1
|
Moeckli B, Lacotte S, Toso C. The Role of Acsl1 and Aldh2 in the Increased Risk for Liver Cancer in Offspring of Obese Mothers. Front Med (Lausanne) 2022; 9:907028. [PMID: 35833105 PMCID: PMC9271743 DOI: 10.3389/fmed.2022.907028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Beat Moeckli
- Division of Visceral Surgery, Department of Surgery, Geneva University Hospitals, Geneva, Switzerland
- Hepatology and Transplantation Laboratory, Division of Visceral Surgery, Department of Surgery, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Stéphanie Lacotte
- Division of Visceral Surgery, Department of Surgery, Geneva University Hospitals, Geneva, Switzerland
| | - Christian Toso
- Division of Visceral Surgery, Department of Surgery, Geneva University Hospitals, Geneva, Switzerland
- Hepatology and Transplantation Laboratory, Division of Visceral Surgery, Department of Surgery, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- *Correspondence: Christian Toso
| |
Collapse
|
2
|
Moeckli B, Delaune V, Prados J, Tihy M, Peloso A, Oldani G, Delmi T, Slits F, Gex Q, Rubbia-Brandt L, Goossens N, Lacotte S, Toso C. Impact of Maternal Obesity on Liver Disease in the Offspring: A Comprehensive Transcriptomic Analysis and Confirmation of Results in a Murine Model. Biomedicines 2022; 10:biomedicines10020294. [PMID: 35203502 PMCID: PMC8869223 DOI: 10.3390/biomedicines10020294] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/16/2022] [Accepted: 01/24/2022] [Indexed: 12/12/2022] Open
Abstract
The global obesity epidemic particularly affects women of reproductive age. Offspring of obese mothers suffer from an increased risk of liver disease but the molecular mechanisms involved remain unknown. We performed an integrative genomic analysis of datasets that investigated the impact of maternal obesity on the hepatic gene expression profile of the offspring in mice. Furthermore, we developed a murine model of maternal obesity and studied the development of liver disease and the gene expression profile of the top dysregulated genes by quantitative real-time polymerase chain reaction (qPCR). Our data are available for interactive exploration on our companion webpage. We identified five publicly available datasets relevant to our research question. Pathways involved in metabolism, the innate immune system, the clotting cascade, and the cell cycle were consistently dysregulated in the offspring of obese mothers. Concerning genes involved in the development of liver disease, Egfr, Vegfb, Wnt2,Pparg and six other genes were dysregulated in multiple independent datasets. In our own model, we observed a higher tendency towards the development of non-alcoholic liver disease (60 vs. 20%) and higher levels of alanine aminotransferase (41.0 vs. 12.5 IU/l, p = 0.008) in female offspring of obese mothers. Male offspring presented higher levels of liver fibrosis (2.4 vs. 0.6% relative surface area, p = 0.045). In a qPCR gene expression analysis of our own samples, we found Fgf21, Pparg, Ppard, and Casp6 to be dysregulated by maternal obesity. Maternal obesity represents a looming threat to the liver health of future generations. Our comprehensive transcriptomic analysis will help to better understand the mechanisms of the development of liver disease in the offspring of obese mothers and can give rise to further explorations.
Collapse
Affiliation(s)
- Beat Moeckli
- Hepatology and Transplantation Laboratory, Department of Surgery, Faculty of Medicine, Division of Visceral Surgery, University of Geneva, 1206 Geneva, Switzerland; (B.M.); (V.D.); (A.P.); (G.O.); (T.D.); (F.S.); (Q.G.); (C.T.)
- Department of Surgery, Division of Visceral Surgery, Geneva University Hospitals, 1205 Geneva, Switzerland
| | - Vaihere Delaune
- Hepatology and Transplantation Laboratory, Department of Surgery, Faculty of Medicine, Division of Visceral Surgery, University of Geneva, 1206 Geneva, Switzerland; (B.M.); (V.D.); (A.P.); (G.O.); (T.D.); (F.S.); (Q.G.); (C.T.)
