department of Endocrinology and Metabolism , Sichuan University West China Hospital , Chengdu , China
| |
Collapse
|
13
|
Arsenault BJ, Petrides F, Tabet F, Bao W, Hovingh GK, Boekholdt SM, Ramin-Mangata S, Meilhac O, DeMicco D, Rye KA, Waters DD, Kastelein JJP, Barter P, Lambert G. Effect of atorvastatin, cholesterol ester transfer protein inhibition, and diabetes mellitus on circulating proprotein subtilisin kexin type 9 and lipoprotein(a) levels in patients at high cardiovascular risk. J Clin Lipidol 2017; 12:130-136. [PMID: 29103916 DOI: 10.1016/j.jacl.2017.10.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 09/06/2017] [Accepted: 10/03/2017] [Indexed: 01/20/2023]
Abstract
BACKGROUND Proprotein subtilisin kexin type 9 (PCSK9) and lipoprotein (a) [Lp(a)] levels are causative risk factors for coronary heart disease. OBJECTIVES The objective of the study was to determine the impact of lipid-lowering treatments on circulating PCSK9 and Lp(a). METHODS We measured PCSK9 and Lp(a) levels in plasma samples from Investigation of Lipid Level Management to Understand its Impact in Atherosclerotic Events trial patients with coronary heart disease and/or type II diabetes (T2D) mellitus. Patients received atorvastatin, which was titrated (10, 20, 40, or 80 mg/d) to achieve low-density lipoprotein cholesterol levels <100 mg/dL (baseline) and were subsequently randomized either to atorvastatin + torcetrapib, a cholesterol ester transfer protein inhibitor, or to atorvastatin + placebo. RESULTS At baseline, both plasma PCSK9 and Lp(a) were dose-dependently increased with increasing atorvastatin doses. Compared with patients without T2D, those with T2D had higher PCSK9 (357 ± 123 vs 338 ± 115 ng/mL, P = .0012) and lower Lp(a) levels (28 ± 32 vs 32 ± 33 mg/dL, P = .0005). Plasma PCSK9 levels significantly increased in patients treated with torcetrapib (+13.1 ± 125.3 ng/mL [+3.7%], P = .005), but not in patients treated with placebo (+2.6 ± 127.9 ng/mL [+0.7%], P = .39). Plasma Lp(a) levels significantly decreased in patients treated with torcetrapib (-3.4 ± 10.7 mg/dL [-11.1%], P < .0001), but not in patients treated with placebo (+0.3 ± 9.4 mg/dL [+0.1%], P = .92). CONCLUSION In patients at high cardiovascular disease risk, PCSK9 and Lp(a) are positively and dose-dependently correlated with atorvastatin dosage, whereas the presence of T2D is associated with higher PCSK9 but lower Lp(a) levels. Cholesterol ester transfer protein inhibition with torcetrapib slightly increases PCSK9 levels and decreases Lp(a) levels.
Collapse
Affiliation(s)
- Benoit J Arsenault
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Québec, Canada; Department of Medicine, Faculty of Medicine, Université Laval, Québec, Québec, Canada
| | - Francine Petrides
- School of Medical Sciences, The University of New South Wales, Sydney, New South Wales, Australia
| | - Fatiha Tabet
- School of Medical Sciences, The University of New South Wales, Sydney, New South Wales, Australia
| | | | - G Kees Hovingh
- Department of Vascular Medicine, Academic Medical Center, Amsterdam, The Netherlands
| | | | | | - Olivier Meilhac
- Inserm, UMR 1188 DéTROI, Université de La Réunion, Sainte-Clotilde, France
| | | | - Kerry-Anne Rye
- School of Medical Sciences, The University of New South Wales, Sydney, New South Wales, Australia
| | - David D Waters
- Division of Cardiology, University of California, San Francisco, CA, USA
| | - John J P Kastelein
- Department of Vascular Medicine, Academic Medical Center, Amsterdam, The Netherlands
| | - Philip Barter
- School of Medical Sciences, The University of New South Wales, Sydney, New South Wales, Australia
| | - Gilles Lambert
- Inserm, UMR 1188 DéTROI, Université de La Réunion, Sainte-Clotilde, France.
