1
|
Wang J, Liu F, Gong D, Su J, Zheng F, Ding S, Mo J, Wang Y, Yang W, Guo P. Mendelian randomization reveals that abnormal lipid metabolism mediates the causal relationship between body mass index and keratoconus. Sci Rep 2024; 14:23698. [PMID: 39390037 PMCID: PMC11467444 DOI: 10.1038/s41598-024-74455-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 09/26/2024] [Indexed: 10/12/2024] Open
Abstract
Previous studies suggest that a high body mass index (BMI) may be a risk factor for keratoconus (KC), but the causal relationship remains unclear. This study used Mendelian randomization (MR) to investigate this connection and explore the mediating role of circulating serum metabolites and inflammatory factors in this association. Two-sample MR analysis was conducted to assess the relationship between BMI and KC. The study employed a two-step MR approach to evaluate the mediating roles of 91 inflammatory markers and 249 serum metabolites in the BMI-KC relationship. Inverse variance weighting (IVW) was the primary method, and multiple sensitivity analyses were performed to ensure robustness. IVW analysis revealed a positive causal relationship between BMI and KC (OR IVW = 1.811, 95% CI 1.005-3.262, P = 0.048). Although IL-12β and IL-4 were causally associated with KC, they did not mediate the BMI-KC relationship. Five serum metabolites were identified as potential mediators, with HDL cholesterol and triglyceride ratios showing significance. This study clarified the causal relationship between high BMI and KC, suggesting that high BMI may induce KC through lipid metabolism abnormalities. These findings underscore the importance of managing BMI for KC prevention.
Collapse
Affiliation(s)
- Jiaoman Wang
- The 2nd Clinical Medical College of Jinan University, Shenzhen, 518000, China
| | - Fangyuan Liu
- Lujiazui Community Health Service Center, Pudong New Area, shanghai, China
| | - Di Gong
- Shenzhen Eye Hospital, Jinan University, 18 Zetian Road, Futian District, , Shenzhen, 518040, China
| | - Jingjing Su
- Shenzhen Eye Hospital, Jinan University, 18 Zetian Road, Futian District, , Shenzhen, 518040, China
| | - Fang Zheng
- Department of Ophthalmology, Jinzhou Medical University, Majia Street, Jinzhou, 121000, China
| | - Sicheng Ding
- Departmentof Otolaryngology, Shenzhen Longgang Otolaryngology hospital & Shenzhen Otolaryngology Research Institute, 518172, shenzhen, China
| | - Jianhao Mo
- The 2nd Clinical Medical College of Jinan University, Shenzhen, 518000, China
| | - Yufan Wang
- Nanshan College, Guangzhou Medical University, Guangzhou, 510006, China
| | - Weihua Yang
- Shenzhen Eye Hospital, Jinan University, 18 Zetian Road, Futian District, , Shenzhen, 518040, China.
| | - Ping Guo
- Shenzhen Eye Hospital, Jinan University, 18 Zetian Road, Futian District, , Shenzhen, 518040, China.
| |
Collapse
|
2
|
Nicholas SE, Basu SK, Mandal N, Karamichos D. Amelioration of Fibrosis via S1P Inhibition Is Regulated by Inactivation of TGF-β and SPL Pathways in the Human Cornea. Int J Mol Sci 2024; 25:6560. [PMID: 38928268 PMCID: PMC11203819 DOI: 10.3390/ijms25126560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Human corneal fibrosis can lead to opacity and ultimately partial or complete vision loss. Currently, corneal transplantation is the only treatment for severe corneal fibrosis and comes with the risk of rejection and donor shortages. Sphingolipids (SPLs) are known to modulate fibrosis in various tissues and organs, including the cornea. We previously reported that SPLs are tightly related to both, transforming growth factor beta (TGF-β) signaling and corneal fibrogenesis. The aim of this study was to investigate the effects of sphingosine-1-phosphate (S1P) and S1P inhibition on specific TGF-β and SPL family members in corneal fibrosis. Healthy human corneal fibroblasts (HCFs) were isolated and cultured in EMEM + FBS + VitC (construct medium) on 3D transwells for 4 weeks. The following treatments were prepared in a construct medium: 0.1 ng/mL TGF-β1 (β1), 1 μM sphingosine-1-phosphate (S1P), and 5 μM Sphingosine kinase inhibitor 2 (I2). Five groups were tested: (1) control (no treatment); rescue groups; (2) β1/S1P; (3) β1/I2; prevention groups; (4) S1P/β1; and (5) I2/β1. Each treatment was administered for 2 weeks with one treatment and switched to another for 2 weeks. Using Western blot analysis, the 3D constructs were examined for the expression of fibrotic markers, SPL, and TGF-β signaling pathway members. Scratch assays from 2D cultures were also utilized to evaluate cell migration We observed reduced fibrotic expression and inactivation of latent TGF-β binding proteins (LTBPs), TGF-β receptors, Suppressor of Mothers Against Decapentaplegic homologs (SMADs), and SPL signaling following treatment with I2 prevention and rescue compared to S1P prevention and rescue, respectively. Furthermore, we observed increased cell migration following stimulation with I2 prevention and rescue groups, with decreased cell migration following stimulation with S1P prevention and rescue groups after 12 h and 18 h post-scratch. We have demonstrated that I2 treatment reduced fibrosis and modulated the inactivation of LTBPs, TGF-β receptors, SPLs, and the canonical downstream SMAD pathway. Further investigations are warranted in order to fully uncover the potential of utilizing SphK I2 as a novel therapy for corneal fibrosis.
Collapse
Affiliation(s)
- Sarah E. Nicholas
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107, USA;
- Department of Pharmaceutical Sciences, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Sandip K. Basu
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (S.K.B.); (N.M.)
| | - Nawajes Mandal
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (S.K.B.); (N.M.)
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Dimitrios Karamichos
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107, USA;
- Department of Pharmaceutical Sciences, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| |
Collapse
|
3
|
Tahia F, Basu SK, Prislovsky A, Mondal K, Ma D, Kochat H, Brown K, Stephenson DJ, Chalfant CE, Mandal N. Sphingolipid biosynthetic inhibitor L-Cycloserine prevents oxidative-stress-mediated death in an in vitro model of photoreceptor-derived 661W cells. Exp Eye Res 2024; 242:109852. [PMID: 38460719 PMCID: PMC11089890 DOI: 10.1016/j.exer.2024.109852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 03/01/2024] [Accepted: 03/03/2024] [Indexed: 03/11/2024]
Abstract
Oxidative stress plays a pivotal role in the pathogenesis of several neurodegenerative diseases. Retinal degeneration causes irreversible death of photoreceptor cells, ultimately leading to vision loss. Under oxidative stress, the synthesis of bioactive sphingolipid ceramide increases, triggering apoptosis in photoreceptor cells and leading to their death. This study investigates the effect of L-Cycloserine, a small molecule inhibitor of ceramide biosynthesis, on sphingolipid metabolism and the protection of photoreceptor-derived 661W cells from oxidative stress. The results demonstrate that treatment with L-Cycloserine, an inhibitor of Serine palmitoyl transferase (SPT), markedly decreases bioactive ceramide and associated sphingolipids in 661W cells. A nontoxic dose of L-Cycloserine can provide substantial protection of 661W cells against H2O2-induced oxidative stress by reversing the increase in ceramide level observed under oxidative stress conditions. Analysis of various antioxidant, apoptotic and sphingolipid pathway genes and proteins also confirms the ability of L-Cycloserine to modulate these pathways. Our findings elucidate the generation of sphingolipid mediators of cell death in retinal cells under oxidative stress and the potential of L-Cycloserine as a therapeutic candidate for targeting ceramide-induced degenerative diseases by inhibiting SPT. The promising therapeutic prospect identified in our findings lays the groundwork for further validation in in-vivo and preclinical models of retinal degeneration.