- Department of Surgery, Division of Visceral Surgery, Geneva University Hospitals, 1205 Geneva, Switzerland
| | - Julien Prados
- Bioinformatics Support Platform, Services Communs de la Faculté, University of Geneva, 1206 Geneva, Switzerland;
| | - Matthieu Tihy
- Division of Clinical Pathology, Geneva University Hospitals, 1205 Geneva, Switzerland; (M.T.); (L.R.-B.)
| | - Andrea Peloso
- Hepatology and Transplantation Laboratory, Department of Surgery, Faculty of Medicine, Division of Visceral Surgery, University of Geneva, 1206 Geneva, Switzerland; (B.M.); (V.D.); (A.P.); (G.O.); (T.D.); (F.S.); (Q.G.); (C.T.)
- Department of Surgery, Division of Visceral Surgery, Geneva University Hospitals, 1205 Geneva, Switzerland
| | - Graziano Oldani
- Hepatology and Transplantation Laboratory, Department of Surgery, Faculty of Medicine, Division of Visceral Surgery, University of Geneva, 1206 Geneva, Switzerland; (B.M.); (V.D.); (A.P.); (G.O.); (T.D.); (F.S.); (Q.G.); (C.T.)
- Department of Surgery, Division of Visceral Surgery, Geneva University Hospitals, 1205 Geneva, Switzerland
| | - Thomas Delmi
- Hepatology and Transplantation Laboratory, Department of Surgery, Faculty of Medicine, Division of Visceral Surgery, University of Geneva, 1206 Geneva, Switzerland; (B.M.); (V.D.); (A.P.); (G.O.); (T.D.); (F.S.); (Q.G.); (C.T.)
| | - Florence Slits
- Hepatology and Transplantation Laboratory, Department of Surgery, Faculty of Medicine, Division of Visceral Surgery, University of Geneva, 1206 Geneva, Switzerland; (B.M.); (V.D.); (A.P.); (G.O.); (T.D.); (F.S.); (Q.G.); (C.T.)
| | - Quentin Gex
- Hepatology and Transplantation Laboratory, Department of Surgery, Faculty of Medicine, Division of Visceral Surgery, University of Geneva, 1206 Geneva, Switzerland; (B.M.); (V.D.); (A.P.); (G.O.); (T.D.); (F.S.); (Q.G.); (C.T.)
| | - Laura Rubbia-Brandt
- Division of Clinical Pathology, Geneva University Hospitals, 1205 Geneva, Switzerland; (M.T.); (L.R.-B.)
| | - Nicolas Goossens
- Division of Gastroenterology, Geneva University Hospitals, 1205 Geneva, Switzerland;
| | - Stéphanie Lacotte
- Hepatology and Transplantation Laboratory, Department of Surgery, Faculty of Medicine, Division of Visceral Surgery, University of Geneva, 1206 Geneva, Switzerland; (B.M.); (V.D.); (A.P.); (G.O.); (T.D.); (F.S.); (Q.G.); (C.T.)
- Correspondence:
| | - Christian Toso
- Hepatology and Transplantation Laboratory, Department of Surgery, Faculty of Medicine, Division of Visceral Surgery, University of Geneva, 1206 Geneva, Switzerland; (B.M.); (V.D.); (A.P.); (G.O.); (T.D.); (F.S.); (Q.G.); (C.T.)
- Department of Surgery, Division of Visceral Surgery, Geneva University Hospitals, 1205 Geneva, Switzerland
| |
Collapse
|
3
|
Li Y, Pollock CA, Saad S. Aberrant DNA Methylation Mediates the Transgenerational Risk of Metabolic and Chronic Disease Due to Maternal Obesity and Overnutrition. Genes (Basel) 2021; 12:genes12111653. [PMID: 34828259 PMCID: PMC8624316 DOI: 10.3390/genes12111653] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/02/2021] [Accepted: 10/17/2021] [Indexed: 12/13/2022] Open
Abstract
Maternal obesity is a rapidly evolving universal epidemic leading to acute and long-term medical and obstetric health issues, including increased maternal risks of gestational diabetes, hypertension and pre-eclampsia, and the future risks for offspring's predisposition to metabolic diseases. Epigenetic modification, in particular DNA methylation, represents a mechanism whereby environmental effects impact on the phenotypic expression of human disease. Maternal obesity or overnutrition contributes to the alterations in DNA methylation during early life which, through fetal programming, can predispose the offspring to many metabolic and chronic diseases, such as non-alcoholic fatty liver disease, obesity, diabetes, and chronic kidney disease. This review aims to summarize findings from human and animal studies, which support the role of maternal obesity in fetal programing and the potential benefit of altering DNA methylation to limit maternal obesity related disease in the offspring.