| |
Collapse
|
14
|
Filippatos TD, Kei A, Elisaf MS. Anacetrapib, a New CETP Inhibitor: The New Tool for the Management of Dyslipidemias? Diseases 2017; 5:diseases5040021. [PMID: 28961179 PMCID: PMC5750532 DOI: 10.3390/diseases5040021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 09/28/2017] [Accepted: 09/29/2017] [Indexed: 12/21/2022] Open
Abstract
Cholesteryl ester transfer protein (CETP) inhibitors significantly increase serum high-density lipoprotein cholesterol (HDL) cholesterol levels and decrease low-density lipoprotein cholesterol (LDL) cholesterol concentration. However, three drugs of this class failed to show a decrease of cardiovascular events in high-risk patients. A new CETP inhibitor, anacetrapib, substantially increases HDL cholesterol and apolipoprotein (Apo) AI levels with a profound increase of large HDL2 particles, but also pre-β HDL particles, decreases LDL cholesterol levels mainly due to increased catabolism of LDL particles through LDL receptors, decreases lipoprotein a (Lp(a)) levels owing to a decreased Apo (a) production and, finally, decreases modestly triglyceride (TRG) levels due to increased lipolysis and increased receptor-mediated catabolism of TRG-rich particles. Interestingly, anacetrapib may be associated with a beneficial effect on carbohydrate homeostasis. Furthermore, the Randomized EValuation of the Effects of Anacetrapib Through Lipid-modification (REVEAL) trial showed that anacetrapib administration on top of statin treatment significantly reduces cardiovascular events in patients with atherosclerotic vascular disease without any significant increase of adverse events despite its long half-life. Thus, anacetrapib could be useful for the effective management of dyslipidemias in high-risk patients that do not attain their LDL cholesterol target or are statin intolerable, while its role in patients with increased Lp(a) levels remains to be established.
Collapse
Affiliation(s)
- Theodosios D Filippatos
- Department of Internal Medicine, School of Medicine, University of Ioannina, Ioannina 45110, Greece.
| | - Anastazia Kei
- Department of Internal Medicine, School of Medicine, University of Ioannina, Ioannina 45110, Greece.
| | - Moses S Elisaf
- Department of Internal Medicine, School of Medicine, University of Ioannina, Ioannina 45110, Greece.
| |
Collapse
|
15
|
Wiciński M, Żak J, Malinowski B, Popek G, Grześk G. PCSK9 signaling pathways and their potential importance in clinical practice. EPMA J 2017; 8:391-402. [PMID: 29209441 PMCID: PMC5700013 DOI: 10.1007/s13167-017-0106-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 06/30/2017] [Indexed: 12/15/2022]
Abstract
In the following review, authors described the structure and biochemical pathways of PCSK9, its involvement in LDL metabolism, as well as significances of proprotein convertase subtilisin/kexin type 9 targeted treatment. PCSK9 is a proprotein convertase, which plays a crucial role in LDL receptor metabolism. Transcription and translation of PCSK9 is controlled by different nuclear factors, such as, SREBP and HNF1α. This review focuses on interactions between PCSK9 and LDL receptor, VLDLR, ApoER2, CD36, CD81, and others. The role of PCSK9 in the inflammatory process is presented and its influence on cytokine profile (IL-1, IL-6, IL-10, TNF) in atherosclerotic plaque. Cholesterol metabolism converges also with diabetes by mTORC1 pathways. PCSK9 can be altered by oncologic pathways with utilization of kinases, such as Akt, JNK, and JAK/STAT. Finally, the article shows that blocking PCSK9 has proapoptotic capabilities. Administration of monoclonal antibodies against PCSK9 reduced mortality rate and cardiovascular events in randomized trials. On the other hand, immunogenicity of new drugs may play a crucial role in their efficiency. Bococizumab ended its career following SPIRE-1,2 outcome. PCSK9 inhibitors have enormous potential, which had been reflected by introducing them (as a new class of drugs reducing LDL concentration cholesterol) into New Lipid Guidelines from Rome 2016. Discoveries in drugs development are focused on blocking PCSK9 on different levels. For example, silencing messenger RNA (mRNA of PCSK9) is a new alternative against hypercholesterolemia. Peptides mimicking EGF-A domain of the LDL receptor are gaining significance and hopefully they will soon join others. The significance of PCSK9 has just been uncovered and further data is still required to understand their activity.