Collapse
Affiliation(s)
- Faiza Tahia
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, 38163, USA; Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Sandip K Basu
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Amanda Prislovsky
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, TN, 38163, USA; Memphis VA Medical Center, Memphis, TN, 38104, USA
| | - Koushik Mondal
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Dejian Ma
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Harry Kochat
- Plough Center for Sterile Drug Delivery Solutions, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Kennard Brown
- Office of Executive Vice Chancellor and Chief Operations Officer, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Daniel J Stephenson
- Departments of Medicine and Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, 22903, USA
| | - Charles E Chalfant
- Departments of Medicine and Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, 22903, USA; Research Service, Richmond Veterans Administration Medical Center, Richmond VA, 23298, USA
| | - Nawajes Mandal
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, 38163, USA; Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, TN, 38163, USA; Memphis VA Medical Center, Memphis, TN, 38104, USA; Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, 38163, USA.
| |
Collapse
|
4
|
Mandal N, Stentz F, Asuzu PC, Nyenwe E, Wan J, Dagogo-Jack S. Plasma Sphingolipid Profile of Healthy Black and White Adults Differs Based on Their Parental History of Type 2 Diabetes. J Clin Endocrinol Metab 2024; 109:740-749. [PMID: 37804534 PMCID: PMC10876402 DOI: 10.1210/clinem/dgad595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/18/2023] [Accepted: 10/05/2023] [Indexed: 10/09/2023]
Abstract
CONTEXT Ceramides and sphingolipids have been linked to type 2 diabetes (T2D). The Ceramides and Sphingolipids as Predictors of Incident Dysglycemia (CASPID) study is designed to determine the association of plasma sphingolipids with the pathophysiology of human T2D. OBJECTIVE A comparison of plasma sphingolipids profiles in Black and White adults with (FH+) and without (FH-) family history of T2D. DESIGN We recruited 100 Black and White FH- (54 Black, 46 White) and 140 FH+ (75 Black, 65 White) adults. Fasting plasma levels of 58 sphingolipid species, including 18 each from 3 major classes (ceramides, monohexosylceramides, and sphingomyelins, all with 18:1 sphingoid base) and 4 long-chain sphingoid base-containing species, were measured by liquid chromatography/mass spectrometry. RESULTS Sphingomyelin was the most abundant sphingolipid in plasma (89% in FH-), and was significantly elevated in FH+ subjects (93%). Ceramides and monohexosylceramides comprised 5% and 6% of total sphingolipids in the plasma of FH- subjects, and were reduced significantly in FH+ subjects (3% and 4%, respectively). In FH+ subjects, most ceramide and monohexosylceramide species were decreased but sphingomyelin species were increased. The level of C18:1 species of all 3 classes was elevated in FH+ subjects. CONCLUSION Elevated levels of sphingomyelin, the major sphingolipids of plasma, and oleic acid-containing sphingolipids in healthy FH+ subjects compared with healthy FH- subjects may reflect heritable elements linking sphingolipids and the development of T2D.
Collapse
Affiliation(s)
- Nawajes Mandal
- Departments of Ophthalmology, Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Research, Memphis VA Medical Center, Memphis, TN 38104, USA
| | - Frankie Stentz
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Peace Chiamaka Asuzu
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Ebenezer Nyenwe
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Jim Wan
- Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Sam Dagogo-Jack
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- General Clinical Research Center, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
5
|
Nicholas SE, Choi AJ, Lam TN, Basu SK, Mandal N, Karamichos D. Potentiation of Sphingolipids and TGF-β in the human corneal stroma reveals intricate signaling pathway crosstalks. Exp Eye Res 2023; 231:109487. [PMID: 37084874 DOI: 10.1016/j.exer.2023.109487] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/11/2023] [Accepted: 04/18/2023] [Indexed: 04/23/2023]
Abstract
Corneal haze brought on by fibrosis due to insult can lead to partial or complete vision loss. Currently, corneal transplantation is the gold standard for treating severe corneal fibrosis, which comes with the risk of rejection and the issue of donor tissue shortages. Sphingolipids (SPLs) are known to be associated with fibrosis in various tissues and organs, including the cornea. We previously reported that SPLs are tightly related to Transforming Growth Factor β (TGF-β) signaling and corneal fibrogenesis. This study aimed to elucidate the interplay of SPLs, specifically sphingosine-1-phosphate (S1P) signaling, and its' interactions with TGF-β signaling through detailed analyses of the corresponding downstream signaling targets in the context of corneal fibrosis, in vitro. Healthy human corneal fibroblasts (HCFs) were isolated, plated on polycarbonate membranes, and stimulated with a stable Vitamin C derivative. The 3D constructs were treated with either 5 μM sphingosine-1-phosphate (S1P), 5 μM SPHK I2 (I2; inhibitor of sphingosine kinase 1, one of the two enzymes responsible for generating S1P in mammalian cells), 0.1 ng/mL TGF-β1, or 0.1 ng/mL TGF-β3. Cultures with control medium-only served as controls. All 3D constructs were examined for protein expression of fibrotic markers, SPLs, TGF-βs, and relevant downstream signaling pathways. This data revealed no significant changes in any LTBP (latent TGF-β binding proteins) expression when stimulated with S1P or I2. However, LTBP1 was significantly upregulated via stimulation of TGF-β1 and TGF-β3, whereas LTBP2 was significantly upregulated only with TGF-β3 stimulation. Significant downregulation of TGF-β receptor II (TGF-βRII) following S1P stimulation but significant upregulation following I2 stimulation was observed. Following TGF-β1, S1P, and I2 stimulation, phospho-SMAD2 (pSMAD2) was significantly downregulated. Furthermore, I2 stimulation led to significant downregulation of SMAD4. Adhesion/proliferation/transcription regulation targets, SRC, FAK, and pERK 1/2 were all significantly downregulated by exogenous S1P, whereas I2 only significantly downregulated FAK. Exogenous TGF-β3 caused significant upregulation of AKT. Interestingly, both I2 and TGF-β3 caused significant downregulation of JNK expression. Lastly, TGF-β1 led to significant upregulation of sphingosine kinase 1 (SphK1) and sphingosine-1-phosphate receptor 3 (S1PR3), whereas TGF-β3 caused significant upregulation of only SphK1. Together with previously published work from our group and others, S1P inhibition exhibits great potential as an efficacious anti-fibrotic modality in human corneal stromal ECM. The current findings shed further light on a very complex and rather incompletely investigated mechanism, and cement the intricate crosstalk between SPLs and TGF-β in corneal fibrogenesis. Future studies will dictate the potential of utilizing SPLs/TGF-β signaling modulators as novel therapeutics in corneal fibrosis.