Collapse
Affiliation(s)
- Yan Li
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China;
| | - Carol A. Pollock
- Kolling Institute of Medical Research, University of Sydney, Sydney, NSW 2065, Australia;
| | - Sonia Saad
- Kolling Institute of Medical Research, University of Sydney, Sydney, NSW 2065, Australia;
- Correspondence:
| |
Collapse
|
4
|
Rouschop SH, Snow SJ, Kodavanti UP, Drittij MJ, Maas LM, Opperhuizen A, van Schooten FJ, Remels AH, Godschalk RW. Perinatal High-Fat Diet Influences Ozone-Induced Responses on Pulmonary Oxidant Status and the Molecular Control of Mitophagy in Female Rat Offspring. Int J Mol Sci 2021; 22:ijms22147551. [PMID: 34299170 PMCID: PMC8304403 DOI: 10.3390/ijms22147551] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/11/2021] [Accepted: 07/13/2021] [Indexed: 12/16/2022] Open
Abstract
Previous research has shown that a perinatal obesogenic, high-fat diet (HFD) is able to exacerbate ozone-induced adverse effects on lung function, injury, and inflammation in offspring, and it has been suggested that mitochondrial dysfunction is implicated herein. The aim of this study was to investigate whether a perinatal obesogenic HFD affects ozone-induced changes in offspring pulmonary oxidant status and the molecular control of mitochondrial function. For this purpose, female Long-Evans rats were fed a control diet or HFD before and during gestation, and during lactation, after which the offspring were acutely exposed to filtered air or ozone at a young-adult age (forty days). Directly following this exposure, the offspring lungs were examined for markers related to oxidative stress; oxidative phosphorylation; and mitochondrial fusion, fission, biogenesis, and mitophagy. Acute ozone exposure significantly increased pulmonary oxidant status and upregulated the molecular machinery that controls receptor-mediated mitophagy. In female offspring, a perinatal HFD exacerbated these responses, whereas in male offspring, responses were similar for both diet groups. The expression of the genes and proteins involved in oxidative phosphorylation and mitochondrial biogenesis, fusion, and fission was not affected by ozone exposure or perinatal HFD. These findings suggest that a perinatal HFD influences ozone-induced responses on pulmonary oxidant status and the molecular control of mitophagy in female rat offspring.
Collapse
Affiliation(s)
- Sven H. Rouschop
- Department of Pharmacology and Toxicology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, 6200 Maastricht, The Netherlands; (S.H.R.); (M.-J.D.); (L.M.M.); (A.O.); (F.J.v.S.); (A.H.R.)
| | - Samantha J. Snow
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Durham, NC 27711, USA; (S.J.S.); (U.P.K.)
- ICF International Inc., Durham, NC 27711, USA
| | - Urmila P. Kodavanti
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Durham, NC 27711, USA; (S.J.S.); (U.P.K.)
| | - Marie-José Drittij
- Department of Pharmacology and Toxicology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, 6200 Maastricht, The Netherlands; (S.H.R.); (M.-J.D.); (L.M.M.); (A.O.); (F.J.v.S.); (A.H.R.)
| | - Lou M. Maas
- Department of Pharmacology and Toxicology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, 6200 Maastricht, The Netherlands; (S.H.R.); (M.-J.D.); (L.M.M.); (A.O.); (F.J.v.S.); (A.H.R.)
| | - Antoon Opperhuizen
- Department of Pharmacology and Toxicology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, 6200 Maastricht, The Netherlands; (S.H.R.); (M.-J.D.); (L.M.M.); (A.O.); (F.J.v.S.); (A.H.R.)
- Netherlands Food and Consumer Product Safety Authority (NVWA), 3511 Utrecht, The Netherlands
| | - Frederik J. van Schooten
- Department of Pharmacology and Toxicology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, 6200 Maastricht, The Netherlands; (S.H.R.); (M.-J.D.); (L.M.M.); (A.O.); (F.J.v.S.); (A.H.R.)
| | - Alexander H. Remels
- Department of Pharmacology and Toxicology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, 6200 Maastricht, The Netherlands; (S.H.R.); (M.-J.D.); (L.M.M.); (A.O.); (F.J.v.S.); (A.H.R.)
| | - Roger W. Godschalk
- Department of Pharmacology and Toxicology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, 6200 Maastricht, The Netherlands; (S.H.R.); (M.-J.D.); (L.M.M.); (A.O.); (F.J.v.S.); (A.H.R.)