Collapse
Affiliation(s)
- Michał Wiciński
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Collegium, Medicum in Bydgoszcz, Nicolaus Copernicus University, 85-090 Bydgoszcz, Poland
| | - Jarosław Żak
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Collegium, Medicum in Bydgoszcz, Nicolaus Copernicus University, 85-090 Bydgoszcz, Poland
| | - Bartosz Malinowski
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Collegium, Medicum in Bydgoszcz, Nicolaus Copernicus University, 85-090 Bydgoszcz, Poland
| | - Gabriela Popek
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Collegium, Medicum in Bydgoszcz, Nicolaus Copernicus University, 85-090 Bydgoszcz, Poland
| | - Grzegorz Grześk
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Collegium, Medicum in Bydgoszcz, Nicolaus Copernicus University, 85-090 Bydgoszcz, Poland
| |
Collapse
|
16
|
Doggrell SA. No cardiovascular benefit with evacetrapib – is this the end of the road for the ‘cetrapibs’? Expert Opin Pharmacother 2017; 18:1439-1442. [DOI: 10.1080/14656566.2017.1365838] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Sheila A Doggrell
- Faculty of Health, Queensland University of Technology, Brisbane, Australia
| |
Collapse
|
17
|
Bergheanu SC, Bodde MC, Jukema JW. Pathophysiology and treatment of atherosclerosis : Current view and future perspective on lipoprotein modification treatment. Neth Heart J 2017; 25:231-242. [PMID: 28194698 PMCID: PMC5355390 DOI: 10.1007/s12471-017-0959-2] [Citation(s) in RCA: 147] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Recent years have brought a significant amount of new results in the field of atherosclerosis. A better understanding of the role of different lipoprotein particles in the formation of atherosclerotic plaques is now possible. Recent cardiovascular clinical trials have also shed more light upon the efficacy and safety of novel compounds targeting the main pathways of atherosclerosis and its cardiovascular complications.In this review, we first provide a background consisting of the current understanding of the pathophysiology and treatment of atherosclerotic disease, followed by our future perspectives on several novel classes of drugs that target atherosclerosis. The focus of this update is on the pathophysiology and medical interventions of low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), triglycerides (TG) and lipoprotein(a) (Lp(a)).
Collapse
Affiliation(s)
- S C Bergheanu
- Centre for Human Drug Research, Leiden, The Netherlands
- InterEuropa Clinical Research, Rotterdam, The Netherlands
| | - M C Bodde
- Department of Cardiology C5-P, Leiden University Medical Center, Leiden, The Netherlands
| | - J W Jukema
- Department of Cardiology C5-P, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
18
|
Millar JS, Lassman ME, Thomas T, Ramakrishnan R, Jumes P, Dunbar RL, deGoma EM, Baer AL, Karmally W, Donovan DS, Rafeek H, Wagner JA, Holleran S, Obunike J, Liu Y, Aoujil S, Standiford T, Gutstein DE, Ginsberg HN, Rader DJ, Reyes-Soffer G. Effects of CETP inhibition with anacetrapib on metabolism of VLDL-TG and plasma apolipoproteins C-II, C-III, and E. J Lipid Res 2017; 58:1214-1220. [PMID: 28314859 PMCID: PMC5454510 DOI: 10.1194/jlr.m074880] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 03/16/2017] [Indexed: 01/30/2023] Open
Abstract