Collapse
Affiliation(s)
- Sarah E Nicholas
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA; Department of Pharmaceutical Sciences, University of North Texas HSC, Fort Worth, TX, 76107, USA
| | - Alexander J Choi
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA; Department of Pharmaceutical Sciences, University of North Texas HSC, Fort Worth, TX, 76107, USA
| | - Thi N Lam
- Department of Ophthalmology/Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Sandip K Basu
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Nawajes Mandal
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, TN, 38163, USA; Department of Anatomy and Neurobiology, University of Tennessee HSC, Memphis, TN, 38163, USA
| | - Dimitrios Karamichos
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA; Department of Pharmaceutical Sciences, University of North Texas HSC, Fort Worth, TX, 76107, USA; Department of Pharmacology and Neuroscience, University of North Texas HSC, Fort Worth, TX, 76107, USA.
| |
Collapse
|
6
|
Yang GN, Roberts PK, Gardner-Russell J, Shah MH, Couper TA, Zhu Z, Pollock GA, Dusting GJ, Daniell M. From bench to clinic: Emerging therapies for corneal scarring. Pharmacol Ther 2023; 242:108349. [PMID: 36682466 DOI: 10.1016/j.pharmthera.2023.108349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/22/2023]
Abstract
Corneal diseases are one of the leading causes of moderate-to-severe visual impairment and blindness worldwide, after glaucoma, cataract, and retinal disease in overall importance. Given its tendency to affect people at a younger age than other blinding conditions such as cataract and glaucoma, corneal scarring poses a huge burden both on the individuals and society. Furthermore, corneal scarring and fibrosis disproportionately affects people in poorer and remote areas, making it a significant ophthalmic public health problem. Traditional medical strategies, such as topical corticosteroids, are not effective in preventing fibrosis or scars. Corneal transplantation, the only effective sight-restoring treatment for corneal scars, is curbed by challenges including a severe shortage of tissue, graft rejection, secondary conditions, cultural barriers, the lack of well-trained surgeons, operating rooms, and well-equipped infrastructures. Thanks to tremendous research efforts, emerging therapeutic options including gene therapy, protein therapy, cell therapy and novel molecules are in development to prevent the progression of corneal scarring and compliment the surgical options currently available for treating established corneal scars in clinics. In this article, we summarise the most relevant preclinical and clinical studies on emerging therapies for corneal scarring in recent years, showing how these approaches may prevent scarring in its early development.
Collapse
Affiliation(s)
- Gink N Yang
- Centre for Eye Research Australia, level 7, Peter Howson Wing, 32 Gisborne Street, East Melbourne, Victoria 3002, Australia; Ophthalmology, Department of Surgery, University of Melbourne and Royal Victorian Eye and Ear Hospital, East Melbourne 3002, Australia.
| | - Philippe Ke Roberts
- Department of Ophthalmology, Medical University Vienna, 18-20 Währinger Gürtel, Vienna 1090, Austria
| | - Jesse Gardner-Russell
- Centre for Eye Research Australia, level 7, Peter Howson Wing, 32 Gisborne Street, East Melbourne, Victoria 3002, Australia; Ophthalmology, Department of Surgery, University of Melbourne and Royal Victorian Eye and Ear Hospital, East Melbourne 3002, Australia
| | - Manisha H Shah
- Centre for Eye Research Australia, level 7, Peter Howson Wing, 32 Gisborne Street, East Melbourne, Victoria 3002, Australia; Ophthalmology, Department of Surgery, University of Melbourne and Royal Victorian Eye and Ear Hospital, East Melbourne 3002, Australia
| | - Terry A Couper
- Centre for Eye Research Australia, level 7, Peter Howson Wing, 32 Gisborne Street, East Melbourne, Victoria 3002, Australia; Ophthalmology, Department of Surgery, University of Melbourne and Royal Victorian Eye and Ear Hospital, East Melbourne 3002, Australia; Lions Eye Donation Service, level 7, Smorgon Family Wing, 32 Gisborne Street, East Melbourne, Victoria 3002, Australia
| | - Zhuoting Zhu
- Centre for Eye Research Australia, level 7, Peter Howson Wing, 32 Gisborne Street, East Melbourne, Victoria 3002, Australia; Ophthalmology, Department of Surgery, University of Melbourne and Royal Victorian Eye and Ear Hospital, East Melbourne 3002, Australia
| | - Graeme A Pollock
- Centre for Eye Research Australia, level 7, Peter Howson Wing, 32 Gisborne Street, East Melbourne, Victoria 3002, Australia; Ophthalmology, Department of Surgery, University of Melbourne and Royal Victorian Eye and Ear Hospital, East Melbourne 3002, Australia; Lions Eye Donation Service, level 7, Smorgon Family Wing, 32 Gisborne Street, East Melbourne, Victoria 3002, Australia
| | - Gregory J Dusting
- Centre for Eye Research Australia, level 7, Peter Howson Wing, 32 Gisborne Street, East Melbourne, Victoria 3002, Australia; Ophthalmology, Department of Surgery, University of Melbourne and Royal Victorian Eye and Ear Hospital, East Melbourne 3002, Australia
| | - Mark Daniell
- Centre for Eye Research Australia, level 7, Peter Howson Wing, 32 Gisborne Street, East Melbourne, Victoria 3002, Australia; Ophthalmology, Department of Surgery, University of Melbourne and Royal Victorian Eye and Ear Hospital, East Melbourne 3002, Australia; Lions Eye Donation Service, level 7, Smorgon Family Wing, 32 Gisborne Street, East Melbourne, Victoria 3002, Australia
| |
Collapse
|
7
|
Image-Based Longitudinal Characterization of Corneal Wound to Understand the Role of Sphingosine-1-Phosphate. Methods Mol Biol 2023; 2625:337-345. [PMID: 36653655 DOI: 10.1007/978-1-0716-2966-6_28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Since its discovery, the bioactive sphingolipid sphingosine 1-phosphate (S1P) has been shown to involve in a myriad of cellular and physiological processes. In the process of tissue healing, S1P plays an important role in both normal and pathological healing, leading to fibrosis in multiple tissues including the cornea. Cornea covers the anterior portion of the eye and is responsible for the refraction of light. Corneal transparency is essential to obtain a clear vision, and a proper wound healing process is necessary for a clear cornea. Even though S1P is indicated to be a critical player in corneal fibrosis, we lack a detailed understanding of the role of S1P signaling in corneal wound healing and fibrosis. Herein, we describe a methodology to characterize the in-vivo wound healing process of the cornea using an easy and affordable imaging-based assay. This gives a consistent and easy way to characterize the wound and also the longitudinal healing process.
Collapse
|
8
|
A Comprehensive Profiling of Cellular Sphingolipids in Mammalian Endothelial and Microglial Cells Cultured in Normal and High-Glucose Conditions. Cells 2022; 11:cells11193082. [PMID: 36231042 PMCID: PMC9563724 DOI: 10.3390/cells11193082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/20/2022] [Accepted: 09/23/2022] [Indexed: 11/17/2022] Open
Abstract
Sphingolipids (SPLs) play a diverse role in maintaining cellular homeostasis. Dysregulated SPL metabolism is associated with pathological changes in stressed and diseased cells. This study investigates differences in SPL metabolism between cultured human primary retinal endothelial (HREC) and murine microglial cells (BV2) in normal conditions (normal glucose, NG, 5 mM) and under high-glucose (HG, 25 mM)-induced stress by sphingolipidomics, immunohistochemistry, biochemical, and molecular assays. Measurable differences were observed in SPL profiles between HREC and BV2 cells. High-glucose treatment caused a >2.5-fold increase in the levels of Lactosyl-ceramide (LacCer) in HREC, but in BV2 cells, it induced Hexosyl-Ceramides (HexCer) by threefold and a significant increase in Sphingosine-1-phosphate (S1P) compared to NG. Altered SPL profiles coincided with changes in transcript levels of inflammatory and vascular permeability mediators in HREC and inflammatory mediators in BV2 cells. Differences in SPL profiles and differential responses to HG stress between endothelial and microglial cells suggest that SPL metabolism and signaling differ in mammalian cell types and, therefore, their pathological association with those cell types.