- Correspondence:
| |
Collapse
|
5
|
Liu Y, Yang C, Feng X, Qi L, Guo J, Zhu D, Thai PN, Zhang Y, Zhang P, Sun M, Lv J, Zhang L, Xu Z, Lu X. Prenatal High-Salt Diet-Induced Metabolic Disorders via Decreasing Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1α in Adult Male Rat Offspring. Mol Nutr Food Res 2020; 64:e2000196. [PMID: 32506826 DOI: 10.1002/mnfr.202000196] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/06/2020] [Indexed: 12/14/2022]
Abstract
SCOPE Although prenatal high-salt (HS) intake leads to physiological complications in the offspring, little is known regarding its effects on the offspring's glucose metabolism. Therefore, the objectives of this study are to determine the consequences of prenatal HS diet on the offspring's metabolism and to test a potential therapy. METHODS AND RESULTS Pregnant rats are fed either a normal-salt (1% NaCl) or high-salt (8% NaCl) diet during the whole pregnancy. Experiments are conducted in five-month-old male offspring. It is found that the prenatal HS diet reduced the glucose tolerance and insulin sensitivity of the offspring. Additionally, there is down-regulation of peroxisome proliferator-activated receptor gamma coactivator 1 alpha (Ppargc1a/PPARGC1A) at the transcript and protein level, which leads to decreased mitochondrial biogenesis and oxidative respiration in skeletal muscle. Moreover, the down-regulation of Ppargc1a is accompanied by decreases in the expression of glucose transporter type 4 (Glut4). With endurance exercise training, these changes are mitigated, which ultimately resulted in improved insulin resistance. CONCLUSION These findings suggest that prenatal HS intake induces metabolic disorders via the decreased expression of Ppargc1a in the skeletal muscle of adult offspring, providing novel information concerning the mechanisms and early prevention of metabolic diseases of fetal origins.
Collapse
Affiliation(s)
- Yanping Liu
- Institute for Fetology, First Hospital of Soochow University, Suzhou, 215006, China
| | - Chunli Yang
- Institute for Fetology, First Hospital of Soochow University, Suzhou, 215006, China
| | - Xueqin Feng
- Institute for Fetology, First Hospital of Soochow University, Suzhou, 215006, China
| | - Linglu Qi
- Institute for Fetology, First Hospital of Soochow University, Suzhou, 215006, China
| | - Jun Guo
- Institute for Fetology, First Hospital of Soochow University, Suzhou, 215006, China
| | - Dan Zhu
- Institute for Fetology, First Hospital of Soochow University, Suzhou, 215006, China
| | - Phung N Thai
- Department of Internal Medicine, University of California Davis, Davis, CA, 95616, USA
| | - Yingying Zhang
- Institute for Fetology, First Hospital of Soochow University, Suzhou, 215006, China
| | - Pengjie Zhang
- Institute for Fetology, First Hospital of Soochow University, Suzhou, 215006, China
| | - Miao Sun
- Institute for Fetology, First Hospital of Soochow University, Suzhou, 215006, China
| | - Juanxiu Lv
- Institute for Fetology, First Hospital of Soochow University, Suzhou, 215006, China
| | - Lubo Zhang
- Center for Perinatal Biology, Loma Linda University, Loma Linda, CA, 92324, USA
| | - Zhice Xu
- Institute for Fetology, First Hospital of Soochow University, Suzhou, 215006, China
| | - Xiyuan Lu
- Institute for Fetology, First Hospital of Soochow University, Suzhou, 215006, China
| |
Collapse
|
6
|
Maguire M, Larsen MC, Vezina CM, Quadro L, Kim YK, Tanumihardjo SA, Jefcoate CR. Cyp1b1 directs Srebp-mediated cholesterol and retinoid synthesis in perinatal liver; Association with retinoic acid activity during fetal development. PLoS One 2020; 15:e0228436. [PMID: 32027669 PMCID: PMC7004353 DOI: 10.1371/journal.pone.0228436] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 01/16/2020] [Indexed: 12/13/2022] Open
Abstract