Cholesteryl ester transfer protein (CETP) mediates the transfer of HDL cholesteryl esters for triglyceride (TG) in VLDL/LDL. CETP inhibition, with anacetrapib, increases HDL-cholesterol, reduces LDL-cholesterol, and lowers TG levels. This study describes the mechanisms responsible for TG lowering by examining the kinetics of VLDL-TG, apoC-II, apoC-III, and apoE. Mildly hypercholesterolemic subjects were randomized to either placebo (N = 10) or atorvastatin 20 mg/qd (N = 29) for 4 weeks (period 1) followed by 8 weeks of anacetrapib, 100 mg/qd (period 2). Following each period, subjects underwent stable isotope metabolic studies to determine the fractional catabolic rates (FCRs) and production rates (PRs) of VLDL-TG and plasma apoC-II, apoC-III, and apoE. Anacetrapib reduced the VLDL-TG pool on a statin background due to an increased VLDL-TG FCR (29%; P = 0.002). Despite an increased VLDL-TG FCR following anacetrapib monotherapy (41%; P = 0.11), the VLDL-TG pool was unchanged due to an increase in the VLDL-TG PR (39%; P = 0.014). apoC-II, apoC-III, and apoE pool sizes increased following anacetrapib; however, the mechanisms responsible for these changes differed by treatment group. Anacetrapib increased the VLDL-TG FCR by enhancing the lipolytic potential of VLDL, which lowered the VLDL-TG pool on atorvastatin background. There was no change in the VLDL-TG pool in subjects treated with anacetrapib monotherapy due to an accompanying increase in the VLDL-TG PR.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Joseph Obunike
- New York City College of Technology, CUNY, Brooklyn, NY 11201
| | - Yang Liu
- Merck & Co., Inc., Kenilworth, NJ 07033
| | | | | | | | | | | | | |
Collapse
|
19
|
Simic B, Mocharla P, Crucet M, Osto E, Kratzer A, Stivala S, Kühnast S, Speer T, Doycheva P, Princen HM, van der Hoorn JW, Jukema JW, Giral H, Tailleux A, Landmesser U, Staels B, Lüscher TF. Anacetrapib, but not evacetrapib, impairs endothelial function in CETP-transgenic mice in spite of marked HDL-C increase. Atherosclerosis 2017; 257:186-194. [PMID: 28152406 DOI: 10.1016/j.atherosclerosis.2017.01.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 12/24/2016] [Accepted: 01/12/2017] [Indexed: 01/05/2023]
Abstract
BACKGROUND AND AIMS High-density lipoprotein cholesterol (HDL-C) is inversely related to cardiovascular risk. HDL-C raising ester transfer protein (CETP) inhibitors, are novel therapeutics. We studied the effects of CETP inhibitors anacetrapib and evacetrapib on triglycerides, cholesterol and lipoproteins, cholesterol efflux, paraoxonase activity (PON-1), reactive oxygen species (ROS), and endothelial function in E3L and E3L.CETP mice. METHODS Triglycerides and cholesterol were measured at weeks 5, 14 and 21 in E3L.CETP mice on high cholesterol diet and treated with anacetrapib (3 mg/kg/day), evacetrapib (3 mg/kg/day) or placebo. Cholesterol efflux was assessed ex-vivo in mice treated with CETP inhibitors for 3 weeks on a normal chow diet. Endothelial function was analyzed at week 21 in isolated aortic rings, and serum lipoproteins assessed by fast-performance liquid chromatography. RESULTS Anacetrapib and evacetrapib increased HDL-C levels (5- and 3.4-fold, resp.) and reduced triglycerides (-39% vs. placebo, p = 0.0174). Total cholesterol levels were reduced only in anacetrapib-treated mice (-32%, p = 0.0386). Cholesterol efflux and PON-1 activity (+45% and +35% vs. control, p < 0.005, resp.) were increased, while aortic ROS production was reduced with evacetrapib (-49% vs. control, p = 0.020). Anacetrapib, but not evacetrapib, impaired endothelium dependent vasorelaxation (p < 0.05). In contrast, no such effects were observed in E3L mice for all parameters tested. CONCLUSIONS Notwithstanding a marked rise in HDL-C, evacetrapib did not improve endothelial function, while anacetrapib impaired it, suggesting that CETP inhibition does not provide vascular protection. Anacetrapib exerts unfavorable endothelial effects beyond CETP inhibition, which may explain the neutral results of large clinical trials in spite of increased HDL-C.