Collapse
|
9
|
Wilkerson JL, Basu SK, Stiles MA, Prislovsky A, Grambergs RC, Nicholas SE, Karamichos D, Allegood JC, Proia RL, Mandal N. Ablation of Sphingosine Kinase 1 Protects Cornea from Neovascularization in a Mouse Corneal Injury Model. Cells 2022; 11:cells11182914. [PMID: 36139489 PMCID: PMC9497123 DOI: 10.3390/cells11182914] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/03/2022] [Accepted: 09/10/2022] [Indexed: 11/24/2022] Open
Abstract
The purpose of this study was to investigate the role of sphingosine kinase 1 (SphK1), which generates sphingosine-1-phosphate (S1P), in corneal neovascularization (NV). Wild-type (WT) and Sphk1 knockout (Sphk1−/−) mice received corneal alkali-burn treatment to induce corneal NV by placing a 2 mm round piece of Whatman No. 1 filter paper soaked in 1N NaOH on the center of the cornea for 20 s. Corneal sphingolipid species were extracted and identified using liquid chromatography/mass spectrometry (LC/MS). The total number of tip cells and those positive for ethynyl deoxy uridine (EdU) were quantified. Immunocytochemistry was done to examine whether pericytes were present on newly forming blood vessels. Cytokine signaling and angiogenic markers were compared between the two groups using multiplex assays. Data were analyzed using appropriate statistical tests. Here, we show that ablation of SphK1 can significantly reduce NV invasion in the cornea following injury. Corneal sphingolipid analysis showed that total levels of ceramides, monohexosyl ceramides (HexCer), and sphingomyelin were significantly elevated in Sphk−/− corneas compared to WT corneas, with a comparable level of sphingosine among the two genotypes. The numbers of total and proliferating endothelial tip cells were also lower in the Sphk1−/− corneas following injury. This study underscores the role of S1P in post-injury corneal NV and raises further questions about the roles played by ceramide, HexCer, and sphingomyelin in regulating corneal NV. Further studies are needed to unravel the role played by bioactive sphingolipids in maintenance of corneal transparency and clear vision.
Collapse
Affiliation(s)
- Joseph L. Wilkerson
- Dean A. McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT 84112, USA
| | - Sandip K. Basu
- Department of Ophthalmology, Hamilton Eye Institute, University of Tennessee Health Sciences Center, Memphis, TN 38163, USA
| | - Megan A. Stiles
- Dean A. McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Amanda Prislovsky
- Department of Ophthalmology, Hamilton Eye Institute, University of Tennessee Health Sciences Center, Memphis, TN 38163, USA
| | - Richard C. Grambergs
- Department of Ophthalmology, Hamilton Eye Institute, University of Tennessee Health Sciences Center, Memphis, TN 38163, USA
| | - Sarah E. Nicholas
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
- Department of Pharmaceutical Sciences, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Dimitrios Karamichos
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
- Department of Pharmaceutical Sciences, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Jeremy C. Allegood
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | - Richard L. Proia
- Genetics of Development and Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nawajes Mandal
- Dean A. McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Department of Ophthalmology, Hamilton Eye Institute, University of Tennessee Health Sciences Center, Memphis, TN 38163, USA
- Departments of Anatomy and Neurobiology, and Pharmaceutical Sciences, University of Tennessee Health Sciences Center, Memphis, TN 38163, USA
- Memphis VA Medical Center, Memphis, TN 38104, USA
- Correspondence:
| |
Collapse
|
10
|
Sphk1 and Sphk2 Differentially Regulate Erythropoietin Synthesis in Mouse Renal Interstitial Fibroblast-like Cells. Int J Mol Sci 2022; 23:ijms23115882. [PMID: 35682566 PMCID: PMC9180811 DOI: 10.3390/ijms23115882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/16/2022] [Accepted: 05/20/2022] [Indexed: 11/17/2022] Open
Abstract
Erythropoietin (Epo) is a crucial hormone regulating red blood cell number and consequently the hematocrit. Epo is mainly produced in the kidney by interstitial fibroblast-like cells. Previously, we have shown that in cultures of the immortalized mouse renal fibroblast-like cell line FAIK F3-5, sphingosine 1-phosphate (S1P), by activating S1P1 and S1P3 receptors, can stabilize hypoxia-inducible factor (HIF)-2α and upregulate Epo mRNA and protein synthesis. In this study, we have addressed the role of intracellular iS1P derived from sphingosine kinases (Sphk) 1 and 2 on Epo synthesis in F3-5 cells and in mouse primary cultures of renal fibroblasts. We show that stable knockdown of Sphk2 in F3-5 cells increases HIF-2α protein and Epo mRNA and protein levels, while Sphk1 knockdown leads to a reduction of hypoxia-stimulated HIF-2α and Epo protein. A similar effect was obtained using primary cultures of renal fibroblasts isolated from wildtype mice, Sphk1−/−, or Sphk2−/− mice. Furthermore, selective Sphk2 inhibitors mimicked the effect of genetic Sphk2 depletion and also upregulated HIF-2α and Epo protein levels. The combined blockade of Sphk1 and Sphk2, using Sphk2−/− renal fibroblasts treated with the Sphk1 inhibitor PF543, resulted in reduced HIF-2α and Epo compared to the untreated Sphk2−/− cells. Exogenous sphingosine (Sph) enhanced HIF-2α and Epo, and this was abolished by the combined treatment with the selective S1P1 and S1P3 antagonists NIBR-0213 and TY52156, suggesting that Sph was taken up by cells and converted to iS1P and exported to then act in an autocrine manner through S1P1 and S1P3. The upregulation of HIF-2α and Epo synthesis by Sphk2 knockdown was confirmed in the human hepatoma cell line Hep3B, which is well-established to upregulate Epo production under hypoxia. In summary, these data show that sphingolipids have diverse effects on Epo synthesis. While accumulation of intracellular Sph reduces Epo synthesis, iS1P will be exported to act through S1P1+3 to enhance Epo synthesis. Furthermore, these data suggest that selective inhibition of Sphk2 is an attractive new option to enhance Epo synthesis and thereby to reduce anemia development in chronic kidney disease.
Collapse
|
11
|
Galor A, Sanchez V, Jensen A, Burton M, Maus K, Stephenson D, Chalfant C, Mandal N. Meibum sphingolipid composition is altered in individuals with meibomian gland dysfunction-a side by side comparison of Meibum and Tear Sphingolipids. Ocul Surf 2022; 23:87-95. [PMID: 34861426 PMCID: PMC8792295 DOI: 10.1016/j.jtos.2021.11.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 01/21/2023]
Abstract
PURPOSE Sphingolipids (SPL) play a role in cell signaling, inflammation, and apoptosis. The purpose of this study was to examine meibum and tear SPL composition in individuals with poor versus good meibum quality. METHODS Individuals were grouped by meibum quality (n = 25 with poor quality, case group and n = 25 with good quality, control group). Meibum and tears were analyzed with liquid chromatography-mass spectrometry (LC-MS) to quantify SPL classes. Semiquantitative and relative composition (mole percent) of SPL and major classes, Ceramide (Cer), Hexosyl-Ceramide (Hex-Cer), Sphingomyelin (SM), Sphingosine (Sph), and sphingosine 1-phosphate (S1P) were compared between groups. RESULTS Demographic characteristics were similar between the two groups. Overall, individuals with poor meibum quality had more SPL pmole in meibum and tears than controls. Relative composition analysis revealed that individuals with poor meibum quality had SPL composed of less Cer, Hex-Cer, and Sph and more SM compared to individuals with good quality meibum. This pattern was not reproduced in tears as individuals with poor meibum quality had SPL composed of a similar amount of Cer, but more Hex-Cer, Sph and SM compared to controls. In meibum, SPL pmole and relative composition most strongly correlated with MG metrics while in tears, SPL pmole and relative composition most strongly correlated with tear production. SPL in both compartments, specifically Cer pmole in meibum and S1P% in tears, correlated with DE symptoms. CONCLUSION SPL composition differs in meibum and tears in patients with poor vs good meibum quality. These findings may be translated into therapeutic targets for disease.