Background Cytochrome P450 1b1 (Cyp1b1) deletion and dietary retinol deficiency during pregnancy (GVAD) affect perinatal liver functions regulated by Srebp. Cyp1b1 is not expressed in perinatal liver but appears in the E9.5 embryo, close to sites of retinoic acid (RA) signaling. Hypothesis Parallel effects of Cyp1b1 and retinol on postnatal Srebp derive from effects in the developing liver or systemic signaling. Approach Cluster postnatal increases in hepatic genes in relation to effects of GVAD or Cyp1b1 deletion. Sort expression changes in relation to genes regulated by Srebp1 and Srebp2.Test these treatments on embryos at E9.5, examining changes at the site of liver initiation. Use in situ hybridization to resolve effects on mRNA distributions of Aldh1a2 and Cyp26a1 (RA homeostasis); Hoxb1 and Pax6 (RA targets). Assess mice lacking Lrat and Rbp4 (DKO mice) that severely limits retinol supply to embryos. Results At birth, GVAD and Cyp1b1 deletion stimulate gene markers of hepatic stellate cell (HSC) activation but also suppress Hamp. These treatments then selectively prevent the postnatal onset of genes that synthesize cholesterol (Hmgcr, Sqle) and fatty acids (Fasn, Scd1), but also direct cholesterol transport (Ldlr, Pcsk9, Stard4) and retinoid synthesis (Aldh1a1, Rdh11). Extensive support by Cyp1b1 is implicated, but with distinct GVAD interventions for Srebp1 and Srebp2. At E9.5, Cyp1b1 is expressed in the septum transversum mesenchyme (STM) with β-carotene oxygenase (Bco1) that generates retinaldehyde. STM provides progenitors for the HSC and supports liver expansion. GVAD and Cyp1b1-/- do not affect RA-dependent Hoxb1 and Pax6. In DKO embryos, RA-dependent Cyp26a1 is lost but Hoxb1 is sustained with Cyp1b1 at multiple sites. Conclusion Cyp1b1-/- suppresses genes supported by Srebp. GVAD effects distinguish Srebp1 and Srebp2 mediation. Srebp regulation overlaps appreciably in cholesterol and retinoid homeostasis. Bco1/Cyp1b1 partnership in the STM may contribute to this later liver regulation.
Collapse
Affiliation(s)
- Meghan Maguire
- Endocrinology and Reproductive Physiology Program, University of Wisconsin-Madison, Madison, WI
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI
| | | | - Chad M. Vezina
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI
| | - Loredana Quadro
- Department of Food Science and Rutgers Center for Lipid Research, Rutgers University, New Brunswick, New Jersey
| | - Youn-Kyung Kim
- Department of Food Science and Rutgers Center for Lipid Research, Rutgers University, New Brunswick, New Jersey
| | | | - Colin R. Jefcoate
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI
- * E-mail:
| |
Collapse
|
7
|
Poon K. Behavioral Feeding Circuit: Dietary Fat-Induced Effects of Inflammatory Mediators in the Hypothalamus. Front Endocrinol (Lausanne) 2020; 11:591559. [PMID: 33324346 PMCID: PMC7726204 DOI: 10.3389/fendo.2020.591559] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 10/23/2020] [Indexed: 12/19/2022] Open
Abstract
Excessive dietary fat intake has extensive impacts on several physiological systems and can lead to metabolic and nonmetabolic disease. In animal models of ingestion, exposure to a high fat diet during pregnancy predisposes offspring to increase intake of dietary fat and causes increase in weight gain that can lead to obesity, and without intervention, these physiological and behavioral consequences can persist for several generations. The hypothalamus is a region of the brain that responds to physiological hunger and fullness and contains orexigenic neuropeptide systems that have long been associated with dietary fat intake. The past fifteen years of research show that prenatal exposure to a high fat diet increases neurogenesis of these neuropeptide systems in offspring brain and are correlated to behavioral changes that induce a pro-consummatory and obesogenic phenotype. Current research has uncovered several potential molecular mechanisms by which excessive dietary fat alters the hypothalamus and involve dietary fatty acids, the immune system, gut microbiota, and transcriptional and epigenetic changes. This review will examine the current knowledge of dietary fat-associated changes in the hypothalamus and the potential pathways involved in modifying the development of orexigenic peptide neurons that lead to changes in ingestive behavior, with a special emphasis on inflammation by chemokines.
Collapse
|