Collapse
Affiliation(s)
- Branko Simic
- Center for Molecular Cardiology, Campus Schlieren, University of Zürich, Switzerland; University Heart Center, Cardiology, University Hospital Zürich, Switzerland.
| | - Pavani Mocharla
- Center for Molecular Cardiology, Campus Schlieren, University of Zürich, Switzerland; University Heart Center, Cardiology, University Hospital Zürich, Switzerland
| | - Margot Crucet
- Center for Molecular Cardiology, Campus Schlieren, University of Zürich, Switzerland; University Heart Center, Cardiology, University Hospital Zürich, Switzerland
| | - Elena Osto
- Center for Molecular Cardiology, Campus Schlieren, University of Zürich, Switzerland; University Heart Center, Cardiology, University Hospital Zürich, Switzerland
| | - Adelheid Kratzer
- Center for Molecular Cardiology, Campus Schlieren, University of Zürich, Switzerland; University Heart Center, Cardiology, University Hospital Zürich, Switzerland
| | - Simona Stivala
- Center for Molecular Cardiology, Campus Schlieren, University of Zürich, Switzerland; University Heart Center, Cardiology, University Hospital Zürich, Switzerland
| | - Susan Kühnast
- TNO - Metabolic Health Research, Leiden, The Netherlands
| | - Thimoteus Speer
- Department of Internal Medicine IV, Saarland University Medical Centre, Homburg, Germany
| | - Petia Doycheva
- Center for Molecular Cardiology, Campus Schlieren, University of Zürich, Switzerland; University Heart Center, Cardiology, University Hospital Zürich, Switzerland
| | - Hans M Princen
- TNO - Metabolic Health Research, Leiden, The Netherlands
| | | | | | - Hector Giral
- Center for Molecular Cardiology, Campus Schlieren, University of Zürich, Switzerland; University Heart Center, Cardiology, University Hospital Zürich, Switzerland
| | - Anne Tailleux
- Institute Pasteur de Lille, Inserm UMR 1011, University of Lille, France
| | - Ulf Landmesser
- Center for Molecular Cardiology, Campus Schlieren, University of Zürich, Switzerland; University Heart Center, Cardiology, University Hospital Zürich, Switzerland
| | - Bart Staels
- Institute Pasteur de Lille, Inserm UMR 1011, University of Lille, France
| | - Thomas F Lüscher
- Center for Molecular Cardiology, Campus Schlieren, University of Zürich, Switzerland; University Heart Center, Cardiology, University Hospital Zürich, Switzerland.
| |
Collapse
|
20
|
Borghi C, Cicero AFG. Pharmacokinetic drug evaluation of anacetrapib for the treatment of dyslipidemia. Expert Opin Drug Metab Toxicol 2016; 13:205-209. [DOI: 10.1080/17425255.2017.1262347] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Claudio Borghi
- Medical and Surgical Sciences Dept., University of Bologna, Bologna, Italy
| | | |
Collapse
|
21
|
Anagnostis P, Karras S, Lambrinoudaki I, Stevenson JC, Goulis DG. Lipoprotein(a) in postmenopausal women: assessment of cardiovascular risk and therapeutic options. Int J Clin Pract 2016; 70:967-977. [PMID: 28032426 DOI: 10.1111/ijcp.12903] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 09/08/2016] [Accepted: 10/02/2016] [Indexed: 01/10/2023] Open
Abstract
INTRODUCTION Lipoprotein(a) [Lp(a)], a low-density lipoprotein (LDL)-like particle, has been independently associated with increased cardiovascular disease (CVD) risk in various populations, such as postmenopausal women. The purpose of this narrative review is to present current data on the role of Lp(a) in augmenting CVD risk in postmenopausal women and focus on the available therapeutic strategies. METHODS PubMed was searched for English language publications until November 2015 under the following terms: "therapy" OR "treatment" AND ["lipoprotein (a)" OR "Lp(a)"] AND ("postmenopausal women" OR "menopausal women" OR "menopause"). RESULTS Only hormone replacement therapy (mainly oral estrogens) and tibolone have been specifically studied in postmenopausal women and can reduce Lp(a) concentrations by up to 44%, although evidence indicating a concomitant reduction in CVD risk associated with Lp(a) is lacking. As alternative treatments for women who cannot, or will not, take hormonal therapies, niacin and the upcoming proprotein convertase subtilisin / kexin type 9 (PCSK-9) inhibitors are effective in reducing Lp(a) concentrations by up to 30%. Statins have minimal or no effect on Lp(a). However, data for these and other promising Lp(a)-lowering therapies including mipomersen, lomitapide, cholesterol-ester-transfer protein inhibitors and eprotirome are derived from studies in the general, mainly high CVD risk, population, and include only subpopulations of postmenopausal women. CONCLUSIONS Past, present and emerging therapies can reduce Lp(a) concentrations to a varying extent. Overall, it remains to be proven whether the aforementioned reductions in Lp(a) by these therapeutic options are translated into CVD risk reduction in postmenopausal women.