Collapse
Affiliation(s)
- Anat Galor
- Miami Veterans Administration Medical Center, 1201 NW 16th St, Miami, FL 33125,Bascom Palmer Eye Institute, University of Miami, 900 NW 17th Street, Miami, FL 33136
| | - Victor Sanchez
- New York University Grossman School of Medicine, New York, NY 10016
| | - Andrew Jensen
- Miami Veterans Administration Medical Center, 1201 NW 16th St, Miami, FL 33125
| | - Madeline Burton
- Department of Ophthalmology, University of Tennessee Health Sciences Center, Hamilton Eye Institute, 930 Madison Avenue, Memphis, TN 38163
| | - Kenneth Maus
- Departments of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL 33620
| | | | - Charles Chalfant
- Departments of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL 33620,The Moffitt Cancer Center, Tampa, FL 33620,Research Service, James A. Haley Veterans Hospital, Tampa, FL 33612
| | - Nawajes Mandal
- Department of Ophthalmology, University of Tennessee Health Sciences Center, Hamilton Eye Institute, 930 Madison Avenue, Memphis, TN 38163,Departments of Anatomy and Neurobiology, and Pharmaceutical Sciences, University of Tennessee Health Sciences Center, 930 Madison Avenue, Memphis, TN 38163,Memphis VA Medical Center, 1030 Jefferson Avenue, Memphis, TN 38104.,Corresponding Author: Nawajes Mandal, PhD, 930 Madison Avenue, Suite 718, Memphis, TN 38163;
| |
Collapse
|
12
|
Wojakowska A, Pietrowska M, Widlak P, Dobrowolski D, Wylęgała E, Tarnawska D. Metabolomic Signature Discriminates Normal Human Cornea from Keratoconus-A Pilot GC/MS Study. Molecules 2020; 25:molecules25122933. [PMID: 32630577 PMCID: PMC7356237 DOI: 10.3390/molecules25122933] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/15/2020] [Accepted: 06/22/2020] [Indexed: 02/07/2023] Open
Abstract
The molecular etiology of keratoconus (KC), a pathological condition of the human cornea, remains unclear. The aim of this work was to perform profiling of metabolites and identification of features discriminating this pathology from the normal cornea. The combination of gas chromatography and mass spectrometry (GC/MS) techniques has been applied for profiling and identification of metabolites in corneal buttons from 6 healthy controls and 7 KC patients. An untargeted GC/MS-based approach allowed the detection of 377 compounds, including 46 identified unique metabolites, whose levels enabled the separation of compared groups of samples in unsupervised hierarchical cluster analysis. There were 13 identified metabolites whose levels differentiated between groups of samples. Downregulation of several carboxylic acids, fatty acids, and steroids was observed in KC when compared to the normal cornea. Metabolic pathways associated with compounds that discriminated both groups were involved in energy production, lipid metabolism, and amino acid metabolism. An observed signature may reflect cellular processes involved in the development of KC pathology, including oxidative stress and inflammation.
Collapse
Affiliation(s)
- Anna Wojakowska
- European Centre for Bioinformatics and Genomics, Institute of Bioorganic Chemistry Polish Academy of Sciences, Noskowskiego12/14, 61-704 Poznan, Poland;
| | - Monika Pietrowska
- Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeze Armii Krajowej 15, 44-102 Gliwice, Poland; (M.P.); (P.W.)
| | - Piotr Widlak
- Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeze Armii Krajowej 15, 44-102 Gliwice, Poland; (M.P.); (P.W.)
| | - Dariusz Dobrowolski
- Department of Ophthalmology & Tissue and Cells Bank, St. Barbara Hospital, Trauma Center, Plac Medyków 1, 41-200 Sosnowiec, Poland;
- Chair and Clinical Department of Ophthalmology, Division of Medical Science in Zabrze, Medical University of Silesia, Panewnicka 65, 40-760 Katowice, Poland;
| | - Edward Wylęgała
- Chair and Clinical Department of Ophthalmology, Division of Medical Science in Zabrze, Medical University of Silesia, Panewnicka 65, 40-760 Katowice, Poland;
- Department of Ophthalmology, District Railway Hospital, Panewnicka 65, 40-760 Katowice, Poland
| | - Dorota Tarnawska
- Department of Ophthalmology, District Railway Hospital, Panewnicka 65, 40-760 Katowice, Poland
- Faculty of Science and Technology, Silesian Center for Education and Interdisciplinary Research, University of Silesia, 75 Pułku Piechoty 1A, 41-500 Chorzów, Poland
- Correspondence:
| |
Collapse
|
13
|
do Amaral VSG, Santos SACS, de Andrade PC, Nowatzki J, Júnior NS, de Medeiros LN, Gitirana LB, Pascutti PG, Almeida VH, Monteiro RQ, Kurtenbach E. Pisum sativum Defensin 1 Eradicates Mouse Metastatic Lung Nodules from B16F10 Melanoma Cells. Int J Mol Sci 2020; 21:E2662. [PMID: 32290394 PMCID: PMC7219108 DOI: 10.3390/ijms21082662] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/27/2020] [Accepted: 04/01/2020] [Indexed: 11/16/2022] Open
Abstract
Psd1 is a pea plant defensin which can be actively expressed in Pichia pastoris and shows broad antifungal activity. This activity is dependent on fungal membrane glucosylceramide (GlcCer), which is also important for its internalization, nuclear localization, and endoreduplication. Certain cancer cells present a lipid metabolism imbalance resulting in the overexpression of GlcCer in their membrane. In this work, in vitroassays using B16F10 cells showed that labeled fluorescein isothiocyanate FITC-Psd1 internalized into live cultured cells and targeted the nucleus, which underwent fragmentation, exhibiting approximately 60% of cells in the sub-G0/G1 stage. This phenomenon was dependent on GlcCer, and the participation of cyclin-F was suggested. In a murine lung metastatic melanoma model, intravenous injection of Psd1 together with B16F10 cells drastically reduced the number of nodules at concentrations above 0.5 mg/kg. Additionally, the administration of 1 mg/kg Psd1 decreased the number of lung inflammatory cells to near zero without weight loss, unlike animals that received melanoma cells only. It is worth noting that 1 mg/kg Psd1 alone did not provoke inflammation in lung tissue or weight or vital signal losses over 21 days, inferring no whole animal cytotoxicity. These results suggest that Psd1 could be a promising prototype for human lung anti-metastatic melanoma therapy.
Collapse
Affiliation(s)
- Virginia Sara Grancieri do Amaral
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brasil; (V.S.G.d.A.); (S.A.C.S.S.); (P.C.d.A.); (J.N.); (N.S.J.); (L.N.d.M.); (P.G.P.)
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brasil; (V.H.A.); (R.Q.M.)
| | - Stephanie Alexia Cristina Silva Santos
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brasil; (V.S.G.d.A.); (S.A.C.S.S.); (P.C.d.A.); (J.N.); (N.S.J.); (L.N.d.M.); (P.G.P.)
| | - Paula Cavalcante de Andrade
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brasil; (V.S.G.d.A.); (S.A.C.S.S.); (P.C.d.A.); (J.N.); (N.S.J.); (L.N.d.M.); (P.G.P.)
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brasil; (V.H.A.); (R.Q.M.)
| | - Jenifer Nowatzki
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brasil; (V.S.G.d.A.); (S.A.C.S.S.); (P.C.d.A.); (J.N.); (N.S.J.); (L.N.d.M.); (P.G.P.)
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brasil; (V.H.A.); (R.Q.M.)
| | - Nilton Silva Júnior
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brasil; (V.S.G.d.A.); (S.A.C.S.S.); (P.C.d.A.); (J.N.); (N.S.J.); (L.N.d.M.); (P.G.P.)
| | - Luciano Neves de Medeiros
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brasil; (V.S.G.d.A.); (S.A.C.S.S.); (P.C.d.A.); (J.N.); (N.S.J.); (L.N.d.M.); (P.G.P.)
| | - Lycia Brito Gitirana
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brasil;
| | - Pedro Geraldo Pascutti
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brasil; (V.S.G.d.A.); (S.A.C.S.S.); (P.C.d.A.); (J.N.); (N.S.J.); (L.N.d.M.); (P.G.P.)
| | - Vitor H. Almeida
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brasil; (V.H.A.); (R.Q.M.)
| | - Robson Q. Monteiro
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brasil; (V.H.A.); (R.Q.M.)
| | - Eleonora Kurtenbach
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brasil; (V.S.G.d.A.); (S.A.C.S.S.); (P.C.d.A.); (J.N.); (N.S.J.); (L.N.d.M.); (P.G.P.)
| |
Collapse
|
14
|
Sharif R, Khaled ML, McKay TB, Liu Y, Karamichos D. Transcriptional profiling of corneal stromal cells derived from patients with keratoconus. Sci Rep 2019; 9:12567. [PMID: 31467338 PMCID: PMC6715750 DOI: 10.1038/s41598-019-48983-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 08/16/2019] [Indexed: 12/03/2022] Open
Abstract
Keratoconus (KC) is a multi-factorial corneal ectasia with unknown etiology affecting approximately 1:2000 people worldwide. Dysregulated gene expression, using RNA-Seq technology, have been reported in KC corneal tissue. However, the differential expression of genes, in KC corneal stromal cells have been widely ignored. We utilized mRNA-Seq to analyze gene expression in primary human corneal stromal cells derived from five non-Keratoconus healthy (HCF) and four Keratoconus (HKC) donors. Selected genes were further validated using real time PCR (RT-PCR). We have identified 423 differentially expressed genes with 187 down- and 236 up-regulated in KC-affected corneal stromal cells. Gene ontology analysis using WebGestalt indicates the enrichment of genes involved in cell migration, extracellular matrix, adherens junction, and MAPK signaling. Our protein-protein interaction network analysis identified several network seeds, such as EGFR, NEDD4, SNTA1, LGALS3BP, HSPB1, SDC2, MME, and HIF1A. Our work provides an otherwise unknown information on the transcriptional changes in HKCs, and reveals critical mechanisms of the cellular compartment. It also highlights the importance of human-based in vitro studies on a disease that currently lacks strong biomarkers and animal models.
Collapse
Affiliation(s)
- Rabab Sharif
- Department of Cell Biology, University of Oklahoma Health science Center, Oklahoma City, Oklahoma, 73104, USA
| | - Mariam L Khaled
- Department of Cellular Biology & Anatomy, Augusta University, Augusta, GA, 30912, United States
| | - Tina B McKay
- Schepens Eye Research Institute and Department of Ophthalmology, Harvard Medical School, Boston, MA, 02114, USA
| | - Yutao Liu
- Department of Cellular Biology & Anatomy, Augusta University, Augusta, GA, 30912, United States.
| | - Dimitrios Karamichos
- Department of Cell Biology, University of Oklahoma Health science Center, Oklahoma City, Oklahoma, 73104, USA.
- Department of Ophthalmology/Dean McGee Eye Institute, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma, 73104, USA.
| |
Collapse
|
15
|
Qi H, Cole J, Grambergs RC, Gillenwater JR, Mondal K, Khanam S, Dutta S, Stiles M, Proia RL, Allegood J, Mandal N. Sphingosine Kinase 2 Phosphorylation of FTY720 is Unnecessary for Prevention of Light-Induced Retinal Damage. Sci Rep 2019; 9:7771. [PMID: 31123291 PMCID: PMC6533254 DOI: 10.1038/s41598-019-44047-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 05/02/2019] [Indexed: 12/11/2022] Open
Abstract
Mammalian Sphingosine kinase 2 is the primary enzyme responsible for phosphorylating FTY720 to its active form, FTY720-P. Systemic FTY720 treatment confers significant protection to murine retinas from light- and disease-mediated photoreceptor cell death. It is not clear whether FTY720-P, FTY720, or both are responsible for this photoreceptor protection. We investigated Sphingosine kinase 2 knockout (Sphk2 KO) mouse retinas, tested their sensitivity to light, and measured what degree of protection from light-induced damage they receive from systemic FTY720 treatment. Sphk2 KO retinas were found to be similar to their wild-type counterparts in sensitivity to light damage. Additionally, FTY720 treatment protected Sphk2 KO retinas from light-induced damage despite significant retardation of FTY720 phosphorylation in Sphk2 KO mice. We conclude that FTY720 serves an active role in preventing photoreceptor cell death. Furthermore, we conclude that the phosphorylation of FTY720 is not necessary to provide this protective effect.
Collapse
Affiliation(s)
- Hui Qi
- Department of Ophthalmology, University of Oklahoma Health Sciences Center (OUHSC), Oklahoma City, OK, 73104, USA
| | - Jerome Cole
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Richard C Grambergs
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - John R Gillenwater
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Koushik Mondal
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Sufiya Khanam
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Soma Dutta
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Megan Stiles
- Department of Ophthalmology, University of Oklahoma Health Sciences Center (OUHSC), Oklahoma City, OK, 73104, USA
| | - Richard L Proia
- Genetics of Development and Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jeremy Allegood
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA, 2329, USA
| | - Nawajes Mandal
- Department of Ophthalmology, University of Oklahoma Health Sciences Center (OUHSC), Oklahoma City, OK, 73104, USA. .,Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, TN, 38163, USA. .,Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, 38163, USA.
| |
Collapse
|
16
|
Wilkerson JL, Stiles MA, Gurley JM, Grambergs RC, Gu X, Elliott MH, Proia RL, Mandal NA. Sphingosine Kinase-1 Is Essential for Maintaining External/Outer Limiting Membrane and Associated Adherens Junctions in the Aging Retina. Mol Neurobiol 2019; 56:7188-7207. [PMID: 30997640 DOI: 10.1007/s12035-019-1599-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 04/02/2019] [Indexed: 11/24/2022]
Abstract
Sphingosine-1-phosphate (S1P) produced by sphingosine kinases (SPHK1 and SPHK2) is a signaling molecule involved in cell proliferation and formation of cellular junctions. In this study, we characterized the retinas of Sphk1 knockout (KO) mice by electron microscopy and immunocytochemistry. We also tested cultured Müller glia for their response to S1P. We found that S1P plays an important role in retinal and retinal pigment epithelial (RPE) structural integrity in aging mice. Ultrastructural analysis of Sphk1 KO mouse retinas aged to 15 months or raised with moderate light stress revealed a degenerated outer limiting membrane (OLM). This membrane is formed by adherens junctions between neighboring Müller glia and photoreceptor cells. We also show that Sphk1 KO mice have reduced retinal function in mice raised with moderate light stress. In vitro assays revealed that exogenous S1P modulated cytoskeletal rearrangement and increased N-cadherin production in human Müller glia cells. Aged mice also had morphological degeneration of the RPE, as well as increased lipid storage vacuoles and undigested phagosomes reminiscent of RPE in age-related macular degeneration. These findings show that SPHK1 and S1P play a vital role in the structural maintenance of the mammalian retina and retinal pigmented epithelium by supporting the formation of adherens junctions.