Collapse
Affiliation(s)
- Panagiotis Anagnostis
- Unit of Reproductive Endocrinology, First Department of Obstetrics and Gynecology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Spyridon Karras
- Unit of Reproductive Endocrinology, First Department of Obstetrics and Gynecology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Irene Lambrinoudaki
- Second Department of Obstetrics and Gynecology, National and Capodestrian University of Athens, Athens, Greece
| | - John C Stevenson
- National Heart and Lung Institute, Imperial College London, Royal Brompton and Harefield NHS Foundation Trust, London, UK
| | - Dimitrios G Goulis
- Unit of Reproductive Endocrinology, First Department of Obstetrics and Gynecology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
22
|
Abstract
There are several established lipid-modifying agents, including statins, fibrates, niacin, and ezetimibe, that have been shown in randomized clinical outcome trials to reduce the risk of having an atherosclerotic cardiovascular event. However, in many people, the risk of having an event remains unacceptably high despite treatment with these established agents. This has stimulated the search for new therapies designed to reduce residual cardiovascular risk. New approaches that target atherogenic lipoproteins include: 1) inhibition of proprotein convertase subtilisin/kexin type 9 to increase removal of atherogenic lipoproteins from plasma; 2) inhibition of the synthesis of apolipoprotein (apo) B, the main protein component of atherogenic lipoproteins; 3) inhibition of microsomal triglyceride transfer protein to block the formation of atherogenic lipoproteins; 4) inhibition of adenosine triphosphate citrate lyase to inhibit the synthesis of cholesterol; 5) inhibition of the synthesis of lipoprotein(a), a factor known to cause atherosclerosis; 6) inhibition of apoC-III to reduce triglyceride-rich lipoproteins and to enhance high-density lipoprotein (HDL) functionality; and 7) inhibition of cholesteryl ester transfer protein, which not only reduces the concentration of atherogenic lipoproteins but also increases the level and function of the potentially antiatherogenic HDL fraction. Other new therapies that specifically target HDLs include infusions of reconstituted HDLs, HDL delipidation, and infusions of apoA-I mimetic peptides that mimic some of the functions of HDLs. This review describes the scientific basis and rationale for developing these new therapies and provides a brief summary of established therapies.
Collapse
Affiliation(s)
- Philip J Barter
- School of Medical Sciences, University of New South Wales, Kensington, New South Wales, Australia
| | - Kerry-Anne Rye
- School of Medical Sciences, University of New South Wales, Kensington, New South Wales, Australia
| |
Collapse
|
23
|
Girona J, Ibarretxe D, Plana N, Guaita-Esteruelas S, Amigo N, Heras M, Masana L. Circulating PCSK9 levels and CETP plasma activity are independently associated in patients with metabolic diseases. Cardiovasc Diabetol 2016; 15:107. [PMID: 27488210 PMCID: PMC4973048 DOI: 10.1186/s12933-016-0428-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 07/22/2016] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND PCSK9 inhibition is a new powerful cholesterol-lowering strategy. Recently, it was reported that CETP inhibitors influence PCSK9 levels as an off-target effect. We explored the relationship between circulating PCSK9 levels and CETP activity in patients with metabolic disease who were not on lipid-lowering therapy. METHODS Plasma CETP activity and PCSK9 levels were measured in 450 participants (median age, 58 years; 49 % women) who attended the metabolism unit because of metabolic syndrome (MetS) (78 %), atherogenic dyslipidemia (32 %), obesity (50 %), type 2 diabetes mellitus (72 %), and other risk factors (13 %). A 6 week lipid-lowering drug wash-out period was established in treated patients. RESULTS Both PCSK9 levels and CETP activity were higher in patients with an increasing number of MetS components. PCSK9 levels were positively correlated with CETP activity in the entire cohort (r = 0.256, P < 0.0001) independent of age, gender, body mass index (BMI), systolic blood pressure (SBP), LDL cholesterol (LDL-C), triglycerides and glucose. Individuals with the loss-of-function PCSK9 genetic variant rs11591147 (R46L) had lower levels of PCSK9 (36.5 %, P < 0.0001) and LDL-C (17.8 %, P = 0.010) as well as lower CETP activity (10.31 %, P = 0.009). This association remained significant in the multiple regression analysis even after adjusting for gender, age, BMI, LDL-C, triglycerides, glucose, lecithin-cholesterol acyltransferase, SBP and MetS (P = 0.003). CONCLUSIONS Our data suggest a metabolic association between PCSK9 and CETP independent of lipid-lowering treatment. The clinical implications of this metabolic relationship could be relevant for explaining the effect of PCSK9 and CETP inhibition on overall lipid profiles.