Collapse
Affiliation(s)
- Joseph L Wilkerson
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.,Dean A. McGee Eye Institute, Oklahoma City, OK, 73104, USA
| | - Megan A Stiles
- Dean A. McGee Eye Institute, Oklahoma City, OK, 73104, USA.,Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Jami M Gurley
- Dean A. McGee Eye Institute, Oklahoma City, OK, 73104, USA.,Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Richard C Grambergs
- Department of Ophthalmology and Anatomy and Neurobiology, University of Tennessee Health Sciences Center, Memphis, TN, 38163, USA
| | - Xiaowu Gu
- Dean A. McGee Eye Institute, Oklahoma City, OK, 73104, USA.,Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Michael H Elliott
- Dean A. McGee Eye Institute, Oklahoma City, OK, 73104, USA.,Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Richard L Proia
- Genetics of Development and Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Nawajes A Mandal
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA. .,Dean A. McGee Eye Institute, Oklahoma City, OK, 73104, USA. .,Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA. .,Department of Ophthalmology and Anatomy and Neurobiology, University of Tennessee Health Sciences Center, Memphis, TN, 38163, USA. .,Department of Ophthalmology, Hamilton Eye Institute, University of Tennessee Health Sciences Center, 930 Madison Avenue, Suite 718, Memphis, TN, 38163, USA. .,Department of Anatomy and Neurobiology, Hamilton Eye Institute, University of Tennessee Health Sciences Center, 930 Madison Avenue, Suite 718, Memphis, TN, 38163, USA.
| |
Collapse
|
17
|
Wilmott LA, Grambergs RC, Allegood JC, Lyons TJ, Mandal N. Analysis of sphingolipid composition in human vitreous from control and diabetic individuals. J Diabetes Complications 2019; 33:195-201. [PMID: 30630661 PMCID: PMC6368445 DOI: 10.1016/j.jdiacomp.2018.12.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 10/08/2018] [Accepted: 12/07/2018] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Sphingolipids have a fundamental role in many cellular processes, and they have been implicated in insulin resistance and Diabetes Mellitus (DM) and its complications, including diabetic retinopathy (DR). Little is known about how bioactive sphingolipids relate to retinopathies in human DM. In this study, we analyzed the sphingolipid composition of type 2 diabetic (T2DM) and non-diabetic human vitreous samples. METHODS We conducted an observational study on post-mortem human vitreous samples from non-diabetic (Controls; n = 4; age: 71.6 ± 11.0 years, mean ± SD) and type 2 diabetic (T2DM; n = 9; age: 67.0 ± 9.2 years) donors to identify changes in sphingolipid composition. Samples were analyzed by a triple quadrupole mass spectrometer and individual sphingolipid species were identified and quantified using established protocols. RESULTS The total quantity (pmol/mg) of ceramide (Cer), lactosylceramide (Lac-Cer), and sphingomyelin (SM) were increased in type 2 diabetic vitreous samples. Among individual species, we found a general trend of increase in the longer chain species of ceramides, hexosylceramides (Hex-Cer), Lac-Cer, and SM. CONCLUSIONS This study shows the presence of measurable levels of sphingolipids in human vitreous. The results indicate changes in sphingolipid composition in the vitreous due to type 2 diabetes, which could be connected to the disease pathologies of the retina, retinal vessels, vitreous and the surrounding tissues.
Collapse
Affiliation(s)
- Lynda A Wilmott
- The University of Tennessee Health Science Center, Department of Ophthalmology, Memphis, TN 38163, USA
| | - Richard C Grambergs
- The University of Tennessee Health Science Center, Department of Ophthalmology, Memphis, TN 38163, USA
| | - Jeremy C Allegood
- Virginia Commonwealth University School of Medicine, Lipidomics Core, Department of Biochemistry and Molecular Biology, Richmond, VA 23298, USA
| | - Timothy J Lyons
- Medical University of South Carolina, Division of Endocrinology, Diabetes & Medical Genetics, Charleston, SC 29425, USA
| | - Nawajes Mandal
- The University of Tennessee Health Science Center, Department of Ophthalmology, Memphis, TN 38163, USA; The University of Tennessee Health Science Center, Department of Anatomy and Neurobiology, Memphis, TN 38163, USA; The University of Oklahoma Health Science Center, Department of Ophthalmology, Oklahoma City, OK 73104, USA.
| |
Collapse
|
18
|
Inflammatory Ocular Diseases and Sphingolipid Signaling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1159:139-152. [DOI: 10.1007/978-3-030-21162-2_8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
19
|
Paranjpe V, Tan J, Nguyen J, Lee J, Allegood J, Galor A, Mandal N. Clinical signs of meibomian gland dysfunction (MGD) are associated with changes in meibum sphingolipid composition. Ocul Surf 2018; 17:318-326. [PMID: 30553001 DOI: 10.1016/j.jtos.2018.12.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 10/26/2018] [Accepted: 12/11/2018] [Indexed: 12/16/2022]
Abstract
PURPOSE Sphingolipids (SPL) play roles in cell signaling, inflammation, and apoptosis. Changes in SPL composition have been reported in individuals with MGD, but associations between clinical signs of MGD and compositional changes in meibum SPLs have not been examined. METHODS Forty-three individuals underwent a tear film assessment. Groups were split into those with good or poor quality meibum. Meibum was collected then analyzed with liquid chromatography-mass spectroscopy to quantify SPL classes. Relative composition of SPL and major classes, Ceramide (Cer), Hexosyl-Ceramide (Hex-Cer), Sphingomyelin (SM), Sphingosine (Sph) and Sphingosine 1-phosphate (S1P) was calculated via mole percent. RESULTS 22 and 21 individuals were characterized with good and poor quality meibum, respectively. Individuals with poor quality were older (60 ± 8 vs 51 ± 16 years) and more likely to be male (90% vs 64%). Relative composition analysis revealed that individuals with poor meibum quality had SPL composed of less Cer (33.36% vs 49.49%, p < 0.01), Hex-Cer (4.88% vs 9.15%, p < 0.01), and S1P (0.16% vs 0.31%, p = 0.05), and more SM (58.67% vs 38.18%, p < 0.01) and Sph (2.92% vs 2.87%, p = 0.97) compared to individuals with good quality meibum. Assessment of the ratio of Cer (pro-apoptotic) to S1P (pro-survival) showed that individuals with poor meibum quality had a relative increase in Cer (495.23 vs 282.69, p = 0.07). CONCLUSION Meibum quality, a clinically graded marker of MGD, is associated with compositional changes in meibum sphingolipids. Further investigation of the structural and bioactive roles of sphingolipids in MGD may provide future targets for therapy.
Collapse
Affiliation(s)
- Vikram Paranjpe
- Miami Veterans Administration Medical Center, 1201 NW 16th St, Miami, FL, 33125, USA; Bascom Palmer Eye Institute, University of Miami, 900 NW 17th Street, Miami, FL, 33136, USA
| | - Jeremy Tan
- Ophthalmic Surgeons and Consultants of Ohio, Ohio State University, Columbus, OH, 43203, USA
| | - Jason Nguyen
- West Virginia University Eye, Morgantown, WV, 26506, USA
| | - John Lee
- Miami Veterans Administration Medical Center, 1201 NW 16th St, Miami, FL, 33125, USA; Bascom Palmer Eye Institute, University of Miami, 900 NW 17th Street, Miami, FL, 33136, USA
| | - Jeremy Allegood
- Lipidomics Core, Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA, 23249, USA
| | - Anat Galor
- Miami Veterans Administration Medical Center, 1201 NW 16th St, Miami, FL, 33125, USA; Bascom Palmer Eye Institute, University of Miami, 900 NW 17th Street, Miami, FL, 33136, USA.
| | - Nawajes Mandal
- Department of Ophthalmology, Anatomy and Neurobiology, University of Tennessee Health Sciences Center, Hamilton Eye Institute, 930 Madison Avenue, Memphis, TN, 38163, USA.
| |
Collapse
|
20
|
Sugano E, Edwards G, Saha S, Wilmott LA, Grambergs RC, Mondal K, Qi H, Stiles M, Tomita H, Mandal N. Overexpression of acid ceramidase (ASAH1) protects retinal cells (ARPE19) from oxidative stress. J Lipid Res 2018; 60:30-43. [PMID: 30413652 DOI: 10.1194/jlr.m082198] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 10/26/2018] [Indexed: 01/08/2023] Open
Abstract
Over 11 million people in the United States alone have some form of age-related macular degeneration (AMD). Oxidative stress, cell death, and the degeneration of retinal pigment epithelial (RPE) cells contribute to AMD pathology. Recent evidence suggests that ceramide (Cer), a cellular sphingolipid mediator that acts as a second messenger to induce apoptosis, might play a role in RPE cell death. The lysosomal breakdown of Cer by acid ceramidase [N-acylsphingosine amidohydrolase (ASAH)1] into sphingosine (Sph) is the major source for Sph 1-phosphate production, which has an opposing role to Cer and provides cytoprotection. Here, we investigated the role of Cer in human RPE-derived ARPE19 cells under hydrogen peroxide-induced oxidative stress, and show that Cer and hexosyl-Cer levels increase in the oxidatively stressed ARPE19 cells, which can be prevented by overexpression of lysosomal ASAH1. This study demonstrates that oxidative stress generates sphingolipid death mediators in retinal cells and that induction of ASAH1 could rescue retinal cells from oxidative stress by hydrolyzing excess Cers.
Collapse
Affiliation(s)
- Eriko Sugano
- Division of Science and Engineering, Iwate University, Morioka 020-8551, Japan
| | - Genea Edwards
- Departments of Ophthalmology University of Tennessee Health Science Center, Memphis, TN 38163
| | - Saikat Saha
- Departments of Ophthalmology University of Tennessee Health Science Center, Memphis, TN 38163
| | - Lynda A Wilmott
- Departments of Ophthalmology University of Tennessee Health Science Center, Memphis, TN 38163
| | - Richard C Grambergs
- Departments of Ophthalmology University of Tennessee Health Science Center, Memphis, TN 38163
| | - Koushik Mondal
- Departments of Ophthalmology University of Tennessee Health Science Center, Memphis, TN 38163
| | - Hui Qi
- Department of Ophthalmology, University of Oklahoma Health Science Center, Oklahoma City, OK 73104
| | - Megan Stiles
- Department of Ophthalmology, University of Oklahoma Health Science Center, Oklahoma City, OK 73104
| | - Hiroshi Tomita
- Division of Science and Engineering, Iwate University, Morioka 020-8551, Japan
| | - Nawajes Mandal
- Departments of Ophthalmology University of Tennessee Health Science Center, Memphis, TN 38163 .,Department of Ophthalmology, University of Oklahoma Health Science Center, Oklahoma City, OK 73104.,Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163
| |
Collapse
|
21
|
Nitrogen mustard-induced corneal injury involves the sphingomyelin-ceramide pathway. Ocul Surf 2017; 16:154-162. [PMID: 29129753 DOI: 10.1016/j.jtos.2017.11.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 10/24/2017] [Accepted: 11/07/2017] [Indexed: 12/24/2022]
Abstract
PURPOSE Nitrogen mustard (NM), which simulates the effects of sulfur mustard (SM), is a potent vesicant known to cause irreversible corneal damage. This study investigates the mechanisms by which NM induces corneal damage by examining the impact of NM exposure on the morphology and lipidome of the cornea. METHODS Intact ex vivo rabbit eyes were placed in serum-free DMEM organ culture. NM (0, 1, 2.5, 5 or 10 mg/ml) was applied to the central cornea for 5, 10 or 15 min using a 5 mm filter disk and subsequently rinsed with DMEM. Corneas were then cultured for 3, 24, or 48 h before being fixed for morphological analysis or for 24 h before being snap frozen for lipidomic analysis. RESULTS No morphological changes were detected 3 h after NM exposure. Twenty-four h after exposure, 1 mg/ml NM caused erosion of the corneal epithelium, but no damage to the underlying stroma. Damage caused by 2.5 mg/ml NM extended almost two thirds through the corneal stroma, while 5 mg/ml completely penetrated the corneal stroma. An altered lipid profile occurred 24 h after corneas were exposed to NM. Specific sphingomyelins, ceramides, and diacylglycerols were increased up to 9-, 60- and 10-fold, respectively. CONCLUSIONS NM induces concentration- and exposure time-dependent damage to the cornea that increases in severity over time. Alterations in the sphingomyelin-ceramide pathway may contribute to the damaging effects of NM exposure.
Collapse
|
22
|
Unravelling the interplay of sphingolipids and TGF-β signaling in the human corneal stroma. PLoS One 2017; 12:e0182390. [PMID: 28806736 PMCID: PMC5555661 DOI: 10.1371/journal.pone.0182390] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 07/17/2017] [Indexed: 11/19/2022] Open
Abstract
Purpose To delineate the role of Sphingolipids (SPLs) in the human cornea and their cross-talks with transforming growth factor beta (TGF-β) in order to develop novel, non-invasive therapies. Methods Human corneal fibroblasts (HCFs) were harvested from healthy donors, stimulated with Vitamin C to promote extracellular matrix assembly, treated with exogenous sphingosine-1-phosphate (S1P) or sphingosine kinase inhibitor 2 (SPHK I2) and isolated after 4 weeks for further analysis. Results Data showed that S1P led to a significant decrease in cellular migration where SPHK I2 just delayed it for 24h. Significant modulation of the sphingolipid pathway was also noted. Sphingosine kinase-1 (SphK1) was significantly downregulated upon exogenous stimulation with S1P at a concentration of 5μM and Sphingosine kinase-2 (SphK2) was also significantly downregulated at concentrations of 0.01μM, 0.1μM, and 5μM; whereas no effects were observed upon stimulation with SPHK I2. S1PR3 was significantly downregulated by 0.1μM and 5μM S1P and upregulated by 5μM and 10μM SPHK I2. Furthermore, both S1P and SPHK I2 regulated corneal fibrosis markers such as alpha-smooth muscle actin, collagen I, III, and V. We also investigated the interplay between two TGF-β isoforms and S1P/SPHK I2 treatments and found that TGF-β1 and TGF-β3 were both significantly upregulated with the 0.1μM S1P but were significantly downregulated with the 5μM S1P concentration. When TGF-β1 was compared directly to TGF-β3 expression, we observed that TGF-β3 was significantly downregulated compared to TGF-β1 in the 5μM concentration of S1P. No changes were observed upon SPHK I2 treatment. Conclusion Our study delineates the role of sphingolipids in the human cornea and highlights their different activities based on the cell/tissue type.
Collapse
|