Collapse
Affiliation(s)
- Josefa Girona
- Vascular Medicine and Metabolism Unit, Research Unit on Lipids and Atherosclerosis, Sant Joan University Hospital, Universitat Rovira i Virgili, IISPV, C Sant Llorenç, 21, 43201, Reus, Spain.,Spanish Biomedical Research Centre in Diabetes and AssociatedMetabolic Disorders (CIBERDEM), Madrid, Spain
| | - Daiana Ibarretxe
- Vascular Medicine and Metabolism Unit, Research Unit on Lipids and Atherosclerosis, Sant Joan University Hospital, Universitat Rovira i Virgili, IISPV, C Sant Llorenç, 21, 43201, Reus, Spain.,Spanish Biomedical Research Centre in Diabetes and AssociatedMetabolic Disorders (CIBERDEM), Madrid, Spain
| | - Nuria Plana
- Vascular Medicine and Metabolism Unit, Research Unit on Lipids and Atherosclerosis, Sant Joan University Hospital, Universitat Rovira i Virgili, IISPV, C Sant Llorenç, 21, 43201, Reus, Spain.,Spanish Biomedical Research Centre in Diabetes and AssociatedMetabolic Disorders (CIBERDEM), Madrid, Spain
| | - Sandra Guaita-Esteruelas
- Vascular Medicine and Metabolism Unit, Research Unit on Lipids and Atherosclerosis, Sant Joan University Hospital, Universitat Rovira i Virgili, IISPV, C Sant Llorenç, 21, 43201, Reus, Spain.,Spanish Biomedical Research Centre in Diabetes and AssociatedMetabolic Disorders (CIBERDEM), Madrid, Spain
| | - Nuria Amigo
- Biosfer Teslab, Reus and Department of Electronic Engineering, Universitat Rovira i Virgili, IISPV, Tarragona, Spain.,Spanish Biomedical Research Centre in Diabetes and AssociatedMetabolic Disorders (CIBERDEM), Madrid, Spain
| | - Mercedes Heras
- Vascular Medicine and Metabolism Unit, Research Unit on Lipids and Atherosclerosis, Sant Joan University Hospital, Universitat Rovira i Virgili, IISPV, C Sant Llorenç, 21, 43201, Reus, Spain.,Spanish Biomedical Research Centre in Diabetes and AssociatedMetabolic Disorders (CIBERDEM), Madrid, Spain
| | - Luis Masana
- Vascular Medicine and Metabolism Unit, Research Unit on Lipids and Atherosclerosis, Sant Joan University Hospital, Universitat Rovira i Virgili, IISPV, C Sant Llorenç, 21, 43201, Reus, Spain. .,Spanish Biomedical Research Centre in Diabetes and AssociatedMetabolic Disorders (CIBERDEM), Madrid, Spain.
| |
Collapse
|
24
|
Ferri N, Corsini A, Macchi C, Magni P, Ruscica M. Proprotein convertase subtilisin kexin type 9 and high-density lipoprotein metabolism: experimental animal models and clinical evidence. Transl Res 2016; 173:19-29. [PMID: 26548330 DOI: 10.1016/j.trsl.2015.10.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 10/03/2015] [Accepted: 10/12/2015] [Indexed: 01/22/2023]
Abstract
Proprotein convertase subtilisin kexin type 9 (PCSK9) belongs to the proprotein convertase family. Several studies have demonstrated its involvement in the regulation of low-density lipoprotein (LDL) cholesterol levels by inducing the degradation of the LDL receptor (LDLR). However, experimental, epidemiologic, and pharmacologic data provide important evidence on the role of PCSK9 also on high-density lipoproteins (HDLs). In mice, PCSK9 regulates the HDL cholesterol (HDL-C) levels by the degradation of hepatic LDLR, thus inhibiting the uptake of apolipoprotein (Apo)E-containing HDLs. Several epidemiologic and genetic studies reported positive relationship between PCSK9 and HDL-C levels, likely by reducing the uptake of the ApoE-containing HDL particles. PCSK9 enhances also the degradation of LDLR's closest family members, ApoE receptor 2, very low-density lipoprotein receptor, and LDLR-related protein 1. This feature provides a molecular mechanism by which PCSK9 may affect HDL metabolism. Experimental studies demonstrated that PCSK9 directly interacts with HDL by modulating PCSK9 self-assembly and its binding to the LDLR. Finally, the inhibition of PCSK9 by means of monoclonal antibodies directed to PCSK9 (ie, evolocumab and alirocumab) determines an increase of HDL-C fraction by 7% and 4.2%, respectively. Thus, the understanding of the role of PCSK9 on HDL metabolism needs to be elucidated with a particular focus on the effect of PCSK9 on HDL-mediated reverse cholesterol transport.
Collapse
Affiliation(s)
- Nicola Ferri
- Dipartimento di Scienze del Farmaco, Università di Padova, Padua, Italy.
| | - Alberto Corsini
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy; Multimedica IRCCS, Milan, Italy
| | - Chiara Macchi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Paolo Magni
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy; Centro per lo Studio delle Malattie Dismetaboliche e delle Iperlipemie-Enrica Grossi Paoletti, Università degli Studi di Milano, Milan, Italy
| | - Massimiliano Ruscica
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
25
|
Ajufo E, Rader DJ. Recent advances in the pharmacological management of hypercholesterolaemia. Lancet Diabetes Endocrinol 2016; 4:436-46. [PMID: 27012540 DOI: 10.1016/s2213-8587(16)00074-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 01/28/2016] [Accepted: 02/15/2016] [Indexed: 12/27/2022]
Abstract
The recent developments in pharmacological interventions that reduce LDL cholesterol have been remarkable, coming more than a decade after the approval of the last LDL-cholesterol-lowering drug, the cholesterol absorption inhibitor ezetimibe. Within just a few years, four new LDL-cholesterol-lowering agents have received regulatory approval. Lomitapide and mipomersen inhibit the production of LDL, but also increase hepatic fat and are licensed specifically for homozygous familial hypercholesterolaemia. Alirocumab and evolocumab are monoclonal antibodies that bind to proprotein convertase subtilisin/kexin type 9 (PCSK9), lowering LDL by about 50-60%. These drugs are approved for use in patients with cardiovascular disease or familial hypercholesterolaemia whose LDL cholesterol levels are insufficiently controlled on standard agents. Although definitive clinical efficacy and long-term safety data are still needed, antibody-based PCSK9 inhibitors promise to meet much of the unmet medical need in the treatment of raised LDL cholesterol. However, several additional approaches to inhibiting PCSK9, as well as other classes of LDL-lowering therapies, are in clinical development. Here we summarise the science behind the development of the newly approved LDL-cholesterol-lowering drugs and critically review their efficacy and safety data, highlighting unanswered research questions. Finally, we discuss emerging LDL-lowering therapies in clinical development.
Collapse
Affiliation(s)
- Ezim Ajufo
- Department of Medicine and Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Daniel J Rader
- Department of Medicine and Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
26
|
Barter PJ, Tabet F, Rye KA. Reduction in PCSK9 levels induced by anacetrapib: an off-target effect? J Lipid Res 2015; 56:2045-7. [PMID: 26378095 DOI: 10.1194/jlr.c063768] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Philip J Barter
- School of Medical Sciences, University of New South Wales Australia, Sydney, Australia
| | - Fatiha Tabet
- School of Medical Sciences, University of New South Wales Australia, Sydney, Australia
| | - Kerry-Anne Rye
- School of Medical Sciences, University of New South Wales Australia, Sydney, Australia
| |
Collapse
|